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Abstract. The generalized presentation of a Bieberbach group with cyclic point group of order two can be obtained from 
the fact that any Bieberbach group of dimension n  is a direct product of the group of the smallest dimension with a free 
abelian group.  In this paper, by using the group presentation, the homological functor of a Bieberbach group a with 
cyclic point group of order two of dimension n  is found. 
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INTRODUCTION 

A Bieberbach group is defined as a torsion free crystallographic group whereas a crystallographic group is a 
discrete subgroup G  of the set of isometries of Euclidean space ,n  where the quotient space 

n

G  is compact.  

Previous researches on crystallographic groups as well as Bieberbach groups can be found in [1- 4].  Rohaidah in [5] 
computed the nonabelian tensor squares for some Bieberbach groups with cyclic point group of order two, 2 ,C
found in Crystallographic, Algorithms and Tables (CARAT) package [6].  This computer package handles 
enumeration, construction, recognition, and comparison problems for crystallographic groups up to dimension 6.  In 
[5], the first Bieberbach group with point group 2C  of dimension n  is defined as the following: 

Definition 1 [5] The groups 
1 1 22 ab

nB n B F  for 2n
are Bieberbach groups with point group 2C  of dimension ,n  where 

12 1
1 1 2 2 1 1 2 2 2 22 , , ,  ,  ,  la aB a l l a l l l l l l l  and ab

mF  is the free abelian group of rank .m

The notation iB j  denotes the i th Bieberbach group with point group 2C  of dimension .j   The group 1 2B  has 
been shown to be polycyclic in [5].  

By taking Definition 1 as the basis, the exterior square of 1B n  is computed in this paper.  The exterior square 
of a group is one of the homological functors, which were originated from homotopy theory.  The exterior square of 

a group G  is the factor group G G
G  where G G  is the nonabelian tensor square of G  while G  is 

the central subgroup of G G  generated by ,g g  for all .g G    

Some important results from previous researches that are used in the computations of the exterior squares of 
1B n are presented next. 
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Definition 2 [7] Let G  be a group with presentation G R  and let G  be an isomorphic copy of G  via the 

mapping : g g  for all .g G   The group G  is defined to be 

, , , , , , , , , .
x xx xG G G R R g h g h g h x g h G

Proposition 1 [8] If G  is polycyclic, then G  is polycyclic. 

Theorem 1 [9] Let G  be a group.  The map : [ , ]G G G G G  defined by ,g h g h  for all 

g  and h  in G  is an isomorphism. 

Definition 3 [8] Let G  be any group.  Then G  is defined to be the quotient group ,G
G

 where 

: ,G G G G  is as defined in Theorem 1. 

Proposition 2 [8] Let G  be any group.  The map 
ˆ : ,

G
G G G G G

defined by ,
G

g h g h  is an isomorphism. 

For simplicity, since G  is a subgroup of G , after this we only denote ,
G

g h  as , .g h

Proposition 3 [8] Let G  be a polycyclic group with a polycyclic generating sequence 1, , .kg g   Then, 

, ,
G

G G  a subgroup of ,G  is generated by 

, , , ,i j j iG
G G g g g g

for 1 ,i j k  where 

1    if ;

1 if

j

j

g

g
 and 

1    if ;
1 if .

i

i

g
g

Lemma 1 [10] Let G  be a group such that abG  is finitely generated.  Assume that abG  is the direct product of the 
cyclic groups ,ix G  for 1, , .i s   Then, G  is generated by the elements of the set 

, , , , 1 .i i i j j ix x x x x x i j s

A list of commutator calculus that is used in the computations of the exterior square of 1B n  is given as 
follows: 

, , , ;yx yz x y x z      (1) 
1 1 1 11 1, , , , , ;yx y x y y x y x y    (2) 

, , .z z zx y x y       (3) 

The following lemmas record some basic identities related to the group   
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Lemma 2 [8, 11] Let G  be a group.  Then the following hold in G :

(i) ,g g  is central in G  for all g  in ;G

(ii) 1 2 2 1, ,g g g g  is central in G  for all 1 2,g g  in G ;

(iii) , 1g g  for all g  in G ;

(iv) 1 2 2 1 1 2 2 1 1 2 2 1, , , , , ,
nn n n ng g g g g g g g g g g g  for all 1 2,g g  in G  and integer .n

