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ABSTRACT
A group G is metabelian if there exists a normal subgroup A  in G such that both A and the factor group,   
G / A are abelian. Equivalently, G is metabelian if and only if the commutator subgroup  [G,	G] is 
abelian. The main objective of this research is to determine all metabelian groups of order at most 24. 
In this research, some basic concepts of metabelian groups will be presented and the determinations 
of metabelian groups are done based on their definition and some theorems. The Groups, Algorithms 
and Programming (GAP) software have been used to find the multiplication table for some groups.
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INTRODUCTION
Metabelian groups are groups that are close to being abelian, in the sense that every abelian group 
is metabelian, but not every metabelian group is abelian. This closeness is reflected in the particular 
structure of their commutator subgroups. In the Russian mathematical literature, by a metabelian 
group one sometimes means a nilpotent group of nilpotency class two (Kurosh, 1955).
 The term metabelian was earlier used for groups of nilpotency class two, but is no longer used 
in that sense. Sometimes, the term metabelian or derived length two or solvable length two is used 
specifically for a metabelian group whose derived length is precisely two, i.e., a nonabelian metabelian 
group. This is more restrictive than the typical usage of the term. The property of being metabelian 
arises by applying the meta operator to the group property of being Abelian. Equivalently metabelian 
can be described as Abelian-by-Abelian, where by denotes the group extension operator. A direct 
product of metabelian groups is metabelian.

In this research, metabelian groups of order at most 24 will be found.

SOME BASIC CONCEPTS AND PROPERTIES IN METABELIAN GROUPS
Some main definitions and theorems of metabelian groups are stated as follows :

Definition 2.1   (Wisnesky, 2005) Metabelian
A group G is metabelian if there exists a normal subgroup A < G  such that both A and  G / A  are 
abelian.4
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Definition 2.2  (Snaith, 2003)   Commutator
Given , .b G!a . The commutator of a and	b,	denoted by [a,b] is the element 

[ , ]a b a b ab G1 1 != - -

 The commutator subgroup [G,	G] #  G is defined to be the smallest subgroup of G which contains 
all the commutators  [a,	b]. 
 The following lemma and theorems have been proved by Wisnesky, 2005. The lemma is stated 
first to prove the theorem followed.

Lemma 2.1 (Wisnesky, 2005)
Let G be a group and N a normal subgroup of G. Then  gN = N  implies g d N. X

Theorem 2.1 (Wisnesky, 2005)
Let G be a group and N a normal subgroup of	G.	Then G/N is abelian if and only if commutator 
subgroup  [ , ]G G G N' 3= .	

Proposition 2.1 (Wisnesky, 2005)
Every abelian group is metabelian. 

Theorem 2.2 (Wisnesky, 2005)
G is metabelian if and only if    G 1=m  ( Gm  is the commutator subgroup of  Gl and  Gl is commutator 
subgroup of G). 

Theorem 2.3 (Wisnesky, 2005)
If  H is a subgroup of a metabelian group G, then  is metabelian.	

 The following definitions and theorems will be used in proving all metabelian groups of order 
at most 24. Some basic concepts in group theory are stated.

Definition 2.3 (Wisnesky, 2005) Semi Direct Product
Let  N < G  and there is a subgroup  H such that  G	=	HN  and { }H N 1+ = . Then  G is said to be 
the semidirect product of  N and  H denoted by  G=N<H	G	=	NHH. 

Definition 2.4 (Fraleigh, 2000)  Generator
An element a of a group  G generates  G and a is a generator for G  if  a G= . 

Definition 2.5 (Fraleigh, 2000) Cyclic Group
A group  G is called cyclic if there is an element a in  G such that { / }G a n Zn d=  

Definition 2.6 (Fraleigh, 2000) Normal Subgroup
A subgroup  H of a group G is normal if its left and right cosets coincide, that is, if   gH	=	Hg for 
all g Gd . 
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Definition 2.7 (Fraleigh, 2000)  Cosets
Let H be a subgroup of a group G. The subset  { | }aH ah h H!=  of  G is the left coset of H	
containing a, while the subset { | }Ha ha h H!=  is the right coset of H containing a. 

Corollary 2.1 (Fraleigh, 2000)
Let H be a normal subgroup of G. Then, the cosets H	 form a group  G	/	H  under the binary operation 
(aH)(bH)	=	(ab)(H).  

Definition 2.8 (Fraleigh, 2000)  Factor Group
The group  G	/	H  in the preceding corollary is the factor group (or quotient group) of  G modulo H. 
Recall that a subgroup  H of  G is normal if its left and right cosets coincide. 

