1

Non-commuting Graph of Some Nonabelian Finite Groups

Nor Haniza Sarmin, Maryam Jahandideh, and
Mohammad Reza Darafsheh

1.1 INTRODUCTION

Let G be a group and $Z(G)$ be its center. For each group G, we will associate a graph which is called the non-commuting graph of G, denoted by Γ_{G}. The vertex set $V\left(\Gamma_{G}\right)$ is $G-Z(G)$ and the edge set $E\left(\Gamma_{G}\right)$ consists of $\{x, y\}$, where x and y are two distinct vertices of $V\left(\Gamma_{G}\right)$ are joined together if and only if $x y \neq y x$. The noncommuting graph of a group was introduced by Erdos in 1975. The non-commuting graph of a finite group has been studied by many researchers [1].

One of the problems about non-commuting graph of groups is given in the following conjecture:

Conjecture 1.1. Let G be a non-abelian finite group and H a group such that $\Gamma_{G} \cong \Gamma_{H}$. Then $|G|=|H|$.

Definition 1.1 $T_{4 n}$ is a non-abelian finite group with order $4 n$. Its structure is defined as

$$
\begin{equation*}
T_{4 n}=\left\langle a, b \mid a^{2 n}=1, a^{n}=b^{2}, b^{-1} a b=a^{-1}\right\rangle . \tag{1.1}
\end{equation*}
$$

Definition 1.2 $U_{6 n}$ is a non-abelian finite group with order $6 n$. Its
structure is defined as

$$
\begin{equation*}
U_{6 n}=\left\langle a, b \mid a^{2 n}=1=b^{3}, a^{-1} b a=b^{-1}\right\rangle . \tag{1.2}
\end{equation*}
$$

Definition 1.3 $V_{8 n}$ is a non-abelian finite group with order $8 n$. Its structure is defined as

$$
\begin{gather*}
V_{8 n}=\langle a, b| a^{2 n}=1=b^{4}=1, a b=b^{-1} a^{-1}, \\
\left.a b^{-1}=b a^{-1}\right\rangle . \tag{1.3}
\end{gather*}
$$

The main objective of this chapter is to prove Conjecture 1.1 for three groups $T_{4 n}, U_{6 n}$ and $V_{8 n}$. In fact, we show that if $\Gamma_{G} \cong$ $\Gamma_{T_{4 n}}, \Gamma_{G} \cong \Gamma_{U_{6 n}}, \Gamma_{G} \cong \Gamma_{V_{8 n}}$, then $|G|=\left|T_{4 n}\right|,|G|=\left|U_{6 n}\right|$ or $|G|=\left|V_{8 n}\right|$ respectively. For more details see Conway et al. [2] and Rose [3].

1.2 NON-COMMUTING GRAPH OF \boldsymbol{T}_{4}

In this section, we show that if G is a non-abelian finite group such that $\Gamma_{G} \cong \Gamma_{T_{4 n}}$, then $|G|=\left|T_{4 n}\right|$. In the lemmas, we refer the degree of the vertex x, which is denoted by $\operatorname{deg}(x)$, as the number of edges through x. We first state some lemmas which will be used throughout this section.

Lemma 1.1 [4] Let G be a non-abelian finite group and x is a vertex of Γ_{G}. Then

$$
\begin{equation*}
\operatorname{deg}(x)=|G|-\left|C_{G}(x)\right| . \tag{1.4}
\end{equation*}
$$

Lemma 1.2 [4] Let G be a non-abelian finite group. If H is a group such that $\Gamma_{G} \cong \Gamma_{H}$, then H is a non-abelian finite group such that $|Z(H)|$ divides each of the following:
$|G|-|Z(G)|,|G|-\left|C_{G}(x)\right|,\left|C_{G}(x)\right|-|Z(G)|$, for $x \in(G-Z(G))$.
Lemma 1.3 Let $T_{4 n}$ be a group. Then

$$
\left|C_{T_{4 n}}(a)\right|=2 n,\left|C_{T_{4 n}}(b)\right|=4 \text { and }\left|Z\left(T_{4 n}\right)\right|=2 .
$$

