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The Probability That an Element of

a Group Fixes a Set and Its

Application in Graph Theory
Nor Haniza Sarmin and Sanaa Mohamed Saleh Omer

4.1 INTRODUCTION

The probability that two random elements in a group commute is
called the commutativity degree. This concept has been generalized
by many authors. One of these generalizations is the probability that
a group element fixes a set which is our scope in this chapter. In
this chapter, the probability that an element of a group fixes a set is

found for some finite groups.
Throughout this chapter, G denotes a finite non-abelian group.

The determination of the abelianness of a non-abelian group was
firstly introduced by Erdos and Turan [1] who worked on symmetric
groups. Few years later, Gustafson [2] and MacHale [3] used this

concept for finite groups and showed that the probability is less than
or equal to 5/8. However, various researches have later been done
on this topic and more results have been obtained. The probability
that a random element in a group commute with another one in the
same group is denoted as the following ratio:

P.G/ D
jf.x; y/ 2 G ! Gjxy D yxgj

jGj2
:

This probability has been used by several authors in various aspects
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of group theory. It is clear that this probability is equal to one if
and only if the group is abelian. Intensive researches have been
done for finding the commutativity degree for various groups. In
the following context, we state some basic concepts that are needed

in this chapter. These basic concepts can be found in one of the
references [4, 5].

Definition 4.1 [4] The set of all positive integers less than m and
relatively prime to m is called a group under multiplication modulo
m and is denoted by U.m/.

Definition 4.2 [4] A group under addition modulo n is denoted by
Zn where n " 1.

Definition 4.3 [4] The external direct product is a collection of finite
groups defined as follows:

G1 ˚ G2 ˚ ::: ˚ Gn D f.g1; g2; :::; gn/ W gi 2 Gig

Definition 4.4 [5] Let G be a finite Rusin group,

G Š ha; b W a2p

D bm D e; bab!1 D asi;

where mj.p $ 1/ and sj % 1 mod p iff mjj .

In the following, we state the definition of dicyclic group and its
generalization, namely generalized quaternion group.

Definition 4.5 If G a finite non-abelian dicyclic group, then G has
the following presentation G Š ha; b W a2ˇ D b2 D e; b!1ab D
a!1; aˇ D b2i.

In the case that ˇ D 2˛!1, the dicyclic group is generalized to
quaternion group defined as follows.

Definition 4.6 Let G be a generalized quaternion group, Q2nC1 .
Then G Š ha; b W a2˛ D b4 D e; b!1ab D a!1; a2˛!1

D b2i.

In this chapter, we provide some examples, which help the reader
to have a fully understanding of the concept that is under discussion.
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4.2 PRELIMINARIES

This section is divided into two parts, the first part presents

some previous researches related to the commutativity degree; in
particular the probability that an element fixes a set or a subgroup
element. Meanwhile, the second part focus on the graph theory,
where some earlier and recent results are provided.

4.2.1 The Probability That an Element of a Group Fixes a Set

In this part, we state some information related to this chapter.
A new concept introduced by Sherman [6] in 1975, namely the

probability of an automorphism of a finite group fixes an arbitrary
element in the group is given in the following.

Definition 4.7 [6] Let G be a group. Let X be a non-empty set of G
(i.e., G is a group of permutations of X ). Then the probability of an
automorphism of a group fixes a random element from X is defined
as follows:

PG.X/ D
jf.g; x/jgx D x 8 g 2 G; x 2 Xgj

jX jjGj
:

In 2011, Moghaddam et al. [7] explored Shermans definition and
introduced a new probability which is called the probability of an
automorphism fixes a subgroup element of a finite group. This
probability is stated as follows:

PAG.H; G/ D
jf.˛; h/jh˛; h 2 H; ˛ 2 AGgj

jH jjGj
;

where h is a fixed element. It is obvious that when H=G , then
PAG .G; G/ = PAG.G/. Among other results, some upper and lower
bounds were obtained (see [7] for more details).

Omer et al. [8] found the probability that an element of a group
fixes a set of size two of commuting element in G. Their results are
listed in the following.
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Definition 4.8 [8] Let G be a group. Let S be a set of all subsets
of commuting elements of size two in G, where G acts on S by
conjugation. Then the probability of an element of a group fixes a
set is given as follows:

PG.S/ D
jf.g; s/jgS D S 8 g 2 G; s 2 Sgj

jS jjGj
:

Theorem 4.1 [8] Let G be a finite group and let X be a set of

elements of G of size two in the form of .a; b/ where a and b

commute. Let S be the set of all subsets of commuting elements of

G of size two and G acts on S by conjugation. Then the probability

that an element of a group fixes a set is given by:

PG.S/ D
K

jS j
;

where K is the number of conjugacy classes of S in G.