Definition 2.9 (Fraleigh, 2000)  Order of G
If  G is a finite group, then the order of G,	|	G	|,  is the number of elements in G. In general, for any 
finite set  S,	|	S	|, is the number of elements in S. 

Definition 2.10 (Fraleigh, 2000)  Presentation
Let A be a set and let { } [ ]r F Ai 3 . Let  R be the least normal subgroup of F[A] containing the ri. 
An isomorphism  { of  F[A]  /	R onto a group  G is a presentation of G. The set  A and  {ri } give 
a group presentation. The set A is the set of generators for the presentation and each ri is a relator. 
Each r Rd  is consequence of   {ri }. An equation   ri  = 1 is a relation. A finite presentation is one in 
which both  A and  {ri } are finite sets. 

Definition 2.11 (Fraleigh, 2000)  Centre of a Group G
The centre Z(G)  of a group G is the subset of elements in G that commute with every element of G. 
In symbols,  ( ) { | , }Z G a G ax xa x G6! != = . 

Theorem 2.4 (Fraleigh, 2000)
The direct product of abelian group is abelian. 

Theorem 2.5 (The group property wiki, 2010) 
A direct product of metabelian groups is metabelian. 

Theorem 2.6 (The group property wiki, 2010)  

Any dihedral group is metabelian. 

Theorem 2.7 (Fraleigh, 2000) 
Every cyclic group is abelian. 

Theorem 2.8  (Fraleigh, 2000) 
A group of prime order is cyclic. 

Theorem 2.9 (Fraleigh, 2000) 
If the index of H in G is 2, then H is a normal subgroup. In symbols, we write:
| : |G H H G2 & 1= . 

Theorem 2.10 (Fraleigh, 2000)
The center, Z(G), of a group G is always normal. 
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THE DETERMINATION OF METABELIAN GROUPS OF ORDER LESS THAN 24
We will show that all groups of order less than 24 are metabelian.  

Proof
First we start with all abelian groups. There are 59 groups of order less than 24. Only 34 groups that 
are abelian (refer Table 1), thus they are metabelian by Proposition 2. 
 Now we consider all nonabelian groups of order less than 24. There are 25 of them (refer Table 
1). We will consider each of the cases below.

Table 1: All Groups of Order Less Than 24
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Theorem 3.1
S3 is metabelian.
Proof:  S3 has six elements which are {(1), (12), (13), (23), (123), (132)}. Let A3 be the alternating 
subgroup of S3  with elements {(1), (123), (132)}.  A3  is cyclic since the order is prime (Theorem 2.8). 
Thus A3 is abelian (Theorem 2.7).  A3  is a normal subgroup of  S3  since it has index two (Theorem 
2.9) which is S

A
23

3
= . The factor group of  S

A
3

3
 is abelian since S

A
Z3

3
2b   Thus, by definition,  

S3  is metabelian. X

Table	1:	continued
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Theorem 3.2
By Theorem 2.6, any dihedral groups are metabelian. Therefore, all dihedral groups of order less 
than 24 such as  D3 D4 , D5 , D6 , D7 , D8 , D9 , D10  and D11  are all metabelian.

Theorem 3.3
, | , ,Q a b a a b aba b14 2 2G H= = = = , the quaternion group of order eight is metabelian.

Proof: The elements of Q can be written as Q = {1, -1, i,	-i,	j,	-j,	k,	-k}. Let  { , }A 1 1 1G H= - = - and 
A is the center of a group Q. Then A=Z(G) is normal in Q (Theorem 2.10).  is also abelian since it is 

cyclic. Furthermore, the order of factor group 
 

Q
A

Q

A
8

2
4= = = . Hence orQ

A
Z Z Z4 2 2b #

Thus the factor group,  Q
A

is abelian. Hence,  is metabelian.

Theorem 3.4
T Z3H= , | ,Z a b a b aba a14 3

4 G H= = = = , the semidirect product of a cyclic group of order three 
with a cyclic group of order four is metabelian.
Proof: Since T is semidirect product, then there exist one normal subgroup, that is  TZ31 (Definition 
2.3). Let Z3A = . Then,  |A| = 3 and A  is abelian since the order is prime. The order of factor group, 

A A
T T 12

3
4= = = . Hence, or

A
T Z Z Z4 2 2b # . Furthermore, the factor group 

A
T  is 

abelian. Therefore  is metabelian.  

Theorem 3.5
, , | , , ,A a b c a b c ba ab ca abc cb ac14

2 2 3G H= = = = = = = , the alternating group of order 12 is 
metabelian.
Proof: Let 4#A A .  The elements of A can be written as  
A = {(1), (12), (34), (13), (24), (14), (23)} and |A| = 4.  Now, we have the elements of 
A4 = {(1), (12), (34), (13), (24), (14), (23), (123), (132), (234), (243), (134), (143), (124), (142)}.