Corollary 1 [10] Let G  be any group.  Then , 1.Z G G

Lemma 3 [5, 8] Let g  and h  be elements of G  such that , 1.g h   Then in ,G

(i) , , ,
nnng h g h g h  for all integers ;n

(ii) , , , ,
nmn m m ng h h g g h h g ;

(iii) ,g h  is in the center of .G

Lemma 4 [5] Let G  and H  be groups and let .g G   Suppose  is a homomorphism from G  onto .H   If 

g  has a finite order then g  divides .g   Otherwise the order of g  equals the order of .g

Lemma 5 [12] Let ,A B  and C  be abelian groups.  Consider the ordinary tensor product of two abelian groups.  
Then,

(i) 0 ,C A A
(ii) 0 0 0 ,C C C
(iii) gcd , ,n m n mC C C  for , ,n m  and 

(iv) ,A B C A B A C
where 0C  is the infinite cyclic group. 

Theorem 2 [13] Let G  and H  be groups such that there is an epimorphism : .G H   Then there exists an 
epimorphism : G G H H  defined by .g h g h

THE COMPUTATIONS OF THE EXTERIOR SQUARE OF 1B n

Based on Definition 1, the consistent polycyclic presentation of 1B n  is obtained and is given in the following 
lemma. 

Lemma 6 Let 1B n  be a Bieberbach group with point group 2C  of dimension .n   Then, 
2 1

1 1 2 2 1 1, , , , ,  ,  ,  ila a
n j j j jB n a l l l a l l l l l l l

for all 1 .i j n

Proof.  By Definition 1, 1 1 2(2) ab
nB n B F .   Therefore, all elements in 2

ab
nF  commute with elements in 

1 2 .B   Since 2
ab

nF  is the free abelian group of rank 2,n  then it is generated by 3 4, , , .nl l l   Therefore, 
1, la

j j j jl l l l  and 2l
j jl l  for 1 2 1,  ,  2a l l B  and 3, 4, , .j n   Therefore, we have 
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2 1
1 1 2 2 1 1, , , , ,  ,  ,  ila a

n j j j jB n a l l l a l l l l l l l

where 1 .i j n   Based on the properties of groups and polycyclic presentations, this presentation is consistent. 

Lemma 7 The group 1B n  has a cyclic derived subgroup and its abelianisation is 

1
1 1 1 1 1 0 2, ,ab n

jB n aB n l B n l B n C C

for 3 .j n

Proof.  Based on the relations of 1 ,B n 2
1 1, 1,a l l , 1ja l  and , 1i jl l  for all 1 .i j n

Therefore, 2
1 1 .B n l   Since 1B n  is torsion free, then 1 0.B n C

The abelianisation of 1 ,B n  denoted as 1 ,abB n  is defined to be the quotient group 1

1

.B n
B n

  Thus, it is 

generated by 1 1 1,aB n l B n  and 1jl B n  for all 3, 4, , .j n   However, 1 2 1aB n l B n  is not trivial since 
2

2a l  by the relations of 1 .B n   Hence 1 2 1 .aB n l B n   Since 2
1 1 ,l B n  then the order of 1 1l B n  is two.  

Meanwhile, there is no power of a  or jl  is in 1B n  and 1B n  is generated by elements of infinite order.  Thus, , 

1aB n  and 1kl B n  have infinite order.  Therefore, 

2
1 1 1 1 1 0 2 0, , .ab n

jB n aB n l B n l B n C C C

Theorem 3 The exterior square of 1B n  is 

1 1 1 1 1

2 1
1 22
0 2

,  ,  ,  ,  ,  

                    ,

i n i n i j

n n
n

B n B n a l a l a l l l l l l l

C C
where 1 .i j n

Proof.  By Proposition 2, 1 1B n B n  is isomorphic to 
1

1 1, .
B n

B n B n   Then, by referring to 

Proposition 3, 

1

1 1 1 1 1 1
1 1, , , , , , , , , , , ,i i n n i j j i

B n
B n B n a l l a a l l a l l l l

where 1 .i j n   By the definition of exterior square, all elements in 1B n  are trivial in 1 1 .B n B n

Since il  commutes with ,jl  then by Lemma 3(i), 1 1 1, ,  , ,  , ,  , ,  ,i j i j i j j i j il l l l l l l l l l  and 1,i jl l
can be eliminated.  The following three cases are now considered. 