Moreover, they extended their results where they found the above
probability for some finite non-abelian 2-groups [9].

4.2.2 Graph Theory

In the subsection a brief information about some fundamental
concepts related to graph. Starting with definition of empty graph.

Definition 4.9 [10] The graph ! is an empty graph, if there is no
adjacent (edges) between its vertices. In this chapter, Ke denotes
the empty graph.

Definition 4.10 [10] The graph ! is called null if it has no vertices,

denoted by K0

Definition 4.11 [10] A complete graph is a graph where each
ordered pair of distinct vertices are adjacent, and it is denoted by
Kn, where n is the number of connected vertices.
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The following proposition is used to find the degree of vertex in
a graph.

Proposition 4.1 [10] Let G be a finite group and ! be its graph. The

degree of v 2 V.!/ in ! is deg(v)=jV.!/j $ 1.

Next, some previous works on graph theory that are used in this
chapter is provided. In 1990, Bertram et al. [11] introduced a graph
which is called conjugacy class graph . The vertices of this graph
are non-central conjugacy classes, where two vertices are adjacent
if the cardinalities are not coprime. Recently, Bianchi et al. [12]
studied the regularity of the graph related to conjugacy classes and

provided some results. Moreto et al. [13] classified the finite groups
that their conjugacy classes lengths are set-wise relatively prime for
any five distinct classes.

Recently, Omer et al. [14] extended the work in [11] by defining
the generalized conjugacy class graph whose vertices are non-central

orbits under groups action on set. The following is the definition of
generalized conjugacy class graph .

Definition 4.12 [14] Let G be a finite group and " a set of G. Let A
be the set of commuting element in ", i.e f! 2 " W !g D g!; g 2
Gg. Then the generalized conjugacy class graph !!c

G is defined as a
graph whose vertices are non-central orbits under group action on a

set, that is V.!!c

G / D K."/$A. Two vertices !1 and !2 in !!c

G are
adjacent if their cardinalities are not coprime, i.e gcd.!1; !2/ ¤ 1.

Later, Erfanian and Tolue [15] introduced a new graph which is
called a conjugate graph. The vertices of this graph are non-central

elements of a finite non-abelian group. Two vertices of this graph
are adjacent if they are conjugate.

Furthermore, the conjugate graph has been generalized by Omer
et al. [16], where they found the graph and its properties under some
group actions on a set. They also introduced the orbit graph in [16].

The definition of the orbit graph is stated in the following:
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Definition 4.13 [16] Let G be a finite group and " be a set of
elements of G. Let A be the set of commuting elements in ", i.e
A D fv 2 " W vg D gv; g 2 Gg. The orbit graph !!

G consists of
two sets, namely vertices and edges denoted by V.!!

G / and E.!!
G /,

respectively. The vertices of !!
G are non central elements in " but

not in A, that is V.!!
G / D " $ A, while the number of edges are

jE.!!
G /j D

jV."!
G /j

X

iD1

 

vi

2

!

;

where v is the size of orbit under group action of G on ". Two
vertices v1; v2 are adjacent in !!

G if one of the following conditions

is satisfied.
(a) If there exists g 2 G such that gv1 D v2,
(b) I If the vertices of !!

G are conjugate that is, v1 D gv2.

In 2012, Ilangovan and Sarmin [17], found some graph
properties of graph related to conjugacy classes of two-generator
two-groups of class two.

Recently, Moradipour et al. [18] used the graph related to
conjugacy classes to find some graph properties of some finite
metacyclic 2-groups.

4.3 MAIN RESULTS

This section contains two subsections. In the first subsection, we
compute the probability that an element of a group fixes a set. While,

the orbit graph and graph related to conjugacy classes are found in
the second subsection.