Then, we have the left cosets and the right cosets as follows:
(1) A =A = {(1), (12), (34), (13), (24), (14), (23)}
(123) A = {(123), (134), (243), (142)} = A (123)}
(132) A = {(132), (234), (143), (124) = A (23)}

Since the left cosets and the right cosets are same, then 41A A  and  A  is also abelian since its 

commute with all of its elements, i.e ab	=	ba, for all a, b d A.  Furthermore, the order of factor group 
A A

A A
12

4
34 4

= = = . Hence, A
A
Z34 b  thus  A

A
4 is abelian. Therefore,  A4  is metabelian. 

Theorem 3.6

Quasihedral-16 = , | ,a b a b bab a18 2 3G H= = =  is metabelian.

Proof: Let G = Quasihedral-16 and A= a . Then,  |A| = 8 since  18a = . Furthermore A is 

cyclic thus  A is abelian. Next,  G1A  since the index of  A in G is 2 (Theorem 2.9). That 

is,  .G
A

G

A
16

8
2= = =   Furthermore, G

A
Z2b . Hence, G

A
 is abelian. Therefore, 

Quasihedral-16 is metabelian. 
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Theorem 3.7

, | , ,Q a b a a b aba b18
8 4 2G H= = = = , the quarternion group of order 16 is metabelian.

Proof: Let A = a . Then  A 8=  since a8 = 1.  A is cyclic thus A  is abelian. Next, A Qs1  since 

the index is 2 (Theorem 2.9). Furthermore, Q
A

Q

A
16

8
2s s

= = = . Hence, Q
A
Z2

s b . Thus  
Q

A
s is abelian. Therefore,  is metabelian.

Theorem 3.8
By Theorem 2.5, the direct product of metabelian groups is metabelian. Therefore, D Q Z4 2Z2 ##

and  S Z3 3#  are metabelian.

Theorem 3.9

Modular -16 =  , | ,a b a b ab ba18 2 5G H= = = is metabelian.

Proof: Let  G = Modular -16 and  A aG H= . Then,  A 8=  since  a8 = 1 and A  is cyclic thus A is 

abelian. Next, A G1  since the index is 2 (Theorem 2.9). Furthermore, the order of factor group, 

.G
A

G

A
16

8
2= = =  Hence,  G

A
Z2b and the factor group G

A
  is abelian. Therefore, is 

metabelian. 

Theorem 3.10
, | ,a b a b ab ba314 4G H= = =  is metabelian.

Proof: Let { , }A a a e2 2G H= = .  Then,  A 2=  since a4 = 1.  A is cyclic. Thus A is abelian. Next, 
we find the left cosets and the right cosets of B. Let the elements of B are:

 { , , , , , , , , , , , , , , , }B e a a a b b b ab ab ab a b a b a b a b a b a b2 3 2 3 2 3 2 2 2 2 3 3 3 2 3 3=

.
Then, we have the left cosets and right cosets as follows:

{ , }eA a e A Ae2= = =

{ , }aA a e Aa3= =

,{ , }b bbA a Ab2= =

,{ , } Abb A a b b 222 2 2= =

,{ , } Abb A a b b2 33 2 3= =

,{ , }a AabbA a b ab3= =

,{ , }a Aabb A a b ab 232 22= =

,{ , }a Aabb A a b ab33 3 33= =
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Since the left cosets = the right cosets, then 1A B . Furthermore, the factor group B
A

= {A,	aA,	

bA,	b2A,	b3A,	abA,	ab2A,	ab3A}. Then, the order of factor group .
A A

16
8

8B B B
A= = =   is 

abelian since  for all  . Therefore,is metabelian. 

Theorem 3.11 
, , | , , ,K a b c a b c cbca b bab a cac a1 14 2 2 2G H= = = = = = = is metabelian.

Proof: Let A = a = {e,	a,	a,	a2, a3}. Then,  |A} = 4 since a4=1. is cyclic. Thus  is abelian. Next, we 
find the left cosets and the right cosets of K. Let the elements of K are:

{ , , , , , , , , , , , , , , , }K e a a a b c ab ac bc a b a c a b a c abc a bc a bc2 3 2 2 3 3 2 3=

Then, we have the left cosets and right cosets as follows:
 

{ , , , }eA e a a a A Ae2 3= = =

{ , , }bbA b a b a Ab32= =

{ , , , }c cccA ac a a Ac22 3= =

,{ , , , }bcbc bcbcA abc a a Abc2 3= =

Since the left cosets = the right cosets, then K1A . Furthermore, the order of factor group 

.K
A

K

A
16

8
4= = =  Hence,  K K

AA
or andZ Z Z4 2 2b #  is abelian. Therefore K,is 

metabelian. 

