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Abstract

A crystallographic group is a discrete subgroup G of the set of isometries of Euclidean space £",

where the quotient space E%; is compact. A specific type of crystallographic groups is called

Bieberbach groups. A Bieberbach group is defined to be a torsion free crystallographic group. In this
paper, the exterior squares of some Bieberbach groups with abelian point groups are computed. The
exterior square of a group is the factor group of the nonabelian tensor square with the central subgroup of
the group.

Keywords: Crystallographic groups; Bieberbach groups; exterior squares
Abstrak

Kumpulan kristalografi adalah suatu subkumpulan diskret G bagi set isometrik bagi ruang Euklidan
E", di mana ruang hasil bahagi 5%3 adalah padat. Satu jenis kumpulan kristalografi yang spesifik

dipanggil kumpulan Bieberbach. Kumpulan Bieberbach ditakrifkan sebagai suatu kumpulan kristalografi
bebas kilasan. Dalam Kkertas kerja ini, kuasa dua peluaran bagi beberapa kumpulan Bieberbach dengan
kumpulan titik abelan ditentukan. Kuasa dua peluaran bagi satu kumpulan adalah kumpulan faktor kuasa
dua tensor tak abelan dengan subkumpulan pusat bagi kumpulan tersebut.

Kata kunci: Kumpulan kristalografi; kumpulan Bieberbach; kuasa dua peluaran
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H1.0 INTRODUCTION

Farkas and Hiller in [1, 2] discussed on the mathematical
approach regarding the pattern of a crystal. In the approach, the
crystal pattern is replaced by the group G of rigid motions of

Euclidean space E" that preserve it. The group G is known as
the space group or crystallographic group. As a continuation to
the research involving the crystallographic groups, Plesken and
Schulz [3] calculated the number of crystallographic groups in
dimension five and six while Cid and Schulz in [4] constructed
and classified five and six dimensional torsion free
crystallographic groups which are also known as Bieberbach
groups. A Bieberbach group is a torsion free crystallographic
group which is an extension of a free abelian group L of finite
rank by a finite group P. The group P is known as the point
group while the dimension of the Bieberbach group is the rank of
L. Both results of [3] and [4] deal with Crystallographic,
Algorithms and Tables (CARAT) package. In this package, all
Bieberbach groups up to dimension six are listed. Using the
Bieberbach groups with cyclic point group of order two, C, and

point group C,xC, found in CARAT, the polycyclic

presentations of some of these groups have been constructed by
Rohaidah in 2009 [5] in order to compute their nonabelian tensor
squares. By denoting the ith Bieberbach group with dimension

j as Bi(j),the polycyclic presentation for the Bieberbach
groups with point group C, found in [5] are:
1 B(2)=(all[a® =1L, =17, =1, 4, =1,),
a?=1,%, =1,,%, =1,%, =1,
b, =1, =1, = >

2 | a _y-1a _y-1a _
al=1,° =112, =1, ,g_g>
:

Il P Il —_ |2 —_
|2—|21 |3—|3v I3—I3

2. BA@=<&EQ@

3. BA$—<ayg@
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2 _ a] _ a] _
=1, =1,%,=1,

a| a a|
L =1,,%, =1,,% =1,

! l 1
0, =1, =1y, =1,
4. B,(5)=( al,l,! B m o weE

1
viyplals|,
I, =171, =11, =1,

L8 TR Y [ Y
|5—|5| |5—|5, |5—|5,

I4'5 =l

In addition, the polycylic presentation for the Bieberbach
groups with point group C, xC, considered in [5] are as follows:

2 -I-1-1 a
a? =171, =1,
a _ a| _ aj _
=1, =1,%, =1,
ay _ 2 _ -1 b _
I, =1,,0% =11 =1,

b b -1b
L=1,,°L =11, =1,

1L By(5)=( ab,l,l,l,ll e 1]
5 '51 — M3 27 T
b, =1, =10, =1,
|2|4:|4v|3|4:|41|1|5:|5'
bl =1, bl =1, ) =1,
a? =121, =1,
A, =1,,°%, =1,
A, = LI =1,
b? =1,1,°, =1,,
b b

2. By(5)=( abl,l,ll,l b=l =l

by _ -1 by _

1, =154, =1,

% =bl2, 1%, M, =1,

I, _ [} _ I, _
=1, =10 =1,

LCY S (Y [ R 'Y I
=1, =1, b =,

IZ P |3 —_ |4 —_
|5 —Isv Is —|5, |5 —Is

This research extends the results found in [5] to find the
exterior squares of the Bieberbach groups with point group C,

and C,xC,.