Proof All elements of $T_{4 n}$ are denoted as $a^{i} b^{j}$ such that $1 \leq i \leq$ $2 n, 1 \leq j \leq 4$. The center of $T_{4 n}$ is defined by

$$
\begin{aligned}
\left\{a^{i} b^{j} \mid\left(a^{i} b^{j}\right) a\right. & =a\left(a^{i} b^{j}\right), b\left(a^{i} b^{j}\right) \\
& \left.=\left(a^{i} b^{j}\right) b, 1 \leq i \leq 2 n, 1 \leq j \leq 4\right\}
\end{aligned}
$$

Now, we find the elements of $Z\left(T_{4 n}\right)$. If $a^{i} b^{j}$ belongs to $Z\left(T_{4 n}\right)$, then $a^{i} b^{j} a=a^{i+1} b^{j}$ and $a^{i} b^{j+1}=b a^{i} b^{j}$. Therefore we have $b^{j} a=a b^{j}$ and $b a^{i}=a^{i} b$. There exist three cases for j as follows:
(a) If $j=0$, then $b a^{i}=a^{i} b$. According to Definition 1.2, $a^{i} b=$ $a^{-i} b$ and $i=n$. Hence $a^{n} \in Z\left(T_{4 n}\right)$.
(b) If $j \neq 2$, then $b^{j} a=a^{-1} b^{j}$ and $b^{j} a=a b^{j}$. Therefore the order of a is 2 , which is a contradiction.
(c) If $j=2$, then $a^{i} b^{2}=a^{n+i}$ and $a^{i} b^{3}=a^{-i} b^{3}$. Hence $i=n$ and it shows that $a^{n} \in Z\left(T_{4 n}\right)$.
So $Z\left(T_{4 n}\right)=a^{n}, 1$ and $\left|Z\left(T_{4 n}\right)\right|=2$. We can see easily that $C_{T_{4 n}}(a)=\langle a\rangle$ and $C_{T_{4 n}}(b)=\langle b\rangle$. Therefore $\left|C_{T_{4 n}}(a)\right|=$ $2 n,\left|C_{T_{4 n}}(b)\right|=4$.

Theorem 1.1 Let G be a finite non-abelian group. If $\Gamma_{G} \cong \Gamma_{T_{4 n}}$, then $|G|=\left|T_{4 n}\right|$.
Proof We know that $\Gamma_{T_{4 n}}$ has two vertices a and b such that $\operatorname{deg}(a)=2 n$ and $\operatorname{deg}(b)=4 n-4$. Since $\Gamma_{G} \cong \Gamma_{T_{4 n}}$, we have the following equality:

$$
|G|-|Z(G)|=\left|T_{4 n}\right|-\left|Z\left(T_{4 n}\right)\right|=4 n-2
$$

Therefore $|Z(G)|$ divides $4 n-2$. There exists the corresponding elements $g_{1}, g_{2} \in G-Z(G)$ such that $\operatorname{deg}\left(g_{1}\right)=2 n$ and $\operatorname{deg}\left(g_{2}\right)=4 n-4$. By Lemma 1.2, we obtain that $|Z(G)|$ divides 2. Now, we show that $|Z(G)|=2$. Using the contradiction proof, suppose that $|Z(G)|=1$ and

$$
|G|=4 n-1, \operatorname{deg}\left(g_{1}\right)=|G|-\left|C_{G}\left(g_{1}\right)\right|=2 n .
$$

So $\left|C_{G}\left(g_{1}\right)\right|=2 n-1$. But we know that $2 n-1$ does not divide $4 n-1$. Hence $|Z(G)|=2$ and $|G|=4 n=\left|T_{4 n}\right|$.

1.3 NON-COMMUTING GRAPH OF $\boldsymbol{U}_{6 n}$

According to the definition of $U_{6 n}$, we have all of its elements are in the form of $a^{i} b^{j}$ such that $0 \leq i \leq 2 n-1$ and $0 \leq j \leq 2$. To obtain our main goal, we start with the following lemma.