Theorem 3.12
, | , ,G a b a b abab ba ab1 1,4 4

4 4 3 3G H= = = = = is metabelian.
Proof: Let { , }A a b e a b2 2 2 2G H= = . Then, |A| = 2.  A is cyclic. Thus A is abelian. Next, we find the 
left cosets and the right cosets of G4, 4. Let the elements of  G4, 4  are:

{ , , , , , , , , , , , , , , , }G e a a a b b ab ab a b a b a b a b aba a ba a ba ba2 3 2 2 2 2 2 3 3 2 2 3
4,4 =

.
Then, we have the left cosets and right cosets as follows:
 

{ , , }beA e a A Ae22= = =

{ , , }baaA a Aa23= =

{ , }ba A a Aa2 22 2= =

{ , }aba A a Aa3 23 3= =

,{ , }bab bA a Aa3 3= =

,{ }ab ab baA Aab= =
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,{ }a b a b abaA Aa b22 2= =

,{ }a b a b a baA Aa b2 33 3= =

Since the left cosets = the right cosets, then G441A . Furthermore, the order of factor group 
,

.G
A

G

A

4 4 16
4

4,4 4 = = =  . Hence,  ,

A
G4 4 orZ Z Z4 2 2b # and the factor group ,

A
G4 4   is 

abelian. Therefore, ,G4 4is metabelian. 

Theorem 3.13

( )Z Z Z23 3# H = , , | , , ,a b c a b c bc cb bab a cac a12 3 3G H= = = = = = , the semidirect product 

of two direct product of cyclic group of order three with the cyclic group of order two is metabelian.

Proof: Let  ( )G Z Z Z3 3 2# H= and ( )A Z Z3 3#= . Then  G1A  since the index is 2 (Theorem 

2.9) and  is abelian since the direct product of abelian group (Theorem 2.4). Next, the order of 

factor group, .
G

A

G

A
18

9
2= = = . Hence,  

A
G Z2b and the factor group,  

A
G is abelian. 

Therefore, ( )Z Z Z23 3# H =is metabelian. 

Theorem 3.14

Fr Z Z20 5 4H =b , | ,a b a b ba ab14 5 2G H= = = , the frobenius group of order 20 isomorphic to 

semidirect product of cyclic group of order five with the cyclic group of order four is metabelian. 

Proof: Let  G Fr Z Z20 5 4H= b and A bZ5= =  Then,  |A| = 5 since b5 =1.  A is cyclic thus, A is 

abelian.  G1A since it is the semidirect product of  G (Definition 2.3). Furthermore, the order of 

factor group, .
G

A

G

A
20

5
4= = = . Hence,   (G

A
orZ Z Z24 2 #b and the factor group,  

A
G

is abelian. Therefore, Fr20  is metabelian.

Theorem 3.15

Z Z4 5H = , | ,a b a b ba ab14 5 2G H= = = , the semidirect product of cyclic group of order four with 

the cyclic group of order 5 is metabelian.

Proof: Let  G G Z Z4 5H= = and A Z4= . Then,  |A| = 4 and A is cyclic thus,  is abelian. Next,  

G1A (Definition 2.3). Furthermore, the order of factor group, .
G

A

G

A
20

4
5= = =  Hence,  

A
G Z5b and the factor group,  

A
G is abelian. Therefore,  Z Z4 5H is metabelian.

Theorem 3.16

Fr Z Z21 7 3H =b , | ,a b a b ba ab13 7 2G H= = = , the frobenius group of order 21 isomorphic to 

semidirect product of cyclic group of order seven with the cyclic group of order three is metabelian.F

Proof: Let  G Fr Z Z21 7 3H= b and  A bZ7= = . Then,  |A| = 7 since b7=1.  A is cyclic thus,  A  is 
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abelian.  G1A since it is the semidirect product of G (Definition 2.3). Furthermore, the order of 

factor group, .
G

A

G

A
21

7
3= = =  Hence,   

A
G Z3b  and the factor group,  

A
G  is abelian. 

Therefore,is metabelian.F

In this section, we conclude that all groups of order less than 24 are metabelian. F

THE DETERMINATION OF METABELIAN GROUPS OF ORDER 24.
Now, we will prove for all group of order 24 whether it is metabelian or not. In Table 4.1, there are 
15 groups of order 24.

