PROCEEDING5 OF THE

6"I IGCESH 2016

INTERNATIONAL GRADUATE CONFERENCE ON ENGINEERING, SCIENCE AND HUMANITIES

15-17
 AUGUST 2016

BLOCK N24, UNIVERSITI TEKNOLOGI MALAYSIA, UTM JOHOR BAHRU, JOHOR, MALAYSIA

$6^{\text {th }}$ International Graduate Conference on Engineering, Science \& Humanities
 (IGCESH 2016)

CONFERENCE PROCEEDINGS

$15^{\text {th }}-17^{\text {th }}$ August 2016

Organized by
UTM Postgraduate Student Society (PGSS-UTM)

In collaboration with

School of Graduate Studies, Universiti Teknologi Malaysia

Email: igcesh2016@utm.my
Tel: $+607-5537903$ (office)
Fax: +607-5537800
(i)

Website: sps.utm.my/igcesh2016

THE PROBABILITY THAT A METACYCLIC 5-GROUP ELEMENT FIXES A SET BY CONJUGATION

Siti Norziahidayu Amzee Zamri*́ㅗ, Nor Haniza Sarmin ${ }^{\mathbf{2}}$ and Sanhan Muhammad Salih Khasraw ${ }^{3}$
1,2 Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, MALAYSIA. (E-mail: norzisan@gmail.com, nhs@utm.my)
${ }^{3}$ Department of Mathematics, College of Education, Salahaddin University-Erbil, Kurdistan Region, IRAQ.
(E-mail: sanhan.khasraw@su.edu.krd)

Abstract

The probability that an element of a group fixes a set was introduced in 2013. Let G be a metacyclic 5 -group and Ω the set of all subsets of commuting elements of G in the form of (x, y) such that $\operatorname{lcm}(|x|,|y|)=5$. In this research, the probability that an element of a metacyclic 5 -group fixes a set Ω is determined by using a group action on a set which is conjugation.

Key words: Commutativity degree, Metacyclic 5-group, Conjugation action

INTRODUCTION

In 1944, Miller [1] introduced a concept of commutativity degree which is defined as the probability that a pair of two randomly chosen elements (x, y) from a group G commute. The definition is given in the following.

Definition 1.1: Let G be a finite group. The commutativity degree is the probability that two random elements (x, y) in G commute, defined as follows:

$$
P(G)=\frac{|\{(x, y) \in G \times G \mid x y=y x\}|}{|G|^{2}} .
$$

In 1965, Erdos and Turan [2] investigated several problems based on the concept of commutativity degree on symmetric groups. Later on, Gustafson [3] showed that the probability of a random pair of elements can be computed by dividing the number of conjugacy classes with the size of the group. He also showed that $P(G) \leq \frac{5}{8}$.

In 1979, Sherman [4] extended the concept of commutativity degree by introducing the probability of an automorphism of a finite group which fixes an arbitrary element with the following definition:

Definition 1.2: Let G be a group. Let X be a non-empty set of G where G is a group permutation of X. Then the probability of an automorphism of a group fixes a random element X is defined as follows:

$$
P_{G}(X)=\frac{|\{(g, x) \mid g x=x \forall g \in G, x \in X\}|}{|X||G|} .
$$

In 2013, Omer et al. [5] extended the probability given by Sherman [4] by introducing the probability that a group element fixes a set with the following definition:

Definition 1.3: Let G be a group. Let S be a set of all subsets of commuting elements of size two in G where G acts on S by conjugation. Then the commutativity degree of an element of a group fixes a set is given as follows:

$$
P_{G}(S)=\frac{|\{(g, s) \mid g S=S \forall g \in G, s \in S\}|}{|S||G|} .
$$

The probability given by Omer et al. [5] can also be obtained using the following theorem:

Theorem 3.1: Let G be a finite group and let X be the set of elements of G of size two in the form of (a, b) where a and b commute. Let S be the set of all subsets of commuting elements of G of size two and G acts on S by conjugation. Then the probability that an element of a group fixes a set is given by $P_{G}(S)=\frac{K}{|S|}$, where K is the number of conjugacy classes of S in G.

Throughout this research, the probability that an element of a metacyclic 5-group fixes a set by conjugation will be computed using Theorem 3.1

MAIN RESULTS

Our main result from this research is given in the following:
Main Theorem: Let G be a metacyclic 5-group such that
$G \cong\left\langle a, b \mid a^{5^{\alpha}}=b^{5^{\beta}}=1,[b, a]=a^{5^{\alpha-\delta}}\right\rangle \quad$ where $\quad \alpha, \beta, \delta \in \mathbb{N}, \quad \delta \leq \alpha<2 \delta, \quad \delta \leq \beta$,
$\delta \leq \min \{\alpha-1, \beta\}$. Let Ω be the set of all subsets of commuting elements of G in the form of (x, y) and $\operatorname{lcm}(|x|,|y|)=5$ and G acts on Ω by conjugation.
Then, the probability that an element of G fixes a set Ω, $P_{G}(\Omega)=\left\{\begin{array}{l}\frac{2}{15}, \text { when } \alpha>\beta=\delta, \\ 1, \\ \text { otherwise } .\end{array}\right.$

CONCLUSION

In this research, the probability that a metacyclic 5 -group element fixes a set Ω by the conjugation action has been computed. The probability is found to be depending on the size of the conjugacy classes and the size of the set Ω.

Acknowledgment: The authors would like to express their appreciation to Universiti Teknologi Malaysia (UTM) for the support of the Research University Grant (GUP) Vote No. 08H07.

REFERENCES

1. Miller, G. Relative number of non-variant operators in a group. Proceedings of the National Academy of Sciences of the United States of America. 1944. 30(2):25.
2. Erdos, P. and Turan, P. On some problems of a statistical group theory. Probability Theory and Related Fields. 1965. 4(2): 175-186.
3. Gustafson, W. What is the probability that two group elements commute? The American Mathematical Monthly. 1973. 80(9): 1031-1034.
4. Sherman, G. What is the probability an automorphism fixes a group element? The American Mathematical Monthly. 1975. 82(3): 261-264.
5. Omer, S.M.S., Sarmin, N.H., Erfanian, A. and Moradipour, K. The probability that an element of a group fixes a set and the group act on set by conjugation. International Journal of Applied Mathematics and Statistics. 2013. 32(2): 111-117.

SCHOOL OF GRADUATE STUDIES

 UNIVERSITI TEKNOLOGI MALAYSIA