4.3.1 The Probability That a Group Element Fixes a Set

In this section, we find the probability that an element of G fixes a

set. Some theorems are provided and supported by some examples.
First, we start with Rusin group, then followed by dicyclic group
and its generalization called generalized quaternion group.
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Theorem 4.2 Let G be a finite non-abelian Rusin group,

G Š ha; b W a2p

D bm D e; bab!1 D asi;

where mj.p $ 1/ and sj % 1 mod p iff mjj . Let S be a set

of elements of G of size two in the form of .a; b/ where a and b
commute. Let " be the set of all subsets of commuting elements of

G of size two and G acts on " by conjugation. Then

PG."/ D 1; if m is even:

Proof If m is odd, the probability cannot be obtained, since there is
no element of size two in ". In the case that m is even, the element
of " of size two is only the elements in the form .1; a

m
2 /. Thus,

when G acts on " by conjugation, then there is only one conjugacy
class namely ". The proof then follows. !

Example 4.1 Let G be a Rusin group,

G Š ha; b W a213 D b3 D e; bab!1 D asi;

where mj.p $ 1/ and sj % 1 mod p iff mjj . If G acts on " by

conjugation, then PG."/ D 1.

Solution There is only one element in ", namely " itself thus

when G acts on " by conjugation, PG."/ D 1.

Theorem 4.3 Let G be a finite non-abelian dicyclic group,

G Š ha; b W a2ˇ D b4 D e; b!1ab D a!1; aˇ D b2i:

Let S be a set of elements of G of size two in the form of .a; b/ where

a and b commute. Let " be the set of all subsets of commuting

elements of G of size two and G acts on " by conjugation. Then

PG."/ D 1.
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Proof Since " is the set of all subsets of commuting elements of

size two in G, then there is only one element in " namely .1; a
2ˇ

2 /.
If G acts on " by conjugation, then we have only one conjugacy
class, which is " itself. The proof then follows. !

Example 4.2 Let G be a finite non-abelian dicyclic group,

G Š ha; b W a6 D b4 D e; b!1ab D a!1; a3 D b2i:

If G acts on ", then PG."/ D 1.

Solution According to this presentation, there is only one element
in " which is .1; a3/. In the case that G acts on " by conjugation,

there is only one element, namely .1; a3/. Therefore, PG."/ D 1.
The generalized quaternion group is a dicyclic group with

ˇ D 2˛!1. In the following, the probability that an element
of a generalized quaternion group, namely Q2nC1 , fixes a set is
computed.

Theorem 4.4 Let G be a generalized quaternion group, Q2nC1 ,

G Š ha; b W a2˛ D b4 D e; b!1ab D a!1; a2˛!1

D b2i:

Let S be a set of elements of G of size two in the form of .a; b/ where

a and b commute. Let " be the set of all subsets of commuting

elements of G of size two and G acts on " by conjugation. Then

PG."/ D 1.

Proof The proof is similar with Theorem 4.3. !

Theorem 4.5 Let G be a finite group, G Š U.m/; m 2 N. Let S be

a set of elements of G of size two in the form of .a; b/ where a and

b commute. Let " be the set of all subsets of commuting elements

of G of size two and G acts regularly on ". Then PG."/ D K.!/
j!j

,

where K."/ is the number of conjugacy classes of ".
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Proof Since " is the set of all subsets of commuting elements of
size two, thus the elements in " are in the form of .1; a/, .1; b/ and
.a; b/, where a, b are relatively prime to m and commute. By the
regular action of G on ", there exists g 2 G; !1; !2 2 " such

that g!1 D !2. Hence, cl.!/ D fg! W g 2 Gg. It follows that the
number of conjugacy classes are K."/. According to [8], PG."/ D
K.!/

j!j
. !

Example 4.3 Suppose G Š U.8/ and " be the set of all subsets

of commuting elements in U.8/. If G acts regularly on ", find the
probability that g 2 G acts on ".

Solution The elements of U.8/ D f1; 3; 5; 7g. Thus, the elements
of " are stated as follows:

" D f.1; 3/; .1; 5/; .1; 7/; .3; 5/; .3; 7/; .5; 7/g:

If G acts on ", the conjugacy classes are described as follows:

cl..1; 3// D f.1; 3/; .5; 7/g;

cl..1; 5// D f.1; 5/; .3; 7/g;

cl..1; 7// D f.1; 7/; .3; 5/g:

It follows that K."/ D 3. Therefore, PG."/ D 1
2
.

Theorem 4.6 Let G be a finite group, G Š U.n/; n 2 N. Let S be

a set of elements of G of size two in the form of .a; b/ where a and

b commute. Let " be the set of all subsets of commuting elements of

G of size two and G acts on " by conjugation. Then PG."/ D 1.