Case 1 : 1.i
By invoking the relations of 1B n  and the commutator calculus, we obtain the following: 

11
1 1 1 1, , , ,a l l a l a l     by (2) 

11 2
1 1 1, ,l l a l     by relations of 1B n

2 1

1 1 1, ,l l a l     by Lemma 3 (i) 

675 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

161.139.102.13 On: Thu, 24 Dec 2015 13:54:28



1

1,a l      since 1 1 1,l l B n  by Lemma 1. 

Similarly, we obtain 1
1 1, ,a l a l  and 

11
1 1, , .a l a l   Clearly, 

1

1 1 1 1, , , , .l a a l a l l a   By 

Lemma 1 and Lemma 7, 1 1, ,a l l a  is also in 1 ,B n  which implies that it is trivial in 

1
1 1,

B n
B n B n   Therefore, 

1

1 1, , .l a a l   Using similar arguments, it can be shown that 

1
1 1, ,  ,l a l a  and 1

1 ,l a  can be written in terms of 1, .a l   Besides,  since 2
2 ,a l  by applying the 

commutator calculus, we obtain 
2

2 1 1

1 1

1 1

1

1 1

, ,

          , ,

          , ,

          , ,

          1.

a

l l a l

a l a l

a l a l

a l a l

For all 3, 4, , ,j n  since 1 1 1, ,j jl l l l B n  is trivial in 
1

1 1, ,
B n

B n B n  then 

1

1 1, , .j jl l l l

Case 2 : 2.i

Again, since 2
2a l  and 1,a a B n  is trivial in 

1
1 1, ,

B n
B n B n  then 1

2,a l  and 1
2 ,l a

are also trivial in 
1

1 1, .
B n

B n B n   Then, since a  commutes with jl  in 1 ,B n
2

2 , ,j jl l a l  and 

2

2, , .j jl l a l

Case 3 : 3 .i j n
By the relations of 1 ,B n il  and jl  are in the center of 1B n  for all 3 .i j n   Hence, by Lemma 3 (i), 

11, , , ,i i ia l a l a l 1, , ,i ia l a l
11, , ,i i il a l a l a  and 1, , .i il a l a   Next, 

since 1, ,i ia l l a B n  is trivial in 
1

1 1, ,
B n

B n B n  then 
1

, , .i il a a l   Similarly, all 

generators 1, na l  and 1,nl a  can be written in terms of , .na l   Furthermore, 1,i jl l  and 1,j il l  can 

be simplified to be , .i jl l

Therefore, the remaining generators of 
1

1 1,
B n

B n B n  are 1 1 1, ,  , ,  , ,  , ,  ,i n i na l a l a l l l l l  and 

, ,i jl l  for all 1 .i j n   Then, by Proposition 2, 1 1B n B n  is generated by 1 1,  ,  ,  ,i n ia l a l a l l l

1 nl l  and i jl l  for all 1 .i j n   Next, the order of each generators are computed.  The mapping 

1 1 1: B n B n B n  gives 1 1, .a l a l   Since 2
1 1,a l l  in 1B n  has infinite order, then by 

Lemma 4, the order of 1a l  is infinity.  Next, we show that the order of ia l  is also infinite.  The following 

conditions would lead the order of , ia l  to be finite.  Since a  and il  commute with each other in 1 ,B n  then by 

Lemma 3(i), , ,
rsr s

i ia l a l  for any integer , .r s   However, since 1B n  is torsion free, then both a  and il
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has infinite order.  Next, one power of , ia l  will give an element in 1Z B n  while the other one in the derived 

subgroup of 1B n  by Corollary 1.  However, this is not true since there is no power of either a  or il  is in 1 .B n
Therefore, ia l  has infinite order.  Using similar arguments, the order of na l  and i jl l  are also infinite. 

Since 2
1 1l B n  and 1, ,i jl l Z B n  then by Corollary 1 and Lemma 3(i), 

2 2
1 1, , 1i il l l l .  Thus, 

without loss of generality, 1, il l  has order two, which implies that the order of 1 2l l  is two by Proposition 2.  

Similarly, the order of 1 nl l  is also two.  Therefore, 

1 1 1 1 1

3 2
3 3 2

0 0 0 2 2 0

2 1
1 22
0 2

,  ,  ,  ,  ,  

                    

                    .

i n i n i j

n n
n n

n n
n

B n B n a l a l a l l l l l l l

C C C C C C

C C

CONCLUSION 

In this paper, the exterior square of a Bieberbach group of dimension ,n  namely 1B n  is computed.  Firstly, the 
polycyclic presentation of this group is computed and then using the method for computing the exterior square of 
polycyclic groups, the results of 1 1B n B n  is obtained. 
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