Lemma 1.4 Let $U_{6 n}$ be a finite group. Then

$$
\left|C_{U_{6 n}}(a)\right|=2 n,\left|C_{U_{6 n}}(b)\right|=3 \text { and }\left|Z\left(U_{6 n}\right)\right|=1 .
$$

Proof First, we show that $Z\left(U_{6 n}\right)=1$. Suppose that there exist i and j such that $a^{i} b^{j} \in Z\left(U_{6 n}\right)$ and $i, j \neq 0$. Since $\left(a^{i} b^{j}\right) a=a\left(a^{i} b^{j}\right)$, we obtain $a^{i+1} b^{j}=a^{i+1} b^{-j}$ and $j=3$. Also we have $b\left(a^{i} b^{j}\right)=\left(a^{i} b^{j}\right) b$. Therefore $a^{i} b=b a^{i}=a^{i} b^{-1}$ and the order of b is equal to 2 . Hence we conclude that $Z\left(U_{6 n}\right)=1$. By the structure of $U_{6 n}$, we can easily see that $C_{U_{6 n}}(a)=\langle a\rangle$ and $C_{U_{6 n}}(b)=\langle b\rangle$. Therefore $\left|C_{U_{6 n}}(a)\right|=2 n$ and $\left|C_{U_{6 n}}(b)\right|=3$.

Theorem 1.2 Let G be a finite non-abelian group. If $\Gamma_{G} \cong \Gamma_{U_{6 n}}$, then $|G|=\left|U_{6 n}\right|$.
Proof Since $\Gamma_{G} \cong \Gamma_{U_{6 n}}$, it can concluded that Γ_{G} has two vertices g_{1}, g_{2} such that $\operatorname{deg}\left(g_{1}\right)=4 n$ and $\operatorname{deg}\left(g_{2}\right)=6 n-3$. Also we have this equality $|G|-|Z(G)|=6 n-1$.

Since $|Z(G)|$ divides $\operatorname{deg}\left(g_{1}\right)$ and $\operatorname{deg}\left(g_{2}\right)$, then there exists three cases for $|Z(G)|$ as follows:
(a) If $|Z(G)|=2$, then $|G|=6 n+1$ and $\left|C_{G}\left(g_{2}\right)\right|=4$. This is impossible since $4 \nmid|G|$.
(b) If $|Z(G)|=3$, then $|G|=6 n+2$ and $\left|C_{G}\left(g_{2}\right)\right|=5$. This is impossible since $|Z(G)| \nmid\left|C_{G}\left(g_{2}\right)\right|$.
(c) If $|Z(G)|=6$, then $|G|=6 n+5$ and $\left|C_{G}\left(g_{2}\right)\right|=8$. This is impossible since $|Z(G)| \nmid\left|C_{G}\left(g_{2}\right)\right|$.
Therefore $|Z(G)|=1$ and $|G|=\left|U_{6 n}\right|=6 n$.

1.4 NON-COMMUTING GRAPH OF $V_{8} n$

In this section, we study about $C_{V_{8 n}}(a), C_{V_{8 n}}(b)$ and $Z\left(V_{8 n}\right)$. We want to show that if $\Gamma_{G} \cong \Gamma_{V_{8 n}}$, then $|G|=\left|V_{8 n}\right|$. First we start with the following lemma.

Lemma 1.5 Let $V_{8 n}$ be a finite group.
(a) If n is an even number, then $\left|C_{V_{8 n}}(b)\right|=8,\left|C_{V_{8 n}}(a)\right|=4 n$ and $\left|Z\left(V_{8 n}\right)\right|=4$.
(b) If n is an odd number, then $\left|C_{V_{8 n}}(b)\right|=4,\left|C_{V_{8 n}}(a)\right|=4 n$ and $\left|Z\left(V_{8 n}\right)\right|=2$.
Proof Firstly, we show that $\left|C_{V_{8 n}}(a)\right|=4 n$. It can be shown that

$$
\begin{align*}
\left|C_{V_{8 n}}(a)\right| & =\left\{a^{i} b^{j} \mid\left(a^{i} b^{j}\right) a\right. \\
& \left.=a\left(a^{i} b^{j}\right) \ni 0 \leq i \leq 2 n-1,0 \leq j \leq 3\right\} . \tag{1.5}
\end{align*}
$$

If $j=0$, then $\langle a\rangle \leq C_{V_{8 n}}(a)$. Assume that $i=0$, we have $a b^{2}=b^{2} a$. Now suppose that $i \neq 0$.