The exterior square of a group G, denoted as G AG is one
of the homological functors of the group, defined as the factor

group G ®%(G) where G ®G is the nonabelian tensor square

of G and V(G) is the central subgroup of G. The nonabelian

tensor square of a group G is generated by g®h, for all

g,heG subjects to the relations
99'®h=(°g'® °h)(g®h) and g®hh'=(g®h)("g® ")
where the action is taken to be conjugation.

The nonabelian tensor square of a group has been introduced
by Brown and Loday in 1987 [6]. Throughout the years, many
researches involving the nonabelian tensor squares of various
groups have been conducted. Kappe et al. in [7] investigated on
two-generator two-groups of class two and computed the
nonabelian tensor squares of these groups. The computations of
the nonabelian tensor squares of infinite metacyclic groups and

free nilpotent groups of finite rank have been discussed in [8] and
[9] respectively.

The exterior squares have been computed for finite p — groups of

nilpotency class two, infinite nonabelian 2-generator groups of
nilpotency class two and symmetric groups of order six in [10],
[11] and [12] respectively. Besides, in 2008, Eick and Nickel [13]
determined the exterior squares of polycyclic groups.

2.0 PRELIMINARIES

In this section, some basic concepts and preparatory results that
are used in the computations of the exterior squares of some
Bieberbach groups with point groups C, and C,xC, are

included.

Definition 2.1 [14] Let G be a group with presentation
(@|R) and let G* be an isomorphic copy of G via the mapping

@:g9—>g° forall geG. The group v(G) is defined to be

(@)= ™ TomT=a () |="Tar]),
VX, 0,heG

Theorem 2.1 [15] Let G be a group. The map
o:G®G —[G,G”|<v(G) defined by o(g®h)=[g,h*] for

all g,h in G isanisomorphism.

Proposition 2.1 [16]
polycyclic.

If G is polycylic then v(G) is

Lemma 2.1 [16] Let G be a polycyclic group with
subgroups A and B having polycyclic generating sets a,,...,a,

and b,...b, If G=(AB) then [AB] is
generated by [a/,b] |, where 1<i<n, 1<j<m,

g_{ Lif fal<o; oo 2 it o] <oo;
it = | it o=

respectively.

Lemma 2.2 [17] Let G be a group such that the
abelianisation of the group, G® s finitely generated. Assume
that G is the direct product of the cyclic groups (xG'), for

i=1...s and set E(G) to be ([x,x]i<i)[G,G"] Then,
[G,G"]=V(G)E(G).

Theorem 2.2 [17] Assume that G is finitely generated.
If either G® has no element of order two or that G’ has a
complement in G, then

V(G)=V(G®) and G®G =V(G)x(GAG).

Theorem 2.3 [18] Let G be a group. Then there exists a
commutator mapping K:G®G -G defined by

x(g®h)=[g,h]. Thekernel of x is the center of G®G.
Based on Theorem 2.1, since there is an isomorphism
from G®G to [G,G”], then all tensor computations can be



9 Nor Haniza Sarmin et al. / Jurnal Teknologi (Sciences & Engineering) 62:3 (2013), 7-13

translated into commutator computations within [G,G“’].

Therefore, by Lemma 2.2 and Theorem 2.2, if the abelianisation
of the group is finitely generated and it has no element of order

two, then we have G AG to be E(G). The commutators that are
used in this paper are listed as follows:

[x yz]=[xy] [x2]; 2.1)
[x, y‘l] =" [xy ! :[y‘l,[x, y]_l][x, y]'l; (2.2)
[xy] :[Zx, Zy}. (2.3)

The following lemmas and corollary record some basic
identities used in this paper.