Proof We know that " is the set of all subsets of commuting
elements of size two, thus the elements in " are in the form .1; a/,
.1; b/ and .a; b/, where a, b are relatively prime to n and commute.
Since G acts on " by conjugation, then exists g 2 G; !1; !2 2 "
such that g!1g!1 D !2. Hence, cl.!/ D fg!g!1 W g 2 Gg. Since
all elements are relatively prime to n and are all of size two, then
cl.!/ D ! 8! 2 ". It follows that PG."/ D 1. !
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Example 4.4 Suppose G Š U.8/ and " be the set of all subsets of
commuting elements in U.8/. If G acts on " by conjugation, find
the probability that g 2 G acts on ".

Solution The elements of U.8/ D f1; 3; 5; 7g. Thus, the elements
of " are stated as follows

" D f.1; 3/; .1; 5/; .1; 7/; .3; 5/; .3; 7/; .5; 7/g:

If G acts on " by conjugation, the conjugacy classes described as
follows:

cl..1; 3// D f.1; 3/g;

cl..1; 5// D f.1; 5/g;

cl..1; 7// D f.1; 7/g;

cl..3; 5// D f.3; 5/g;

cl..3; 7// D f.3; 7/g;

cl..5; 7// D f.5; 7/g:

It follows that K."/ D 6. Based on Definition 4.8, PG."/ D 1.

Theorem 4.7 Let G be a finite group, G Š U.n/˚U.m/; n; m 2 N.

Let S be a set of elements of G of size two in the form of .a; b/
where a and b commute. Let " be the set of all subsets of commuting

elements of G of size two and G acts regularly on ". Then PG."/ D
K.!/

j!j
.

Proof First, we find the elements of ". Since elements of " are of
size two, then j!j D lcm.jg1j; jg2j/ D 2; where g1 2 U.n/; g2 2
U.m/ thus this case is reduced to the same problem as in Theorem
4.5. In the case that G acts regularly on ", the proof then follows

Theorem 4.5. !

Example 4.5 Suppose G Š U.3/ ˚ U.4/. If G acts regularly on ",
find the probability that g 2 G fixes ".
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Solution Since U.3/ D f1; 2g and U.4/ D f1; 3g, thus the
elements of G D f.1; 1/; .1; 3/; .2; 1/; .2; 3/g, and the elements of
" D f.1; 3/; .2; 1/; .2; 3/g. If G acts regularly on ", there exists
g 2 G such that gw 2 ". Therefore, the conjugacy classes are

cl..1; 3// D fg.1; 3/ W g 2 Gg D f.1; 3/; .2; 1/; .2; 3/g:

Hence cl..1; 2// D cl..2; 3// D cl.1; 3/. Thus K."/ D 1. It

follows that, PG."/ D 1=3.

Theorem 4.8 Let G be a finite group, G Š U.n/˚U.m/; n; m 2 N.

Let S be a set of elements of G of size two in the form of .a; b/ where

a and b commute. Let " be the set of all subsets of commuting

elements of G of size two and G acts on " by conjugation. Then

PG."/ D 1.

Proof The proof is similar to that of Theorem 4.6. !

Example 4.6 Suppose G Š U.3/ ˚ U.4/. If G acts on " by
conjugation, find the probability that g 2 G fixes ".

Solution The elements of G D f.1; 1/; .1; 3/; .2; 1/; .2; 3/g, thus
the elements of " D f.1; 3/; .2; 1/; .2; 3/g. If G acts on " by
conjugation, then cl.!/ D fg!1!g W g 2 Gg. Therefore, the
conjugacy classes are cl..1; 3// D fg!1.1; 3/g W g 2 Gg D f.1; 3/g,

cl..2; 1// D fg!1.2; 1/g W g 2 Gg D f.2; 1/g and cl..2; 3// D
fg!1.2; 3/g W g 2 Gg D f.2; 3/g. Therefore, K."/ D 3. Thus,
PG."/ D 1.

Theorem 4.9 Let G be a finite group, G Š Z2p ˚ Z2q ,where p and

q prime numbers. Let S be a set of elements of G of size two in

the form of .a; b/ where a and b commute. Let " be the set of all

subsets of commuting elements of G of size two and G acts on " by

conjugation. Then PG."/ D 1.
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Proof The order of any ! 2 " is ! D lcm.jg1j; jg2j/ D 2,
where g1 2 Z2p; g2 2 Z2q , thus jg1j D f1; 2; p; 2pg; jg2j D
f1; 2; q; 2qg but the order of ! is two, thus the elements of " are
f.0; p/; .0; q/; .p; q/g. In case that G acts on " by conjugation, then

the number of conjugacy classes is equal to the order of ". Hence,
PG."/ D 1. !