Table 42: All Groups of Order 24

Using same method as above, we can conclude that all three abelian groups, groups of direct product 
and dihedral groups are metabelian which are, 
 

, , , , , ,S S D Q AZ Z Z Z Z Z Z Z Z Z Z Z24 2 12 2 2 6 3 4 3 2 2 4 3 3 4 2# # # # # # # # #  and D12.
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Theorem 4.1
, , | ,( ) ( ) ( )S a b c a b c ab bc ac1 14

2 2 2 3 3 3G H= = = = = = = , the symmetric group of order 24 
is metabelian.

Proof: We have,
S4 = {(1), (12), (13), (14), (23), (24), (34), (12), (34), (13), (234), (14), (23), (123), (132), (234), (243)
 (134), )143), (124), (142), (1234), (1243), (1324), (1342), (1423), (1432)

Normal subgroups of  S4 are (1),   A4  and A. (1) is normal since it is the trivial subgroup. The trivial 
subgroup is always normal and abelian but the factor group  

( )
S

1
4 is not abelian. Next,  A4  is normal 

since the index is 2, but  A4  is not abelian. Now, will prove the normality of  A in S4. Let the elements 

of  A = {(1), (12), (34), (13), (24), (14), (23)}. Then, the factor group of  S4  is 
S

A
4 ={(1), (12), (13), (14), (23), (24), (34), ...}

{(1), (12), ( ), (1 ), (24), (3 4), ( )}  34 3 1 23

Then we have, the left and the right cosets as follows:
(1) A =A = {(1), (12), (34), (13), (24), (14), (23)} = A(1)
(12) A = {(12), (34), (1423), (1324)} = A (12)
(13) A = {(13), (1432), (24), (1234) = A (13)}
(14) A = {(14), (1342), (31243), (23)} =  A (14)
(123) A = {(123), (243), (142), (134)} = A (123)
(124) A = {(124), (234), (143), (132) = A (124)}

Since the left and the right cosets are same, hence  S41A ,  A is also abelian since its commute with 
all of its elements,i.e  ab	=	ba, for all a, b	d A. But the factor group of S4  is not abelian since, for 
example:

since, for example:
{(12)A}, {(13) A}= (12) (13)A = (132)A ! (123)A = (13) (12) A =  {(13) A} {(12)A}

Hence S4 is not metabelian.

Theorem 4.2

, , | ,Q a b c a b c bab a112
2 6 12G H= = = = = ,	quartenion group of order 24 is metabelian.

Proof:	Let	A	=	 c .	Then,	|A| = 12 since c12 = 1.  A is cyclic thus A is abelian. Next,  Q121A  since the 

index is 2 (Theorem 2.9). Furthermore, the order of factor group, .
A

Q

A
Q 12 24

12
212 = = =

Hence, Q
A

Z12
2b  and the factor group, Q

A
12 is abelian. Therefore,  is metabelian.F
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Theorem 4.3
( , ) , , | , , , ,Sl a b c a c a b aba b ac cb cab bc2 3 14 3 2 2G H= = = = = = = is metabelian.

Proof: First we need to find normal subgroup of  Sl(2,3) then show it metabelian or not. Suppose 
( , ) .A Sl 2 3#  

a)  Let  { }A e eG H= =  is trivial subgroup. A is normal subgroup of A since the trivial subgroups 
is always normal. 

b)  Let { }A e eG H= = . Then, we have the left cosets and the right cosets are as follows:
 { , }eA e a Ae A= = =

 { , } { , }bA b ac b ab Ab!= =

 Since there exist the left cosets not equal to right cosets, therefore  ,{ }A a e aG H= = is not 
normal in Sl(2,3).

c)  Let { , , , }A b e b d bdG H= = . Then, we have the left cosets and the right cosets are as follows:
 { , , , }eA e b d bd Ae A= = =

 { , , , } { , , , }aA a ab ad abd a ac ad acd Aa!= =

 Since there exist the left cosets not equal to right cosets, therefore  { , , , }A b e b d bdG H= =  is 
not normal in Sl(2,3).

d) { , }, ,A c e c d cdG H= =   
 Then, we have the left cosets and the right cosets are as follows:
 { , , , }eA e c d cd Ae A= = =
 { , , , } { , , , }aA a ac ad acd a abc ad abcd Aa!= =

 Since there exist the left cosets not equal to right cosets, therefore { , }, ,A c e c d cdG H= =  is 
not normal in Sl(2,3).

e)  { , },A d e dG H= =

 Then, we have the left cosets and the right cosets are as follows:
 { , ,}eA e d Ae A= = =
 { },aA a ad Aa= =
 { , }bA b bd Ab= =