Lemma 2.3 [16]
hold in v(G):

M g,07]=""[g,07] and
g, 00]= " [g,0¢] forall g,0,.9,0, i
G;

(i) [90,9,.0:|=[9:.9,.95]=[9/.9,,95 |=[ 0,979, |
=[97.97.9, |=[ 0,907,907 ] forall g,,9,,9; in G;

Let G be a group. Then the following

i) [00[9:9:)"|=[9:090:07] forall g,,0,.9, in
G;
(iv) [9.9”] is central in v(G) forall g in G;
v [9,9¢][9,.97] is central in v(G) for all g,,g, in
G;
(vi) [9.97]=1forall g in G

Corollary 2.1 [17] Let G be any group. Then

[z(6).(@)]-1

Lemma 2.4 [16, 5] Let g and h be elements of G such
that [g,h]=1. Thenin v(G),

(i) [g",hq=[g,hqn=[g,(h“’)n} for all integers

@ [on (o) o) = (o Tne])"

(iii) [g,h“’} is in the center of v(G).

Lemma 2.5 [5] Let G and H be groups and let
geG. Suppose ¢ is a homomorphism from G onto H. If

#(9) has finite order then |4(g)| divides |g|. Otherwise the

order of ¢(g) equals the order of g.

Lemma 2.6 [19] Let A Band C be abelian groups. Consider
the ordinary tensor product of two abelian groups. Then,

0] C,®A=z=A

(i) C,®C, =C,,

(iii) C,®C, Cgcdnm
(iv) A®(BxC)=(A®B)x(A®C)
where C, is the infinite cyclic group.

for nnmell, and

Theorem 2.4 [18] Let G and H be groups such that
there is an epimorphism &:G—H. Then there exists an
epimorphism a.G®G—->H®H defined by

a(g®h)=¢(g)®e(h).

The following theorems by Rohaidah in [5] show the
abelianisation of some Bieberbach groups with point groups C,

and C, xC,.

Theorem 2.5 [5] Let B;(j) denotes the i th Bieberbach
group with point group C, with dimension j. Then,

B,(2)" =<aBl(2)', |1sl(z)’>;coxc2,

aB,(3), >;CO><CO,

and

o~
<a83 3) 1,8,(3 )>;CO><CZXC2
2

aB,(5), 1,B,(5) .1,B (5)> C,xC, % Cy.

Theorem 2.6 [5] Let B,(j) denotes the ith Bieberbach
group with point group C, xC, with dimension j. Then,

B,(5)" = <a|35(5)', bB,(5) , |535(5)’> =C,xC,xC,
and

B,(5)" = (a8, (5) . bB,(5) . I

86(5)'>;C0><c0><c0.

3.0 COMPUTATIONS OF THE EXTERIOR SQUARES

In [5], there are six Bieberbach groups with point group C, and
C,xC, as listed in Theorem 2.5 and Theorem 2.6. However, in

this paper, the exterior squares are computed only for the groups
where their abelianisations are finitely generated and have no

element of order two namely B,(3), B,(5), B;(5) and By (5).
The results are shown in the following theorems.

Theorem 3.1 The exterior square of B, (3) is

B,(3)AB,(3)= <[a, ] [a |g’],[|1,(|2|;1)“’]> ~C,xC, xC,.

Proof:

By Theorem 2.5, Bz(3)a*’:<a|32(3)’, |1BZ(3)’>;coxco.

Since BZ(S)ab has no element of order two, we have E(BZ(S)) to
be B,(3)AB,(3). Using Lemma 2.2, set E(B,(3)) to be

(ar])[ &2

),B,(3) } Next, we determine [82(3),82(3)'“’}.
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From the relations of B,(3), [al]=ala™*=1L"#1 and

[al,]=al,a™," =11, =[al ] #1. Since B,(3) is a polycyclic
group generated by polycylic generating sequence a, I, I, and 1,
where  [a,l;]=1, [L.1,]=1 [I,L]=1 and [l,,l,]=1 then