Example 4.7 Suppose G Š Z6 ˚ Z10. Let " be the set of all

subsets of commuting elements of G of size two and G acts on "
by conjugation. Then PG."/ D 1.

Solution The elements of G are f.0; 0/; .0; 1/; .0; 2/; :::; .5; 9/g.

Thus, the elements in " are f.3; 0/; .0; 5/; .3; 5/g. When G acts
on " by conjugation, then cl.3; 0/ D f.0; 3/g; cl.0; 5/ D f.0; 5/g
and cl.3; 5/ D f.3; 5/g. Based on Definition 4.8, the probability is
equal to one.

Theorem 4.10 Let G be a finite group, G Š Z2p ˚ Z2q ,where p
and q are prime numbers. Let S be a set of elements of G of size two

in the form of .a; b/ where a and b commute. Let " be the set of all

subsets of commuting elements of G of size two and G acts regularly

on ". Then PG."/ D 1
j!j

.

Proof The proof follows from Theorem 4.7. !

Theorem 4.11 Let G be a finite group, G Š Zp ˚ Zq,where p and

q are relatively prime. Let S be a set of elements of G of size two

in the form of .a; b/ where a and b commute. Let " be the set of all

subsets of commuting elements of G of size two and G acts on " by

conjugation. Then

PG."/ D 1; if p ¤ q D 2 and p D q D 2:

Proof The elements of " are f.p; 0/; .0; q/; .p; q/g. Thus in the

case that p ¤ q D 2, " D f.p=2; 0/g and when G acts on "
by conjugation, there is only one conjugacy class, namely " itself.
Hence, PG."/ D 1.
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If p ¤ q ¤ 2, then there is no element of size two hence the
probability cannot be computed. !

Theorem 4.12 Let G be a finite group, G Š Zp ˚ Zq,where p and

q are relatively prime. Let S be a set of elements of G of size two

in the form of .a; b/ where a and b commute. Let " be the set of all

subsets of commuting elements of G of size two and G acts regularly

on ". Then

PG."/ D

(

1
j!j

; if p D q D 2;

1; if p ¤ q D 2:

Proof The elements of " are f.p; 0/; .0; q/; .p; q/g. Thus in the
case that p ¤ q D 2, " D f.p=2; 0/g. When G acts regularly on
" and p D q D 2, the proof follows from Theorem 4.7. In the case
that p ¤ q D 2 the proof follows from Theorem 4.9. However,
in the case p ¤ q ¤ 2, there is no element of size two since p
and q are relatively primes. Thus, there is no possibility to compute
PG."/. !

4.3.2 The Orbit Graph and Generalized Conjugacy Class

Graph

In this section, we find both the orbit graph and generalized
conjugacy class graph based on the obtained results in the previous
section, starting with the results on orbit graph.

4.3.2.1 Orbit Graph

In this part, we find the orbit graph for all theorems in Section 1 and

Section 2, starting with the Rusin group.

Theorem 4.13 Let G be a finite non-abelian Rusin group,

G Š ha; b W a2p

D bm D e; bab!1 D asi;

where mj.p $ 1/ and sj % 1 mod p iff mjj . Let S be a set

of elements of G of size two in the form of .a; b/ where a and b
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commute. Let " be the set of all subsets of commuting elements

of G of size two and G acts on " by conjugation. Then !!
G

is an empty graph.

Proof According to Theorem 4.2, the proof is clear since the
elements of " of size two is only the element .1; a2/. Thus, the
graph is an empty graph. !

Theorem 4.14 Let G be a finite non-abelian dicyclic group,

G Š ha; b W a2ˇ D b4 D e; b!1ab D a!1; aˇ D b2i:

Let S be a set of elements of G of size two in the form of .a; b/
where a and b commute. Let " be the set of all subsets of commuting

elements of G of size two and G acts on " by conjugation. Then !!
G

is an empty graph.

Proof The proof is similar to that of Theorem 4.13. !

Next, the orbit graph of the generalized quaternion group is
found.

Theorem 4.15 Let G be a generalized quaternion group, Q2nC1 ,

G Š ha; b W a2˛ D b4 D e; b!1ab D a!1; a2˛!1
D b2i. Let S be a

set of elements of G of size two in the form of .a; b/ where a and b
commute. Let " be the set of all subsets of commuting elements of

G of size two and G acts on " by conjugation. Then !!
G is an empty

graph.