 { },cA c cd Ac= =

 { , }a A a a d Aa2 2 2 2= =

 { , }abA ab abd Aab= =

 { , }acA ac acd Aac= =

 { , }bcA bc bcd Abc= =

 { , }a bA a b a bd Aa b2 2 2 2= =

 { , }a cA a c a cd Aa c2 2 2 2= =  
 { , }abcA abc abcd Aabc= =

 Since the left cosets equal to right cosets, therefore { , , , }A c e c d cdG H= =  is normal in  Sl(2,3). 

f)  { , , }A a e a a2 2G H= =

 Then, we have the left cosets and the right cosets are as follows:
 { , , }eA e a a Ae A2= = =

 { , , } { , , }bA b ac a bc b ab a b Ab2 2!= =

 Since there exist the left cosets not equal to right cosets, therefore  { , , }A a e a a2 2G H= =  is 
not normal in Sl(2,3).
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g)  { , , }A ab e ab a bcd2G H= =

 Then, we have the left cosets and the right cosets are as follows:
 { , , }eA e ab a bcd Ae2= =

 { , , } { , , }aA a a b bcd a a c bd Aa2 2!= =

 Since there exist the left cosets not equal to right cosets, therefore { , , }A ab e ab a bcd2G H= =  
is not normal in Sl(2,3).

h)  { , , }A ac e ac a bd2G H= =  
 Then, we have the left cosets and the right cosets are as follows:
 { , , }eA e ac a bd Ae A2= = =

 { , , } { , , }aA a a c bd a a bc cd Aa2 2!= =

 Since there exist the left cosets not equal to right cosets, therefore { , , }A ac e ac a bd2G H= =  
is not normal in Sl(2,3).

 
i)  { , , , , , }A ad e a d a ad a d2 2G H= =  
 Then, we have the left cosets and the right cosets are as follows:
 { , , , , , }eA e a d a ad a d Ae A2 2= = =

 { , , , , , } { , , , , , }bA b ac bd a bc acd a bcd b ab bd a b abd a bd Ab2 2 2 2!= =

 Since there exist the left cosets not equal to right cosets, therefore { , , , , , }A ad e a d a ad a d2 2G H= =  
is not normal in Sl(2,3).

j)  { , , , }A bc e d bc bcdG H= =

 Then, we have the left cosets and the right cosets are as follows:
 { , , , }eA e d bc bcd Ae A= = =

 { , , , } { , , , }aA a ad abc abcd a ad ab abd Aa!= =

 Since there exist the left cosets not equal to right cosets, therefore { , , , }A bc e d bc bcdG H= =  
is not normal in Sl(2,3).

k)  { , , , }A bd e b d bdG H= =

 Then, we have the left cosets and the right cosets are as follows:
 { , , , }eA e b d bd Ae A= = =

 { , , , } { , , , }aA a ab ad abd a ac ad acd Aa!= =

 Since there exist the left cosets not equal to right cosets, therefore { , , , }A bd e b d bdG H= =  is 
not normal in Sl(2,3).

l)  { , , , }A cd e c d cdG H= =

 Then, we have the left cosets and the right cosets are as follows:
 { , , , }eA e c d bcd Ae A= = =

 { , , , } { , , , }aA a ac ad acd a abc ad abcd Aa!= =

 Since there exist the left cosets not equal to right cosets, therefore { , , , }A cd e c d cdG H= =  is 
not normal in Sl(2,3).

m)  { , , , , , }A a b e d ac a b acd a bd2 2 2G H= =

 Then, we have the left cosets and the right cosets are as follows:
 { , , , , , }eA e d ac a b acd a bd Ae A2 2= = =

 { , , , , , } { , , , , , }aA a ad a c b a cd bd a ad a bc c a bcd cd Aa2 2 2 2!= =

 S i n c e  t h e r e  e x i s t  t h e  l e f t  c o s e t s  n o t  e q u a l  t o  r i g h t  c o s e t s ,  t h e r e f o r e 
{ , , , , , }A a b e d ac a b acd a bd2 2 2G H= =  is not normal in Sl(2,3).
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n)  { , , , , , }A a c e d a c abc a cd abcd2 2 2G H= =

 Then, we have the left cosets and the right cosets are as follows:
 { , , , , , }eA e d a c abc a cd abcd Ae A2 2= = =

 { , , , , , } { , , , , , }aA a ad c a bc cd a bcd a ad bc a b bcd a bd Aa2 2 2 2!= =

 S i n c e  t h e r e  e x i s t  t h e  l e f t  c o s e t s  n o t  e q u a l  t o  r i g h t  c o s e t s ,  t h e r e f o r e  
{ , , , , , }A a c e d a c abc a cd abcd2 2 2G H= =  is not normal in Sl(2,3).

