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Abstract. Let G be a finite group. The commutativity degree of a group is the probability that a random pair of elements 
in the group commute. Furthermore, the n-th power commutativity degree of a group is a generalization of the 
commutativity degree of a group which is defined as the probability that the n-th power of a random pair of elements in 
the group commute. In this research, the n-th power commutativity degree for some dihedral groups is computed for the 
case n equal to 3, called the cubed commutativity degree.   
 

INTRODUCTION 

Commutativity degree is the term that is used to determine the abelianness of groups. If G is a finite group, then 
the commutativity degree of G, denoted by P(G), is the probability that two randomly chosen elements of G 
commute. The first appearance of this concept was in 1944 (see [1]). After a few years, the idea to compute P(G) for 
symmetric groups has been introduced by Erdos and Turan [2] in 1968. 

Mohd Ali and Sarmin [3] in 2006 extended the definition of commutativity degree of a group and defined a new 
generalization of this degree which is called the n-th commutativity degree of a group G, Pn(G) where it is equal to 
the probability that the n-th power of a random element commutes with another random element from the same 
group. They also determined Pn(G) for 2 generator 2-groups of nilpotency class two. 

A few years later, Erfanian et al. [4] gave the relative case of n-th commutativity degree. They identify the 
probability that the n-th power of a random element of a subgroup, H commutes with another random element of a 
group G, denoted as Pn(H,G). 

In this research, the commutativity degree is further extended by defining a concept called the probability that the 
n-th power of a random pair of elements in the group commute, denoted as Pn(G). However, the focus of this 
research is only for the determination of  Pn(G), where 3n and G is a Dihedral group. Here P3(G) is called the 
cubed commutativity degree. 

PRELIMINARIES 

In this section, some important definitions which include the notion of commutativity degree and its generalizations 
are stated.  
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Definition 1 [2] The Commutativity Degree of a Group G 
Let G be a finite group. The commutativity degree of a group G is given as: 

2

Number of  ordered pairs ,
Total number of  ordered pairs ,

, |
         .

 x y G G xy yx
P G

 x y G G

x y G G xy yx

G

 

Definition 2 [3] The n-th Commutativity Degree of a Group G 
Let G be a finite group. The n-th commutativity degree of a group G is given as: 
 

2

, |
.

n n

n

x y G G x y yx
P G

G
 

  
 

Definition 3 [5] Dihedral Groups of Degree n 
For 3n , Dn is denoted as the set of symmetries of a regular n-gon. Furthermore, the order of Dn is 2n or 
equivalently, 2nD n . Dihedral groups, Dn can be represented in a form of generators and relations given in the 
following representation: 
 

2 1, | 1, .n
nD a b a b ba a b  

 
Definition 4 [6] The n-th Centralizer of a in G 
Let a be a fixed element of a group G. The n-th centralizer of a in G, n

GC a  is the set of all elements in G that 
commute with an. In symbols, 
 

.n n n n
G GC a g G ga a g C a  

Then n
GC a  is a subgroup of G and n n

G Ga G
C a C Gn

Ga G
C an

G , where
 

.n nG a a G  

Now define n nn
GT a g G ga ag  and n n

G Ga G
T G T an

Ga G
T an

G . It is easy to see that n
GT a may not be a 

subgroup of G. But it can be seen easily that n n
G GT G C G  and so n

GT G  is a normal subgroup of G. To prove 

n n
G GT G C G , let n

Ga T G . Then for all g G , .n nag ga  Therefore 1 1n n
a a g a g a  and so 

1n ng a g a . Hence n nag g a  and n
Ga C G . To see n n

G GC G T G , let n
Ga C G . Then for all g G , 

n nag g a . Therefore n na ag ag a  and so 1n nag a ag a . Hence n nag ga  and n
Ga T G . 

 
Definition 5 The n-th Center of a Group 
The n-th center ( )nZ G of a group G is the set of elements in G given as the following: 

( ) { | ( ) ( )  for all  in }n n nZ G a G ax xa x G  
 

RESULTS AND DISCUSSIONS 
 

In this section, the results of the cubed commutativity degree are given. Before that, the new definition which is the 
n-th power commutativity degree of a group is given as below: 
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Definition 6   The n-th Power Commutativity Degree of a Group G 
Let G be a finite group. The n-th power commutativity degree of a group G is given as: 

2

, :
( ) .

n n

n
x y G G xy yx

P G
G

n nG G xy yx: nx y,

 

If we replace 3n  in Definition 6, then
 

3 ( )P G is called the cubed commutativity degree of a group and will be 
used in the main theorems, given as in the following: 

3 3

3
2

3 3
2

3
2

, :

1

1 ( )

x G

G
x G

x y G G xy yx
P G

G

y G xy yx
G

T x
G

 

Next, the following lemma is provided which is used in the proof of the propositions following it. 
 
