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1.1 INTRODUCTION

Let G be a group and Z.G/ be its center. For each group G, we will
associate a graph which is called the non-commuting graph of G,

denoted by !G . The vertex set V.!G/ is G ! Z.G/ and the edge set
E.!G/ consists of fx; yg, where x and y are two distinct vertices
of V.!G/ are joined together if and only if xy ¤ yx. The non-
commuting graph of a group was introduced by Erdos in 1975. The
non-commuting graph of a finite group has been studied by many

researchers [1].
One of the problems about non-commuting graph of groups is

given in the following conjecture:

Conjecture 1.1. Let G be a non-abelian finite group and H a group
such that !G Š !H . Then jGj D jH j.

Definition 1.1 T4n is a non-abelian finite group with order 4n. Its

structure is defined as

T4n D ha; bja2n D 1; an D b2; b!1ab D a!1i: (1.1)

Definition 1.2 U6n is a non-abelian finite group with order 6n. Its
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structure is defined as

U6n D ha; bja2n D 1 D b3; a!1ba D b!1i: (1.2)

Definition 1.3 V8n is a non-abelian finite group with order 8n. Its

structure is defined as

V8n D ha; bja2n D 1 D b4 D 1; ab D b!1a!1;

ab!1 D ba!1i: (1.3)

The main objective of this chapter is to prove Conjecture 1.1
for three groups T4n, U6n and V8n. In fact, we show that if !G Š
!T4n , !G Š !U6n , !G Š !V8n , then jGj D jT4nj, jGj D jU6nj or
jGj D jV8nj respectively. For more details see Conway et al. [2] and

Rose [3].

1.2 NON-COMMUTING GRAPH OF T4n

In this section, we show that if G is a non-abelian finite group such
that !G Š !T4n , then jGj D jT4nj. In the lemmas, we refer the
degree of the vertex x, which is denoted by deg.x/, as the number
of edges through x. We first state some lemmas which will be used
throughout this section.

Lemma 1.1 [4] Let G be a non-abelian finite group and x is a vertex

of !G . Then

deg.x/ D jGj ! jCG.x/j: (1.4)

Lemma 1.2 [4] Let G be a non-abelian finite group. If H is a group

such that !G Š !H , then H is a non-abelian finite group such that

jZ.H/j divides each of the following:

jGj!jZ.G/j; jGj!jCG.x/j; jCG.x/j!jZ.G/j; for x 2 .G!Z.G//:

Lemma 1.3 Let T4n be a group. Then

jCT4n.a/j D 2n; jCT4n.b/j D 4 and jZ.T4n/j D 2:

Paper width: 433.62pt Paper height: 650.43pt



Job: BCRACDGG(F5-3-16) Sheet: 10 Page: 3

Non-commuting Graph of Some Nonabelian Finite Groups 3

Proof All elements of T4n are denoted as aibj such that 1 # i #
2n, 1 # j # 4. The center of T4n is defined by

faibj j.aibj /a D a.aibj /; b.aibj /

D .aibj /b; 1 # i # 2n; 1 # j # 4g:

Now, we find the elements of Z.T4n/. If aibj belongs to Z.T4n/,
then aibj a D aiC1bj and aibj C1 D baibj . Therefore we have
bj a D abj and bai D aib. There exist three cases for j as follows:

(a) If j D 0, then bai D aib. According to Definition 1.2, aib D
a!ib and i D n. Hence an 2 Z.T4n/.

(b) If j ¤ 2, then bj a D a!1bj and bj a D abj . Therefore the
order of a is 2, which is a contradiction.

(c) If j D 2, then aib2 D anCi and aib3 D a!ib3. Hence i D n
and it shows that an 2 Z.T4n/.

So Z.T4n/ D an; 1 and jZ.T4n/j D 2. We can see easily
that CT4n.a/ D hai and CT4n.b/ D hbi. Therefore jCT4n.a/j D
2n; jCT4n.b/j D 4. !

Theorem 1.1 Let G be a finite non-abelian group. If !G Š !T4n ,

then jGj D jT4nj.