o)  { , , , , , }A a d e a d ad a a d2 2 2G H= =

 Then, we have the left cosets and the right cosets are as follows:
 { , , , , , }eA e a d ad a a d Ae A2 2= = =

 { , , , , , } { , , , , , }bA b ac bd a bc acd a bcd b ab bd abd a b a bd Ab2 2 2 2!= =

 Since there exist the left cosets not equal to right cosets, therefore      
 { , , , , , }A a d e a d ad a a d2 2 2G H= =  is not normal in Sl(2,3).

p)  { , , }A abc e abc a cd2G H= =

 Then, we have the left cosets and the right cosets are as follows:
 { , , }eA e abc a cd Ae A2= = =

 { , , } { , , }aA a a bc cd a a b bcd Aa2 2!= =  
 Since there exist the left cosets not equal to right cosets, therefore      
 A = 〈abc〉 = {e,abc,a2cd}  is not normal in Sl(2,3).

q)  { , , , , , }A abd e d ab abd a bc a bcd2 2G H= =

 Then, we have the left cosets and the right cosets are as follows:
 { , , , , , }eA e d ab abd a bc a bcd Ae A2 2= = =

 { , , , , , } { , , , , , }aA a ad a b a bd bc bcd a ad a c a cd b bd Aa2 2 2 2!= =

 Since there exist the left cosets not equal to right cosets, therefore      
 { , , , , , }A abd e d ab abd a bc a bcd2 2G H= =  is not normal in Sl(2,3).

r)  { , , , , , }A acd e d ac acd a b a bd2 2G H= =  
 Then, we have the left cosets and the right cosets are as follows:
 { , , , , , }eA e d ac acd a b a bd Ae A2 2= = =

 { , , , , , } { , , , , , }aA a ad a c a cd b bd a ad a bcd c cd a bc Aa2 2 2 2!= =

 Since there exist the left cosets not equal to right cosets, therefore      
 { , , , , , }A acd e d ac acd a b a bd2 2G H= =   is not normal in Sl(2,3).

s) { , , , }A bcd e d bc bcdG H= =  
 Then, we have the left cosets and the right cosets are as follows:
 { , , , }eA e d bc bcd Ae A= = =

 { , , , } { , , , }aA a ad abc abcd a ad ab abd Aa!= =

 Since there exist the left cosets not equal to right cosets, therefore      
 { , , , }A bcd e d bc bcdG H= =   is not normal in Sl(2,3).

t) { , , , , , }A a bc e d ab abd a bc a bcd2 2 2G H= =  
 Then, we have the left cosets and the right cosets are as follows:
 { , , , , , }eA e d ab abd a bc a bcd Ae A2 2= = =

 { , , , , , } { , , , , , }aA a ad a b a bd bc bcd a ad a c a cd b bd Aa2 2 2 2!= =

 Since there exist the left cosets not equal to right cosets, therefore       
 { , , , , , }A a bc e d ab abd a bc a bcd2 2 2G H= = is not normal in Sl(2,3).
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u)  { , , }A a bd e ac a bd2 2G H= =  
 Then, we have the left cosets and the right cosets are as follows:
 { , , }eA e ac a bd Ae A2= = =

 { , , } { , , }aA a a c bd a a bc cd Aa2 2!= =

 Since there exist the left cosets not equal to right cosets, therefore { , , }A a bd e ac a bd2 2G H= =   
is not normal in Sl(2,3).

v)  { , , }A a cd e abc a cd2 2G H= =

 Then, we have the left cosets and the right cosets are as follows:
 { , , }eA e abc a cd Ae A2= = =

 { , , } { , , }aA a a bc cd a a b bcd Aa2 2!= =

 Since there exist the left cosets not equal to right cosets, therefore { , , }A a cd e abc a cd2 2G H= =  
is not normal in Sl(2,3).

 
w)  { , , , , , }A abcd e d a c abc a cd abcd2 2G H= =

 Then, we have the left cosets and the right cosets are as follows:
 { , , , , , }eA e d a c abc a cd abcd Ae A2 2= = =

 { , , , , , } { , , , , , }aA a ad c a bc cd a bcd a ad bc a b bcd a bd Aa2 2 2 2!= =

 S i n c e  t h e r e  e x i s t  t h e  l e f t  c o s e t s  n o t  e q u a l  t o  r i g h t  c o s e t s ,  t h e r e f o r e 
{ , , , , , }A abcd e d a c abc a cd abcd2 2G H= =  is not normal in Sl(2,3).

x)  { , , }A a bcd e ab a bcd2 2G H= =  
 Then, we have the left cosets and the right cosets are as follows:
 { , , }eA e ab a bcd Ae A2= = =

 { , , } { , , }aA a a b bcd a a c bd Aa2 2!= =

Since there exist the left cosets not equal to right cosets, therefore  { , , }A a bcd e ab a bcd2 2G H= =  
is not normal in Sl(2,3).