If $j=1$, then $a^{i} b(a)=a^{i-1} b^{-1}$ and ($\left.a\right) a^{i} b=a^{i+1} b$. Since the order of a is not equal to the order of b, we can conclude that $a\left(a^{i} b\right) \neq\left(a^{i} b\right) a$.

If $j=2$, then $a^{i} b^{2}(a)=a^{i+1} b^{2}=(a) a^{i} b^{2}$ for all $0 \leq i \leq$ $2 n-1$.

If $j=3$, then $a^{i} b^{3}(a)=a^{i-1} b^{-3}$ and $(a) a^{i} b^{3}=a^{i+1} b^{3}$. Since the order of a is not equal to the order of b, we can conclude that $a\left(a^{i} b^{3}\right) \neq\left(a^{i} b^{3}\right) a$. Therefore, $\left|C_{V_{8 n}}(a)\right|=4 n$.

Next, we want to obtain $\left|C_{V_{8 n}}(b)\right|$, where n is an even number. $C_{V_{8 n}}(b)=\left\{a^{i} b^{j} \mid a^{i} b^{j+1}=b a^{i} b^{j}\right\}$ for all $0 \leq i \leq 2 n-1$ and $0 \leq j \leq 3$. We know that $\langle b\rangle \leq C_{V_{8 n}}(b)$. Suppose that $i \neq 0$, now we have four cases for j. If $j=0$, then we recognize a^{i} such that $a^{i} b=b a^{i}$ for all i. Thus,
$a^{i} b=b a^{i} \rightarrow a^{i-1} b^{-1} a^{-1}=b a^{i} \rightarrow a^{i-2} b=b a^{i+2} \rightarrow b^{(-1)^{i}}=b a^{2 i}$
The preceeding equation shows that i cannot be an odd number. Therefore i is an even number and $i=n$. If $j=1$, then
$a^{i} b(b) \neq(b) a^{i} b$. For $j=2$ and $j=3$, we have

$$
a^{i} b^{2}(b) \neq(b) a^{i} b^{2}
$$

and $a^{i} b^{3}(b) \neq(b) a^{i} b^{3}$ for all i. Hence, $\left|C_{V_{8 n}}(b)\right|=8$.
Also we have:

$$
C_{V_{8 n}}(a)=\left\{1, a, a^{2}, \ldots, a^{2 n-1}, b^{2}, b^{2} a, b^{2} a^{2}, \ldots, b^{2} a^{2 n-1}\right\}
$$

and

$$
C_{V_{8 n}}(b)=\left\{1, b, b^{2}, b^{3}, a^{n}, b a^{n}, b^{2} a^{n}, b^{3} a^{n}\right\}
$$

On the other hand, we know that

$$
\begin{aligned}
Z\left(V_{8 n}\right) & =\left\{g \in V_{8 n} \mid g v=v g \text { for all } v \in V_{8 n}\right\} \\
& =\left\{g \in V_{8 n} \mid g a=a g \text { and } g b=b g\right\} \\
& =C_{V_{8 n}}(a) \cap C_{V_{8 n}}(b)=\left\{1, b^{2}, a^{n}, b^{2} a^{n}\right\} .
\end{aligned}
$$

Therefore $\left|Z\left(V_{8 n}\right)\right|=4$.
If n is an odd number, according to the above proof we have four cases for j. But in any case, we have $a^{i} b^{j}(b) \neq(b) a^{i} b^{j}$ for all $0 \leq j \leq 3$. Therefore $C_{V_{8 n}}(b)=\langle b\rangle$ and

$$
\begin{aligned}
Z\left(V_{8 n}\right)= & \left\{g \in V_{8 n} \mid g v=v g \text { for all } \in V_{8 n}\right\} \\
= & \left\{g \in V_{8 n} \mid g a=a g \text { and } g b=b g\right\} \\
= & C_{V_{8 n}}(a) \cap C_{V_{8 n}}(b) \\
= & \left\{1, a, a^{2}, \ldots, a^{2 n-1}, b^{2}, b^{2} a, b^{2} a^{2}, \ldots, b^{2} a^{2 n-1}\right\} \\
& \cap\left\{1, b, b^{2}, b^{3}\right\} \\
= & \left\{1, b^{2}\right\} .
\end{aligned}
$$

Hence, $\left|Z\left(V_{8 n}\right)\right|=2$.
Theorem 1.3 Let G be a non-abelian finite group. If $\Gamma_{G} \cong \Gamma_{V_{8 n}}$, then $|G|=\left|V_{8 n}\right|$.