BZ(3)':<I2I1’1>. By Proposition 2.1, v(B,(3)) is polycyclic.
Hence, the subgroups B,(3) and B,(3)” have polycyclic

generating sequence a, I, I,, I, and (Izll’l)w. Thus, by Lemma

[a,(lzlf)q,[ly(lzl{l)q'['Z’UZIIJ)W] |
[|3,(|2|[1)q

However, some of these generators can be expressed as
products of power of other generators. By Corollary 2.1,

|:I3,(I2I1’1)q=1. Next, by Lemma 2.4 (iii), since I, commutes

2.1, we have

[BZ (3).B, (3)""} =

with 1,, then [1,17] is in the center of v(B,(3)). Hence, by
Lemma 2.3 and 2.4 we have

[|1,(|2|;1)”’} [0
[T

and similarly
) [T

However, °l, =1, then [Il,lf]za[IZ,lﬂz[lz,lg’] since
[Iz,lg"] is in the center of v(B, (3)). Hence

[ll,(lzlgl)q [t ]ne] = [Iz,(lzlf)wr.

Therefore,

[Bz (3).B, (3)'“”} - <[a,(|2|;1)q,[ll,(|2|;1)¢]> .
Thus, E(Bz(s))=<[a,|;'],[a,(|2|;1)‘”H|1,(|2|;1)q>.

Next, the orders of each of the three generators of E(B2 (3))

by commutator relations

by Lemma 2.4 (i)

are computed. The derived subgroup of B,(3), B,(3) :<I2I1’1>.

Then, since [Il,lf]:[lz,lf] and [II,I;”J=[I2,I{"], then,

S
— P
—

iR
'S
L
|—|
|_|
l—\~
~
N
L
P—

|;1,(I2I;1)q['z1('2'51)q)71
ol
foer]

=1 since (L") € B,(3)'.

Therefore [Il,(lzlf)q has order 2. Next, by commutator

relations,

[ ] s [al]}al“’l
[aly }[I2 }[al "~ since °I, =1,
[alf]

(

al? [al} since (1,,*) € B,(3)".
Therefore [a LI )q can be written as a product of the
generators [a,ll] and [a,l;"] The mapping x from
B,(3)®B,(3) to B,(3)
([al])=[aL]=LL*#1 and

defined in Theorem 2.3 gives

([alg])=[aL]=Ll,'

:[a,ll] #1 in B,(3) has infinite order, it follows from Lemma

2.5 that [a,lﬂ and [a,l;"] have infinite order. Hence, we have
B,(3)AB,(3)= <[a, ][ a, |g’],[|l,(|2|1—1)¢}> =C,xC, xC,.

Theorem 3.2 The exterior square of B,(5) is

(
(2] [k ][] [ ()],
B, (5) A B, (5) = [a,(u;)q,[lz,(lslj)q,[g,(lslgl)”]
[ (1) | [l (1)

Proof:
By Theorem 2.5, B, (5)" = <aBA(5)', 1,B,(5) ,I3BA(5)'> =
C, xC,xC,. Thus, from Lemma 2.2 and Theorem 2.2,
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B,(5)~B,(5)=([alf], [a,l;"],[lz,lf]>[84(5),84(5)"”}.
Now we determine [84(5), B4(5)""}. From the relations of

[al]=

J=[al]' =1 and [al]=1L"=[a,l,]" #1. Since B,(5) is
a polycylic group generated by polycyclic generating sequence
al, 1, 1,1, Iy where [a,l,]=1 [Ii,lj]:l for i, j=1,2,3,4,5,

B,(5), we have [al,]=Ll;'#1 [al]=11"=1,

then B,(5) =(ll,",LI;"). By Proposition 2.1, v(B,(5)) is also
polycyclic. Therefore, the subgroups B,(5) and B,(5)” have
polycylic generating sequence a, I, I, I, 1,, I, (Islz‘l)w and