 Since we have two normal subgroup of  Sl(2,3) which is the trivial subgroup, e  and 

,d e d= " ,now we show whether  Sl(2,3) is metabelian or not. First let  eA =  is normal 

subgroup. A is cyclic. Thus A is abelian. But the factor group  ( , )Sl 2 3
A

 is not abelian 

since  (2,3)( , ) SlSl 2 3
A

= which is not abelian. Next, let  { , ,}B d e dG H= =  be normal 

subgroup. B is cyclic. Thus B is abelian. But the factor group ( , )Sl 2 3
B

  is not abelian since 

.( )( ) ( ) { , } { , }( ) ( )( )aB bB ab B ab abd ac acd ac B bB aB!= = =  Hence Sl(2,3) is not 

metabelian.

Theorem 4.4
( , , , | ,M a b c d a b bab a1Z Z Z2

4 6
3 4# H G H= = = =  is metabelian.

Proof: Let  ( )M Z Z Z2 3 4# H=  and  cdA = . The elements of M and A can be written as follows:
 , , , , , , , , , , , ,{ , , }a b c d ab ac ad bc bd cd abc abd acde d2 2L =
  ad2,	bcd,	bd2,	cd2,	abcd.	abd2,	acd2,	bcd2,	abcd2}
 A = {e,	c,	d,	cd, d2,	cd2}.
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Next, we find the left and the right cosets of  ,M
A

 which are,
{ , , , , , }A cd e c d cd d cd A2 2G H= = =

aA = {a,	ac,	ad,	acd,	ad2,	acd2} = Aa
bA	=	{b,	bc,	bd,	bcd,	bd2,	bcd2} = Ab
abA	=	{ab,	abc,	abd,	abcd,	abd2,	abcd2} = Aab

Therefore, we can see that  1A L since left cosets = right cosets.  cdA = is cyclic thus  is abelian. 

Furthermore,  |M| = 24 and |A| = 6. Then, the order of factor group,  
A A

M M 24
6

4= = =

Hence, M
A

orZ Z4 2b  and the factor group,  M
A

is abelian. Therefore, M is metabelian.

Theorem 4.5

)(N Z Z3 8H=  = , , , | , , ,a b c d a b c bcb c aba b ac ca13 4 2G H= = = = = = is metabelian.

P r o o f :  L e t  bdA =  a n d  t h e  e l e m e n t s  o f   c a n  b e  w r i t t e n  a s 

{ , , , , , , , , , , , }A bd bd cd bc d bd c bcd d b cd bcd e2 2 2 2G H= = .  Then,  |A| = 12 and  A  is cyclic. Thus 

A  is abelian. N1A since the index is two (Theorem 2.9). Furthermore 
A A

N N 24
12

2= = = ,  

Hence, 
A

N Z2b  and the factor group,  
A

N  is abelian Therefore,  N is metabelian  F.

Theorem 4.6

QZ3 H = , , , | , , ,a b c d a b c ab ba ac ca cbcb1 12 6 2G H= = = = = = is metabelian.

Proof:  Let   G QZ3 H=  and  bdA =  and the  e lements  of   can be wri t ten as  

{ , }, , , , , , ,, ,A ebd bdbd cd bc d c bcd d b cd bcd22 2 2= = . Then,  12A =  and  A is cyclic thus A 

is abelian. G1A since the index is two (Theorem 2.9). Furthermore,  G
A A

G 24
12

2= = =

Hence, 
A

G Z2b  and the factor group,  G
A

 is abelian. Therefore, QZ3 H  is metabelian.

 Then, we conclude that there exist two groups of order 24 that is not metabelian which is S4 and 
Sl(2,3) 
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CONCLUSIONS 
With the scope of this research, 72 from 74 groups of order at most 24 are detected as metabelian 
groups and the rest two groups of order 24 are not metabelian which are 
 i)  , , | , andS a b c a b c ab bc ac1 14

2 2 2 3 3 31 2= = = = = = =] ] ]g g g

        ii) ( , ) , , | , , , ,Sl a b c a c a b aba b ac cb cab bc2 3 14 3 2 2G H= = = = = = =

 
 All groups of order at most 24 have been proved as metabelian groups using their group 
presentations. The Groups, Algorithms and Programming (GAP) software has been used to facilitate 
some of the computations and proofs.
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