Proof First, we suppose that n is an even number. In this case $\operatorname{deg}(a)=4 n$ and $\operatorname{deg}(b)=8(n-1)$. Since the $\Gamma_{G} \cong \Gamma_{V_{8 n}}$, we have

$$
|G|-|Z(G)|=\left|V_{8 n}\right|-\mid Z\left(V_{8 n} \mid .\right.
$$

Hence, $|Z(G)|$ divides $8 n-4$. Also Γ_{G} has two vertices g_{1} and g_{2} such that $\operatorname{deg}\left(g_{1}\right)=4 n$ and $\operatorname{deg}\left(g_{2}\right)=8 n-8$. We know that $|Z(G)|$ divides $8 n-8$, so $|Z(G)|$ divides 4 . Therefore $|Z(G)|$ can be 1,2 or 4 .

If $|Z(G)|=1$, then $|G|=8 n-3$ and $\left|C_{G}\left(g_{2}\right)\right|=5$. Since $\left|C_{G}\left(g_{2}\right)\right|$ must divide $|G|$, so $5||G|$. It occurs only when $n=1$ and it is impossible because n is an even number.

If $|Z(G)|=2$, then $|G|=8 n-2$ and $\left|C_{G}\left(g_{2}\right)\right|=6$. Since $\left|C_{G}\left(g_{2}\right)\right|$ must divide $|G|$, so $6||G|$. It occurs when $n=1$ and it is impossible because n is an even number. Therefore $|Z(G)|=4$ and $|G|=\left|V_{8 n}\right|=8 n$. Now, suppose that n be an odd number. In this case,

$$
|G|-|Z(G)|=8 n-2
$$

and $\operatorname{deg}\left(g_{1}\right)=4 n$ and $\operatorname{deg}\left(g_{2}\right)=8 n-4$. We have that $|Z(G)|$ divides $8 n-2$ and $8 n-4$. Thus $|Z(G)|$ divides 2 . There is two cases for $|Z(G)|$. It can be 1 or 2 .

If $|Z(G)|=1$, then $|G|=8 n-1$ and $\left|C_{G}\left(g_{2}\right)\right|=3$. However $3 \mid 8 n-1$ only when $n=2$ which is impossible since n is an odd number. Hence $|Z(G)|=2$ and $|G|=\left|V_{8 n}\right|=8 n$.

1.5 CONCLUSION

In this research, we define three groups $T_{4 n}, U_{6 n}$ and $V_{8 n}$ and show that if G is a non-abelian finite group such that

$$
\Gamma_{G} \cong \Gamma_{T_{4 n}}, \Gamma_{G} \cong \Gamma_{U_{6 n}} \text { or } \Gamma_{G} \cong \Gamma_{V_{8 n}},
$$

then

$$
|G|=\left|T_{4 n}\right|=4 n,|G|=\left|U_{6 n}\right|=6 n \text { or }|G|=\left|V_{8 n}\right|=8 n,
$$

respectively.

Acknowledgments

The authors would like to thank Universiti Teknologi Malaysia (UTM) for financial funding through the Research University Grant (RUG) Vote No. 08H07.

REFERENCES

[1] Neuman, B. H. 1976. "A Problem of Paul Erdös on Groups." Journal of Australian Mathematical Society, Series A, 21: 467472.
[2] Conway, J. H., R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson. 1985. Atlas of Finite Groups. Oxford: Clarendon Press.
[3] Rose, J. S. 1978. A Course on Group Theory. New York: Dover Publivations, Inc.
[4] Abdollahi, A., S. Akbari, and H. R. Maimani. 2006. "Noncommuting graph of a group." Journal of Algebra, 298: 468492.