(L1*)". Then, by Lemma 2.1

1
w
—
J>—
@
N
~—
S
1
—
—_
S
@
nN
~—~—
S
| —
o
—_
J>—
@
N
~—
S
| S—

However, some of these generators can be expressed as

products of other generators. By Corollary 2.1, [Il,(lslgl) }:
and [Il,(l4l3’1)w}:1. Since 1, 1,, 1,, 1, and I, commute with each
other,  then [|2,(|5|;)q, [g,(u;)"] [|3,(|5|;1)‘”} and
[Iz,(l4la’1)q are in the center of v(B,(5)). Then, by (2.3) and
relations of B,(5), we have [Iz,(l5lz’1)¢}= a[lz,(lslgl)q:
[alz, a(|5|;1)“’J - [ls,(alsalj)q - [Is,(lslz’l)q

. Similarly,

Hence, we obtain

[BA (5),B, (5)’“’} =
Therefore,
[at] [at ] [ts] o (1)" ]
B, (5) A B, (5) = [a,(lz,lgl)q,[Iz,(ISIj)q,[I3,(I5I2’1)q,
[ (157 | 1157

Now, the order of each generators of B, (5) are determined. Here,

[lz,(lslf)“’]2 =[|2,(|2|;)’“’]2
_ ([wﬂ g [lz,lgq)z

_ ([|2,| |2,|g]1)2

=[5 [ ] by Lemma 2.4
=[11,151,7] by (2.1)

=1 by Lemma 2.3(vi).

2
Similarly we have [I3,(I4lgl)q =1. Therefore, [Iz,(lslgl)q
and [I3,(I4I3’1)¢] have order dividing two.

The mapping x from B,(5)®B,(5) to B,(5) defined in
([alg])=[aL]. «([al])=[aL].
el[2.0) )= [a(u)]= (W) and w{[a (1))
[a ()] = (1)

follows from Lemma 2.5 that [alf ], [alf], [a,(lslgl)q and

Theorem 2.3 gives

have infinite order in B,(5), then it

[a,(l4l3’1)w} have infinite order.

Next, to show that [1,.1¢], [|2,(|4|;1)q and [g,(u;)q’]
also have infinite order. The following conditions would lead these
three generators to have finite order. Since |, and I, commute

with one another in B,(5), then we can move any powers in

v(B,(5)). Then, [I;“,(I;)q:[Iz,lg"(m”q:[lz,lﬂmn for any
integer m, n. However, B,(5) is torsion free and so I, and I,

have infinite order. Next, one power of [Iz,lf] give an element in

Z(B,(5)) and the other in B,(5) by Corollary 2.1. However,
this is a contradiction since there is no power of either 1, or |, are
in Z(B,(5)). As there are no other relations can be used in B, (5)

in order to get finiteness, therefore generator [IZ,I;"] has infinite

order. Using similar arguments, the generators ['Z,(U;)q and

[I3,(|5I2’1)q also have infinite order.

Therefore,

[at] [ats] [T a(t)" ]
B, (5) A B, (5) = [a,(u;l)“’},[lz,(lslj)q,[ls,(u;l)q,
[|2,(|4|;1)q,[ls,(u;l)q
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Theorem 3.3 The exterior square of B;(5) is
[ab?][ale][bie][al],
B, (5) A By( [bl }[ ( SIS
=C? ><C23.
Proof:

Using similar arguments as in Theorem 3.1 and Theorem 3.2,

since B, (5)" = <a|35(5)’ , bB;(5)’, 1sB, (5)’> = C,xC,xC,, then,

5)~8,(5) = ([ab" ][] (b1 )| B,(5).B.(5)" |

[al]=ll' =1 [al]=1l'=
[al,] #1 [ab]= bl =121 and [bl,]=1;?#1. Since
85(5) is a polycylic group generated by polycyclic generating

From the relations of B;(5),

sequence a, b, I, I, Iy, I, and I;. Then, B;(5) =(I,,L1;").
Since v(B5(5)) is polycyclic then the subgroups B(5) and
Bs(5)” have polycylic generating sequence a, b, 1, I, I,
l,, I, 1 and (|4|5-1)¢ Then, by Lemma 2.1
[a ] (o] [L7]) [' L[],
(1t [t T [ (us2) ] o152
(505" - L0 ][ 1) Iy
(

[4 (15 1)“’] [5 )" }

However, some of these generators can be expressed as
products of powers of other generators. By Corollary 2.1,