Proof We know that !T4n has two vertices a and b such that
deg.a/ D 2n and deg.b/ D 4n !4. Since !G Š !T4n , we have the
following equality:

jGj ! jZ.G/j D jT4nj ! jZ.T4n/j D 4n ! 2:

Therefore jZ.G/j divides 4n ! 2. There exists the corresponding
elements g1, g2 2 G ! Z.G/ such that deg.g1/ D 2n and
deg.g2/ D 4n ! 4. By Lemma 1.2, we obtain that jZ.G/j divides
2. Now, we show that jZ.G/j D 2. Using the contradiction proof,
suppose that jZ.G/j D 1 and

jGj D 4n ! 1; deg.g1/ D jGj ! jCG.g1/j D 2n:

So jCG.g1/j D 2n ! 1. But we know that 2n ! 1 does not divide
4n ! 1. Hence jZ.G/j D 2 and jGj D 4n D jT4nj. !
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1.3 NON-COMMUTING GRAPH OF U6n

According to the definition of U6n, we have all of its elements are

in the form of aibj such that 0 # i # 2n ! 1 and 0 # j # 2. To
obtain our main goal, we start with the following lemma.

Lemma 1.4 Let U6n be a finite group. Then

jCU6n .a/j D 2n; jCU6n .b/j D 3 and jZ.U6n/j D 1:

Proof First, we show that Z.U6n/ D 1. Suppose that there
exist i and j such that aibj 2 Z.U6n/ and i; j ¤ 0. Since

.aibj /a D a.aibj /, we obtain aiC1bj D aiC1b!j and j D 3. Also
we have b.aibj / D .aibj /b. Therefore aib D bai D aib!1 and
the order of b is equal to 2. Hence we conclude that Z.U6n/ D 1.
By the structure of U6n, we can easily see that CU6n.a/ D hai and
CU6n .b/ D hbi. Therefore jCU6n .a/j D 2n and jCU6n .b/j D 3. !

Theorem 1.2 Let G be a finite non-abelian group. If !G Š !U6n ,

then jGj D jU6nj:

Proof Since !G Š !U6n , it can concluded that !G has two vertices
g1; g2 such that deg.g1/ D 4n and deg.g2/ D 6n ! 3. Also we

have this equality jGj ! jZ.G/j D 6n ! 1.
Since jZ.G/j divides deg.g1/ and deg.g2/, then there exists

three cases for jZ.G/j as follows:
(a) If jZ.G/j D 2, then jGj D 6n C 1 and jCG.g2/j D 4. This is

impossible since 4 − jGj.
(b) If jZ.G/j D 3, then jGj D 6n C 2 and jCG.g2/j D 5. This is

impossible since jZ.G/j − jCG.g2/j.
(c) If jZ.G/j D 6, then jGj D 6n C 5 and jCG.g2/j D 8. This is

impossible since jZ.G/j − jCG.g2/j.
Therefore jZ.G/j D 1 and jGj D jU6nj D 6n. !
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1.4 NON-COMMUTING GRAPH OF V8n

In this section, we study about CV8n.a/, CV8n.b/ and Z.V8n/. We

want to show that if !G Š !V8n , then jGj D jV8nj. First we start
with the following lemma.

Lemma 1.5 Let V8n be a finite group.

(a) If n is an even number, then jCV8n .b/j D 8, jCV8n .a/j D 4n
and jZ.V8n/j D 4.

(b) If n is an odd number, then jCV8n .b/j D 4, jCV8n .a/j D 4n
and jZ.V8n/j D 2.

Proof Firstly, we show that jCV8n .a/j D 4n. It can be shown that

jCV8n .a/j D faibj j.aibj /a

D a.aibj / 3 0 # i # 2n ! 1; 0 # j # 3g: (1.5)

If j D 0, then hai # CV8n .a/. Assume that i D 0, we have
ab2 D b2a. Now suppose that i ¤ 0.

If j D 1, then aib.a/ D ai!1b!1 and .a/aib D aiC1b: Since
the order of a is not equal to the order of b, we can conclude that
a.aib/ ¤ .aib/a.

If j D 2, then aib2.a/ D aiC1b2 D .a/aib2 for all 0 # i #
2n ! 1.

If j D 3, then aib3.a/ D ai!1b!3 and .a/aib3 D aiC1b3.
Since the order of a is not equal to the order of b, we can conclude
that a.aib3/ ¤ .aib3/a. Therefore, jCV8n .a/j D 4n.