Lemma 1 
If G is a Dihedral group then 3 ( ) ( )Z G Z G . 
Proof  
Let G be a Dihedral group, nD . Suppose , na y D  then we have 1ya a y , 1na , 1 1na a , and 2 1y . Note 

that 1ay ya since 1ya a y  implies 1 1 1.ayaa aa ya Thus 1.ay ya To show 3( ) ( )Z G Z G is trivial since 

 ay ya  implies 3 3( ) ( ) .ay ya  Now we are going to show that 3 ( ) ( ),Z G Z G i.e 3 3( ) ( )ay ya  implies .ay ya  

Suppose 3 3( ) ( )ay ya . Then ( )( )( ) ( )( )( ),ay ay ay ya ya ya which gives 1 1 1( )( )( ) ( )( )( ).ay ay ay a y a y a y Using the 

associativity of nD and its property, 1 1 1( )( ) ( )( )na ya ya y a ya ya y which leads to 1 1 1( )( ) ( )( ) .na a y a y y a ay ay y  

This gives 1 2 ,nya a yay which leads to .ay ya  

 

Next, the following propositions are given which play an important role in the proof of the main results.  
 
Proposition 1  
Let G be a Dihedral group of order 2n where 5.n  For 3 ( )x Z G , 
 

3

2
3

2
( )

,        is a prime,
( )

3 ,        is not a prime,G
x Z G

n n n
T x

n n n
 

where 3 3 3( ) { : ( ) ( )   }GT x g G gx xg x G  and 3 3 3( ) | ( ) ( )   Z G a G ay ya y G . 
Proof 
Let nG D  where 2nD n  and n is odd. Then by Definition 5 for 3n and Lemma 1, 3( ) { }Z G e . Suppose 

2 1, , ,..., nA e a a a  and 2 1, , ,..., nB b ab a b a b then we have 3 3 3 1( ) ( ) ... ( )n
G G GT e T a T a n  since for any

y A  and for all z A  we also have 3 3( ) ( )yz zy  but for any y A  and for all z B  we have 3 3( ) ( )yz zy . 
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Therefore for all ,y z A , 3( ) ( 1)G
x A

T x n n  in which 3 ( )x Z G . The proof for the part for any y B  and for all 

z B  is divided into two cases. 
 
Case 1 (n is a prime): 
We have 3( ) ,i i

GT a b e a b in which 3( ) 2i
GT a b  for 0 1i n since for any y B  and for all ,z B  there are 

two pairs of elements that satisfy 3 3( ) ( )yz zy  which are the identity and the element itself. This implies that 
3( ) 2G

x B

T x n . Hence,  

3 3

3 3 3 2

( ) \ ( )

( ) ( ) ( ) ( 1) 2 .G G G
x Bx Z G x A Z G

T x T x T x n n n n n .    

 
Case 2 ( n is not a prime): 

We have 
2

3 3 3( ) , , ,
n ni ii i

GT a b e a b a b a b in which 3( ) 4i
GT a b  for 0 1i n since for any y B  and for all 

,z B  there are four pairs of elements that satisfy 3 3( ) ( )yz zy . This implies that 3( ) 4G
x B

T x n . Hence,  

3 3

3 3 3 2

( ) \ ( )

( ) ( ) ( ) ( 1) 4 3 .G G G
x Bx Z G x A Z G

T x T x T x n n n n n    □ 

Remark:- For the case 3,n namely for Dihedral Group of order 6, can be refered to the case when n is not a prime. 

Proposition 2 
Let G be a Dihedral group of order 2n where 4.n  For 3 ( )x Z G  and n is even where 0k , 

3

2
3

2
( )

6 ,       6 6 ,
( )

2 ,       4 6  and 8 6 ,G
x Z G

n n n k
T x

n n n k n k
 

where 3 3 3( ) { : ( ) ( ) }GT x g G gx xg  for all x in G and 3 3 3( ) | ( ) ( )Z G a G ay ya for all y in G. 
Proof 

Let nG D  where 2nD n  and n is even where 4.n  By Definition 5 for 3n  and Lemma 1, 3 2( ) { , }.
n

Z G e a  

Suppose 2 1, , ,..., nA e a a a  and 2 1, , ,..., nB b ab a b a b
 
then we have 3 3 3 1( ) ( ) ... ( )n

G G GT e T a T a n  since 

for any y A  and for all z A  we also have 3 3( ) ( )yz zy  but for any y A  and for all z B  we have 
3 3( ) ( ) .yz zy Therefore for all ,y z A  implies that 3( ) ( 2)G

x A

T x n n  in which 3 ( )x Z G . The proof for the 

part for any y B  and for all z B  is divided into two cases. 
 
