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Abstract. Let G be a group and H any subgroup of G. The commutativity degree of a finite group G is defined as the probability 
that a pair of elements x and y, chosen randomly from a group G, commute. The concept of commutativity degree has been 
extended to the relative commutativity degree of a subgroup H, which is defined as the probability that a random element of a 
subgroup, H commutes with another random element of a group G. This research extends the concept of relative commutativity 
degree to the multiplicative degree of a group G, which is defined as the probability that the product of a pair of elements x, y 
chosen randomly from a group G, is in H. This research focuses on some dihedral groups. 

INTRODUCTION 

In this paper, G is considered as a finite group. The commutativity degree of a group G is the probability that a 
selected chosen pair of elements of a group G commute, denoted by P(G), and it was firstly introduced by Miller [1] 
in 1944. The commutativity degree has been investigated by several authors [2-6] and some formulas of P(G) have 
been found for some finite groups G. 

Sherman [7] used this concept of probability and proved that the probability cannot be arbitrarily close to 1 if G 
is a finite nonabelian group.  Gustafson [3] and Machale [4] showed that the commutativity degree of all finite 

groups is less than or equal to 
5 .
8

 

The concept of commutativity degree has been extended to the relative commutativity degree of a subgroup H, 
which is the probability for an element of a subgroup H and an element of a group G to commute with one another. 
This concept has been generalized by Erfanian et al. [8] in 2007, where the definition of the relative commutativity 
degree, denoted as ( , )P H G  was introduced. In 2012, Abdul Hamid et al. [9] presented some results on P(H,G), 
where G is the Dihedral groups up to order 26. In the case that ,  we have ( , ) ( )H G P H G P G  and if G is abelian, 
then ( , ) 1.P H G  

Barzgar et al.  [10] in 2013, studied the set of all relative commutativity degree of a subgroup G and computed 
the number of relative commutativity degree for some classes of finite groups including dihedral groups, generalized 
quaternion groups and quasi-dihedral groups.  
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Inspired by this concept, we introduced a new extended relative commutativity degree, called the multiplicative 
degree of a group G. This multiplicative degree is defined as the probability that the product of a pair of elements x 
and y chosen randomly from a group G, is in H. 

PRELIMINARIES 

In this section, some preliminaries and basic definitions that are required in this research are provided as follows. 
 
Definition 1 [11] Dihedral Groups of Degree n  
For 3,n dihedral groups, Dn is denoted as the set of symmetries of a regular n-gon. Furthermore, the order of Dn is 
2n, or equivalently | Dn | = 2n. The Dihedral groups, Dn can be represented in a form of generators and relations 
given as in the following; 

 
2 1, | 1,  .n

nD a b a b ba a b  
 
Definition 2 [1] The Commutativity Degree of a Group  
The commutativity degree of a group G, P(G), is defined as 

 

2

,
( )

x y G G xy yx
P G

G
 

 
Definition 3 [8] The Relative Commutativity Degree of a Subgroup of a Group  
The relative commutativity degree of a subgroup H of a group G, P(H,G), is defined as 

 
, , 1

( , )
h g H G h g

P H G
H G  

 
Definition 4 The Multiplicative Degree of a Group 
Let G be a finite nonabelian group and H any subgroup of G. For any , ,x y G  then the multiplicative degree of a 
group G, denoted as ( )xyP G , is defined as 

 

2

, :
( ) .xy

x y G G xy H
P G

G  
 

In the next section, new results of the multiplicative degree of some dihedral groups are presented.  

RESULTS AND DISCUSSION 

In this section, the result of ( ),xy nP D  that is the multiplicative degree of some dihedral groups is presented. There 
are three propositions in this paper. In the first proposition, the multiplicative degree of a dihedral group when both 
of the elements x and y are in the subgroup H of Dn, is given.  

 
Proposition 1 
Let Dn be a dihedral group of order 2n, where 3n and H be any subgroup of Dn. Suppose 

2

,  then ( ) .xy n
n

H
x y H P D

D
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Proof 

Let nH D , then for every ,x y H  we have xy H  and .
nDe H

 
By the Definition 4,

2

2( )xy n
n

H
P D

D
. Therefore, 

2

( ) . xy n
n

H
P D

D
 

In the following two propositions, the multiplicative degree of two cyclic subgroups of order  and 
2
nn  of Dn 

respectively, are given. These propositions give the multiplicative degree of a dihedral group when both of the 
elements x and y are in Dn but not in the subgroup H. 