[Lie]=1 [Llg]=1 [ll,(|4|;1)w}=1 and [lz,(|4|;1)“’]:1

Besides, by Lemma 2.3 (vi), [I3, I;"J =1

1

we have

[0 ]="[L0e]=[1.0¢] and [Is,(l4lg1)w]=a[|5,(|4|§1)q:

-1
[IA,(IAIS’I)(A] . Since b commutes with 1, and I;, then [b,If |

By Lemmas 2.3 and 2.4, since °l, =1, and I, =1,,

and [b,1¢] are in the center of v(B,(5)). Thus,

[ (|4|;1)} [ [be T =[bitg ] [0 " =[bilg b1 1T

and

[b,(l4lgl)q - a[b,(u;)“] - [blgl,(lslf)q.

However, since [1,,17 | and [I (1) } are in the center of

v(B;(5)), then

[oar] i)
[oe] ][ o]

[ ||-1)“’] b (14l;* T.

Hence, we have [b(l4 1)} (1317 ]=[1, I‘”T since
l, € By(5) . Also, [b,(|4lg1)w] :[I3,(I5I;1)q. Therefore,

B, (5),B. (5)° | = [a,I;"]v[b.lé”J'[a'('4'51)w}‘
[ 5(5).Bs (5) } <[b,(l4lsl)ql[IA’(I“ISl)q >

[ab?][al][bl][al]
B,(5) 7 Bo(5) =[BT @ (L") [ [b(1s2) ],
[lA,(u;)“’]

Next the order of each generators of B;(5)AB;(5) are

Thus, we obtain

computed. Since B;(5) :<I3,(I4I5’1)>, then by Corollary 2.1 and
Lemma 2.3 (iv),

[ale] =[a% 1y ]=[1440 00 ]=1
[b,(u;)‘”]z - [bZ,(u;)q - [l;l,(u;l)q -1

and

Therefore, [a, Ig’]
Next [a,(|4|5
kB, (5)®B,(5) —>B;(5) defined in Theorem 2.3 gives

(a0 =la0a)]) sfar])=[a] «(bx])
=[b.1,] and «([a,b?])=[ab]. Since [a,(Ll*)]=(1*) =1

[als]=Ll" =1 [bl]=1"=1 and [ab]=bl'0™ =I;"=1 in



13 Nor Haniza Sarmin et al. / Jurnal Teknologi (Sciences & Engineering) 62:3 (2013), 7-13

85(5)' have infinite order, it follows from Lemma 2.5 that

a,(lAIgl)q, [a,lg’], [b,l;’] and [a,bq have infinite order.

Next we denote the abelianisation of B, (5) by B;(5)" with

natural homomorphism
£:B(5) > By (5)".
By Theorem 2.4 there is an epimorphism
B, (5)®By(5) - B, (5)" ®B,(5)"
=(CyxCyxCy)®(CyxCyxCy)
=C;
(by Lemma 2.6). By Theorem 2.6 the group 85(5)ab is generated
by ¢(a), e(b) and £(l;) of infinite order. Lemma 2.6 gives
(e(b)®s(L))=C,

Therefore, the image a(b®I,)=¢(b)®¢(l;) has infinite
order. Hence, by Lemma 2.5, b®]I, has infinite order. Then,
[b, |g’] has infinite order as needed.

Finally, we have

B,(5) A By (5) = [ab][ate][ba] [als ] [bi1s],
5 5 [a'('4|§1)¢},[b,(lé,lgl)‘”},[|4,(|4|5,1)q

=CyxCyxCyxC,xCyxC,yxC,xC,.

Theorem 3.4 The exterior square of Bg(5) is
[alg][bg][ab”][b17],
B, (5)AB,(5)=
6( )/\ 6( ) |:|3,|f],|:b,(|3|§1)¢:|
Proof:

The proof is omitted since the method is similar to the previous
three theorems

4.0 CONCLUSION

In this paper, the exterior squares have been computed for some
Bieberbach groups with abelian point groups where their
abelianisations are finitely generated and have no element of order
two. The results are shown in Theorem 3.1 to Theorem 3.4.
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