Next, we want to obtain jCV8n .b/j, where n is an even number.
CV8n .b/ D faibj jaibj C1 D baibj g for all 0 # i # 2n ! 1 and
0 # j # 3. We know that hbi # CV8n .b/. Suppose that i ¤ 0, now
we have four cases for j . If j D 0, then we recognize ai such that
aib D bai for all i . Thus,

aib D bai ! ai!1b!1a!1 D bai ! ai!2b D baiC2 ! b.!1/i

D ba2i

The preceeding equation shows that i cannot be an odd number.
Therefore i is an even number and i D n. If j D 1, then
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aib.b/ ¤ .b/aib. For j D 2 and j D 3, we have

aib2.b/ ¤ .b/aib2

and aib3.b/ ¤ .b/aib3 for all i . Hence, jCV8n .b/j D 8.
Also we have:

CV8n .a/ D f1; a; a2; :::; a2n!1 ; b2; b2a; b2a2; :::; b2a2n!1g

and
CV8n .b/ D f1; b; b2; b3; an; ban; b2an; b3ang:

On the other hand, we know that

Z.V8n/ D fg 2 V8njgv D vg for all v 2 V8ng

D fg 2 V8njga D ag and gb D bgg

D CV8n.a/ \ CV8n.b/ D f1; b2; an; b2ang:

Therefore jZ.V8n/j D 4.
If n is an odd number, according to the above proof we have four

cases for j . But in any case, we have aibj .b/ ¤ .b/aibj for all
0 # j # 3. Therefore CV8n .b/ D hbi and

Z.V8n/ D fg 2 V8njgv D vg for all 2 V8ng

D fg 2 V8njga D ag and gb D bgg

D CV8n .a/ \ CV8n .b/

D f1; a; a2; : : : ; a2n!1; b2; b2a; b2a2; : : : ; b2a2n!1g

\ f1; b; b2; b3g

D f1; b2g:

Hence, jZ.V8n/j D 2. !

Theorem 1.3 Let G be a non-abelian finite group. If !G Š !V8n ,

then jGj D jV8nj.
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Proof First, we suppose that n is an even number. In this case
deg.a/ D 4n and deg.b/ D 8.n ! 1/. Since the !G Š !V8n , we
have

jGj ! jZ.G/j D jV8nj ! jZ.V8nj:

Hence, jZ.G/j divides 8n ! 4. Also !G has two vertices g1 and g2

such that deg.g1/ D 4n and deg.g2/ D 8n ! 8. We know that
jZ.G/j divides 8n ! 8, so jZ.G/j divides 4. Therefore jZ.G/j can
be 1, 2 or 4.

If jZ.G/j D 1, then jGj D 8n ! 3 and jCG.g2/j D 5. Since
jCG.g2/j must divide jGj, so 5 j jGj. It occurs only when n D 1
and it is impossible because n is an even number.

If jZ.G/j D 2, then jGj D 8n ! 2 and jCG.g2/j D 6. Since
jCG.g2/j must divide jGj, so 6 j jGj. It occurs when n D 1 and it
is impossible because n is an even number. Therefore jZ.G/j D 4
and jGj D jV8nj D 8n. Now, suppose that n be an odd number. In
this case,

jGj ! jZ.G/j D 8n ! 2

and deg.g1/ D 4n and deg.g2/ D 8n ! 4. We have that jZ.G/j
divides 8n ! 2 and 8n ! 4. Thus jZ.G/j divides 2. There is two
cases for jZ.G/j. It can be 1 or 2.

If jZ.G/j D 1, then jGj D 8n ! 1 and jCG.g2/j D 3. However
3 j 8n ! 1 only when n D 2 which is impossible since n is an odd
number. Hence jZ.G/j D 2 and jGj D jV8nj D 8n. !

1.5 CONCLUSION

In this research, we define three groups T4n, U6n and V8n and show

that if G is a non-abelian finite group such that

!G Š !T4n ; !G Š !U6n or !G Š !V8n ;

then

jGj D jT4nj D 4n; jGj D jU6nj D 6n or jGj D jV8nj D 8n;

respectively.
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