 
Proposition 2 
Let Dn be a dihedral group of order 2n, where 3n . Suppose H is a cyclic subgroup of Dn of order n. Let 

, \  but .nA x y D H xy H If 1,  then ( ) .
4xy nx y A P D

 
Proof 
Suppose H is a cyclic subgroup of Dn of order n. Now, let , \  but .nA x y D H xy H  Here A is not an empty 

set since for , \nx y D H and 1,y x we have .
nDe H  Take .s A Then the possible number of s is n since 

,  2nH n D n  implies .ns D H n   

Let  and ,nx b y a b by the relation in the presentation of Dn (see Definition 1), we have 

1 1

1 1 2

2 2

2 1 3

                   
                       = ...
                       =
                       =
                       =
                       =
  

n

n

n

n

n

xy ba b
baaaa ab
a ba b
a a ba b
a ba b
a a ba b

3 3                     = .na ba b

 

 
By continuing in the same way we have 

2

                    =
                       =
                       =
                       =
                       = .

n n n

n

n

n

n

xy a ba b
a bb
a b
a e
a

 

By the same calculations, it can be shown that : 
1

2 2

3 3

If ,   then 
If ,   then 
If ,   then 
              .
              .
              .
If ,   then 1.

n n

n n

n n

n n n n

x ab y a b xy a
x a b y a b xy a
x a b y a b xy a

x a b y a b xy a  
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Therefore the possible number of pairs of 2,  is equal to .x y A A n  Thus by Definition 4, 
2 2

2 2
1( ) . 
4(2 ) 4xy n

n nP D
n n

 

The following is an example that explains how the multiplicative degree of a cyclic subgroup of order n can be 
computed. 
 
Example 1 
Let D10 be a dihedral group of order 20. Then we can write

2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9
10 , , , , , , , , , , , , , , , , , , , .D e a a a a a a a a a b ab a b a b a b a b a b a b a b a b Let H be a subgroup of D10, 

2 3 4 5 6 7 8 9, , , , , , , , , .H a e a a a a a a a a a We have 10, \  but .A x y D H xy H  Take ,s A then the possible 

number of s is 10 since 10 20 10 10.s D H Therefore 210A . Thus by Definition 4, 
2

10 2 2
10

10 1( ) .
4(20)xy

A
P D

D
 

 
Proposition 3 

Let Dn be a dihedral group of order 2n, where 5n  and n is even.  Let H be a cyclic subgroup of Dn of order 
2
n and

, \  but .nA x y D H xy H  If 3,  then ( ) .
16xy nx y A P D  

Proof  
Suppose Dn is a dihedral group of order 2n, where 5n  and n is even. Suppose H is a cyclic subgroup of Dn of 

order 
2
n which is 2H a and let , \  but .nA x y D H xy H The group Dn has 2n elements listed in the 

following: 
2 1 11, , ,..., , , ,..., .n n

nD a a a b ab a b
 

The group Dn consists of n rotations and n reflections which are the elements in the sets
2 3 1 2 1, , ,...,  and , , ,...,n na a a a b ab a b a b , respectively. 

 
For both x and y are rotations and 0,1,2,..., 1,m n  we have the following : 

2 1If  and  then,mx a y a  
 

2 1

2( 1)   .

m

m

xy a a

a H
 

3 2 1If  and  then,mx a y a  
3 2 1

2 4

2 2

   

   .

m

m

m

xy a a

a

a H

 

 
5 2 1If  and  then,mx a y a  

5 2 1

2 6

2 3

   

   .

m

m

m

xy a a

a

a H

 

 
By continuing in the same way we have the following : 
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1 2 1If  and  then,n mx a y a  
1 2 1

1 2 1

2

   

   .

n m

n m

n m

xy a a

a

a H

 

Here, the possible number of pair of 2,  is x y A H , namely
2

.
2
n  

For both x and y are reflections and 0,1,2,..., 2.i n  We consider the relation in the presentation of Dn (see 
Definition 1). 

2If  and  then,ix b y a b  
2

2 2 2 2

1 2 1

1 1 2 1

2 1 2 2

3 1 2 2

4 2 2

( ) 2( )

2

2 2

12

...

        .
        .
        .