Proof The proof is similar to that of Theorem 4.13. !

Theorem 4.16 Let G be a finite group, G Š U.m/; m 2 N. Let S
be a set of elements of G of size two in the form of .a; b/ where a and

b commute. Let " be the set of all subsets of commuting elements

of G of size two. regularly on ". Then the orbit graph is an empty

graph.

Proof The graph is empty since jV.!!
G /j D j"j $ jAj, where

A D fg!1 D !18g 2 Gg, and since G is U.m/, all elements in
" commute with the elements in G. !
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Remark There is no orbit graph for Theorems 4.6, 4.7, 4.8,
4.9, 4.10, 4.11 and 4.12 since all elements in " commute with the
elements in G.

Theorem 4.17 Let G be a finite group, G Š Zp ˚ Zq,where p and

q relatively prime. Let S be a set of elements of G of size two in

the form of .a; b/ where a and b commute. Let " be the set of all

subsets of commuting elements of G of size two and G acts regularly

on ". Then

!!
G D

(

K!; if p D q D 2;

Ke; if p ¤ q D 2:

Proof The element of " are f.p; 0/; .0; q/; .p; q/g. Thus in case
that p D q D 2, and two vertices are joined by an edge if there
is g 2 G such that g!1 D !2. According to Theorem 4.12 there
is a complete graph, namely K!. However, if p ¤ q D 2, " D
f.p=2; 0/g and when G acts on regularly on ", then the graph is

empty since the element f.p=2; 0/g adjacent to itself. In the second
case, there is no element of size two, thus it is impossible to find
the graph. However, in case three when p ¤ q ¤ 2, there is no
element of size two since p and q relatively primes. Thus, there is
no possibility to find a graph. !

Theorem 4.18 Let G be a finite group, G Š U.n/ ˚ U.m/; n; m 2
N. Let S be a set of elements of G of size two in the form of .a; b/
where a and b commute. Let " be the set of all subsets of commuting

elements of G of size two and G acts regularly on ". Then

!!
G D

(

K3; if G acts regularly on ";

Ke; if G acts on " by conjugation:

Proof According to Theorem 4.7, there is no adjacency between
elements in " thus the graph is empty. In the case that G acts
regularly on ", thus jV.!!

G /j D " $ A. Therefore, jV.!!
G /j D 3.

two vertices are linked by an edge if and only if there exists g 2 G
such that g!1 D !2. From which it follows that there is a complete
graph of K3. !
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4.3.2.2 Generalized Conjugacy Class Graph

In this part, the generalized conjugacy class graph is found for all
groups mentioned in the introduction section. We start with the
generalized conjugacy class graph of Rusin group.

Theorem 4.19 Let G be a finite non-abelian Rusin group,

G Š ha; b W a2p

D bm D e; bab!1 D asi;

where mj.p $ 1/ and sj % 1 mod p iff mjj . Let S be a set

of elements of G of size two in the form of .a; b/ where a and b
commute. Let " be the set of all subsets of commuting elements of

G of size two and G acts on " by conjugation. Then !!c

G D Ke .

Proof According to Theorem 4.2, there is only one conjugacy
class. Thus, the graph is empty. !

Remark There is no generalized conjugacy class graph in

Theorem 4.3 and 4.4, the reason is similar to that in the previous
theorem. In the following, the generalized conjugacy class for U.n/
namely, group under multiplication modulo n.

Theorem 4.20 Let G be a finite group, G Š U.m/; m 2 N. Let S
be a set of elements of G of size two in the form of .a; b/ where a and

b commute. Let " be the set of all subsets of commuting elements

of G of size two and G acts regularly on ". Then jV.!!c

G /j D
K."/ $ jAj.

Proof According to Theorem 4.5, we find that jV.!!c

G /j D

K."/$ jAj. According to Proposition 4.1, deg.!/ D jV.!!c

G /j$1,
thus deg.!/ D n where n D K."/ $ jAj. !

Remark The generalized conjugacy class graph can be obtained
only if " ¤ A, since all elements in " are relatively prime.This
restricted condition is true for the rest of the theorems.
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4.4 CONCLUSION

In this chapter, the probability that a group element fixes a set

is found for some finite groups mentioned in Section 4.1. As
consequences of obtained results in Section 4.1, we associated the
results in the probability that an element of a group fixes a set
to graph theory, more precisely with orbit graph and generalized
conjugacy class graph.
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