Case 1 6 6 ,  0n k k : 

We have 
2

3 6 3 3 62 2( ) , , , , , , ,
n n n nn ni i i n iii i

GT a b e a a b a b a b a b a a b  in which 3( ) 8i
GT a b for 0 1i n since for any 

y B  and for all ,z B  there are eight pairs of elements that satisfy 3 3( ) ( )yz zy . This implies that 
3( ) 8G

x B

T x n . Hence,  

3 3

3 3 3 2

( ) \ ( )

( ) ( ) ( ) ( 2) 8 6 .G G G
x Bx Z G x A Z G

T x T x T x n n n n n     
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Case 2 4 6  and 8 6 ,  0n k n k k : 

We have 3 2 2( ) , , ,
n n ii i

GT a b e a a b a b in which 3( ) 4i
GT a b for 0 1i n since for any y B  and for all z B  

there are four pairs of elements that satisfy 3 3( ) ( )yz zy . This implies that 3( ) 4G
x B

T x n . Hence,  

3 3

3 3 3 2

( ) \ ( )

( ) ( ) ( ) ( 2) 4 2 .G G G
x Bx Z G x A Z G

T x T x T x n n n n n .   □ 

The main results of this research are stated in the following two theorems. 
 
Theorem 1  
Let G be Dihedral groups of order 2n where 5n  and n is odd.  

i. If n is prime then 3 3( ) .
4

nP G
n

 

ii. If n is not prime then 3 5( ) .
4

nP G
n

 

Proof 
By Definition 6, we have 
 

3 3

3

3 3

3
2

3 3
2

3
2

3 3
2

( ) ( )

3 3
2

( )

, :

1

1 ( )

1 ( ) ( )         

1     

x G

G
x G

G G
x Z G x Z G

G
x Z G

x y G G xy yx
P G

G

y G xy yx
G

T x
G

T x T x
G

Z G G T x
G

 Note that 3 3( ) 1nZ G Z D  for n is odd. 

 
(i) By Proposition 1 (for n is a prime): 

3

3 3
2

( )

2
2

2
2

1( ) (1)  
(2 )

1 2
4
1 3

4
1 3
4

3.                                       
4

n

n

D
x Z D

P G G T x
n

n n n
n

n n
n

n
n

n
n
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(ii) By Proposition 1 (for n is not a prime): 

3

3 3
2

( )

2
2

2
2

1( ) (1)  
(2 )

1 2 3
4
1 5

4
1 5
4

5 .                                      
4

n

n

D
x Z D

P G G T x
n

n n n
n

n n
n

n
n

n
n

 

 
Theorem 2 
Let G be Dihedral groups of order 2n where 4n  and n is even.  

i. If 6 6n k  for 0k  then 3 10( ) .
4

nP G
n

 

ii. If 4 6n k  and 8 6n k  for 0k  then 3 6( ) .
4

nP G
n

 

 
Note that 3 3( ) 2nZ G Z D  for n is even. 

 
(i) By Proposition 2 (Case 1): 

3

3 3
2

( )

2
2

2
2

1( ) (2)  
(2 )

1 4 6
4
1 10

4
10 .                                     

4

n

n

D
x Z D

P G G T x
n

n n n
n

n n
n

n
n  

 
(ii) By Proposition 2 (Case 2): 

 

3

3 3
2

( )

2
2

2
2

1( ) (2)  
(2 )

1 4 2
4
1 6

4
6 .                                       

4

n

n

D
x Z D

P G G T x
n

n n n
n

n n
n

n
n

 

CONCLUSION 

In this research, the cubed commutativity degree of Dihedral groups has been determined. The results are found for 
n even and n odd. However, for n even, the results are divided into two cases, namely when 6 6 ,n k 4 6 ,n k  
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and 8 6n k  for 0k . Meanwhile for n odd, the results are divided into two cases, namely when n is a prime and n is 
not a prime. 
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