=

.

i

i

i

i

i

i

i i i i

i

i

i

xy b a b

ba a a a b

a baa b

a a ba b

a a baa b

a a ba b

a ba b

a ba b

a bb

a b

a H

  

 
2 2If  and  then,ix a b y a b  
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2 2

2 2 2 2 2

2 1 2 1

1 2 1

1 2 2

1 1 2 2

2 2 2

( ) 2( )

2

2 2

12

...

         .
         .
         .

.

i

i

i

i

i

i

i i i i

i

i

i

xy a b a b

a ba a a a b

a a baa b

aa ba b

a baa b

a a ba b

a ba b

a ba b

a bb

a b

a H

 

By the same calculations, the following can be shown :  
2 2If ,   thenn ix a b y a b  

 
2 2

2 2 2 2 2

2 1 2 1

3 1 2 1

4 1 2 2

5 1 2 2

6 2 2

2( )

2

...

         .
         .
         .

1 .

n i

n

n i

n i

n i

n i

n i

n n i i

xy a b a b

a ba a a a b

a a baa b

a a ba b

a a baa b

a a ba b

a ba b

a ba b

b
H

 

For both x and y are reflections and 0,1,2,..., 1j n , we consider the relation in the presentation of Dn (see 
Definition 1). 

2 1If  and  then,jx ab y a b  
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2 1

2

2 2 2 2

1 2 1

1 2 1

1 1 2 2

2 1 2 2

3 2 2

( ) 2( )

2

2 2

12

...

         .
         .
         .

.

j

j

j

j

j

j

j

j j j j

j

j

j

xy ab a b

aba ab

aba a a a ab

aa baa ab

a ba ab

a a baa ab

a a ba ab

a ba ab

a ba b

a bb

a b

a H

 

3 2 1If  and  then,jx a b y a b  
3 2 1

3 2

3 2 2 2 2

3 1 2 1

2 1 2 1

1 2 2

1 2 2

1 1 2 3

2 1 2 3

3 2 3

...

         .
         .
         .

j

j

j

j

j

j

j

j

j

xy a b a b

a ba ab

a ba a a a ab

a a baa ab

a a ba ab

aa baa ab

a ba ab

a a baa ab

a a ba ab

a ba ab

 

( ) 2( )

2

2 2

12 .

j j j j

j

j

j

a ba b

a bb

a b

a H

 

 
 
Similarly, we have the following : 
 

1 2 1If ,   thenn jx a b y a b  
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Here, the possible number of pair of ,  is x y A H n implies .
2
n n  

Therefore the possible number of pair of ,x y A is 
2 23 .

2 2 4
n n nA n  Thus, by Definition 4, 

2

2

3
4 3( ) . 

16(2 )xy n

n

P D
n  

Remark: This calculation involves multiplying the element of x and y where x and y either both rotations or both 
reflections. D4 is not included in this calculation because for x, y in A, x and y can be both rotations, both reflections, 
one of them rotation and another one reflection and vice versa. 

The following is an example that explains how the multiplicative degree of a cyclic subgroup of order 
2
n  can be 

computed. 
 
Example 2: 
Let D8 be a dihedral group of order 16. Then we can write 

2 3 4 5 6 7 2 3 4 5 6 7
8 1, , , , , , , , , , , , , , , .D a a a a a a a b ab a b a b a b a b a b a b  

Let H be a subgroup of D8, 2 2 4 61, , , .H a a a a We have 8, \  but .A x y D H xy H Therefore 
2

24 (4 8) 48.
2 2
n nA n  Thus by Definition 4, 8 2 2

8

48 3( ) .
16(16)xy

A
P D

D
 

CONCLUSION 

In this research, the multiplicative degree of some of dihedral groups is found. For every 

,  we have x y H xy H then the multiplicative degree of a dihedral group is equal to 

2

.
n

H
D

 Meanwhile, for 

every , \  but nx y D H xy H and H is a cyclic subgroup of Dn of order n and 
2
n then the multiplicative degree of a 

dihedral group is equal to
1 3 and  respectively.
4 16

 

1 2 1

1 2 2 2 2

1 1 2 1

2 1 2 1

3 1 2 2

4 1 2 2

5 2 2

2( )

2

...

         .
         .
         .

1 .

n j

n

n j

n j

n j

n j

n j

n n i i

xy a b a b

a ba a a a ab

a a baa ab

a a ba ab

a a baa ab

a a ba ab

a ba ab

a ba b

b
H
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