Metabelian Groups of Order at Most 24

Siti Fatimah Abdul Rahman ${ }^{1}$ and Nor Haniza Sarmin ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Computer Science and Mathematics, Universiti Teknologi MARA Perlis, 02600 Arau, Perlis
fatimahrahman09@yahoo.com
${ }^{2}$ Department of Mathematics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor. nhs@utm.my

Abstract

A group G is metabelian if there exists a normal subgroup A in G such that both A and the factor group, G / A are abelian. Equivalently, G is metabelian if and only if the commutator subgroup $[G, G]$ is abelian. The main objective of this research is to determine all metabelian groups of order at most 24 . In this research, some basic concepts of metabelian groups will be presented and the determinations of metabelian groups are done based on their definition and some theorems. The Groups, Algorithms and Programming (GAP) software have been used to find the multiplication table for some groups.

Keywords: Metabelian, Commutator subgroup.

INTRODUCTION

Metabelian groups are groups that are close to being abelian, in the sense that every abelian group is metabelian, but not every metabelian group is abelian. This closeness is reflected in the particular structure of their commutator subgroups. In the Russian mathematical literature, by a metabelian group one sometimes means a nilpotent group of nilpotency class two (Kurosh, 1955).

The term metabelian was earlier used for groups of nilpotency class two, but is no longer used in that sense. Sometimes, the term metabelian or derived length two or solvable length two is used specifically for a metabelian group whose derived length is precisely two, i.e., a nonabelian metabelian group. This is more restrictive than the typical usage of the term. The property of being metabelian arises by applying the meta operator to the group property of being Abelian. Equivalently metabelian can be described as Abelian-by-Abelian, where by denotes the group extension operator. A direct product of metabelian groups is metabelian.

In this research, metabelian groups of order at most 24 will be found.

SOME BASIC CONCEPTS AND PROPERTIES IN METABELIAN GROUPS

Some main definitions and theorems of metabelian groups are stated as follows :
Definition 2.1 (Wisnesky, 2005) Metabelian
A group G is metabelian if there exists a normal subgroup $A<G$ such that both A and G / A are abelian. \square

Definition 2.2 (Snaith, 2003) Commutator
Given $\alpha, b \in G$.. The commutator of a and b, denoted by $[a, b]$ is the element

$$
[a, b]=a^{-1} b^{-1} a b \in G
$$

The commutator subgroup $[G, G] \leq G$ is defined to be the smallest subgroup of G which contains all the commutators $[a, b]$.

The following lemma and theorems have been proved by Wisnesky, 2005. The lemma is stated first to prove the theorem followed.

Lemma 2.1 (Wisnesky, 2005)
Let G be a group and N a normal subgroup of G. Then $g N=N$ implies $g \in N$.

Theorem 2.1 (Wisnesky, 2005)
Let G be a group and N a normal subgroup of G. Then G / N is abelian if and only if commutator subgroup $G^{\prime}=[G, G] \subseteq N$.

Proposition 2.1 (Wisnesky, 2005)
Every abelian group is metabelian.

Theorem 2.2 (Wisnesky, 2005)
G is metabelian if and only if $G^{\prime \prime}=1\left(G^{\prime \prime}\right.$ is the commutator subgroup of G^{\prime} and G^{\prime} is commutator subgroup of G).

Theorem 2.3 (Wisnesky, 2005)
If H is a subgroup of a metabelian group G, then is metabelian.
The following definitions and theorems will be used in proving all metabelian groups of order at most 24 . Some basic concepts in group theory are stated.

Definition 2.3 (Wisnesky, 2005) Semi Direct Product
Let $N<G$ and there is a subgroup H such that $G=H N$ and $H \cap N=\{1\}$. Then G is said to be the semidirect product of N and H denoted by $G=N<H G=N \rtimes H$.

Definition 2.4 (Fraleigh, 2000) Generator
An element a of a group G generates G and a is a generator for G if $\langle a\rangle=G$.
Definition 2.5 (Fraleigh, 2000) Cyclic Group
A group G is called cyclic if there is an element a in G such that $G=\left\{a^{n} / n \in Z\right\}$
Definition 2.6 (Fraleigh, 2000) Normal Subgroup
A subgroup H of a group G is normal if its left and right cosets coincide, that is, if $g H=H g$ for all $g \in G$.

Definition 2.7 (Fraleigh, 2000) Cosets
Let H be a subgroup of a group G. The subset $a H=\{a h \mid h \in H\}$ of G is the left coset of H containing a, while the subset $H a=\{h a \mid h \in H\}$ is the right coset of H containing a.

Corollary 2.1 (Fraleigh, 2000)
Let H be a normal subgroup of G. Then, the cosets H form a group G / H under the binary operation $(a H)(b H)=(a b)(H)$.

Definition 2.8 (Fraleigh, 2000) Factor Group
The group G / H in the preceding corollary is the factor group (or quotient group) of G modulo H. Recall that a subgroup H of G is normal if its left and right cosets coincide.

Definition 2.9 (Fraleigh, 2000) Order of G
If G is a finite group, then the order of $G,|G|$, is the number of elements in G. In general, for any finite set $S,|S|$, is the number of elements in S.

Definition 2.10 (Fraleigh, 2000) Presentation
Let A be a set and let $\left\{r_{i}\right\} \subseteq F[A]$. Let R be the least normal subgroup of $F[A]$ containing the r_{i}. An isomorphism φ of $F[A] / R$ onto a group G is a presentation of G. The set A and $\left\{r_{i}\right\}$ give a group presentation. The set A is the set of generators for the presentation and each r_{i} is a relator. Each $r \in R$ is consequence of $\left\{r_{i}\right\}$. An equation $r_{i}=1$ is a relation. A finite presentation is one in which both A and $\left\{r_{i}\right\}$ are finite sets.

Definition 2.11 (Fraleigh, 2000) Centre of a Group G
The centre $Z(G)$ of a group G is the subset of elements in G that commute with every element of G. In symbols, $Z(G)=\{a \in G \mid a x=x a, \forall x \in G\}$.

Theorem 2.4 (Fraleigh, 2000)
The direct product of abelian group is abelian.
Theorem 2.5 (The group property wiki, 2010)
A direct product of metabelian groups is metabelian.
Theorem 2.6 (The group property wiki, 2010)

Any dihedral group is metabelian.

Theorem 2.7 (Fraleigh, 2000)
Every cyclic group is abelian.
Theorem 2.8 (Fraleigh, 2000)
A group of prime order is cyclic.
Theorem 2.9 (Fraleigh, 2000)
If the index of H in G is 2 , then H is a normal subgroup. In symbols, we write: $|G: H|=2 \Rightarrow H \triangleleft G$.

Theorem 2.10 (Fraleigh, 2000)
The center, $Z(G)$, of a group G is always normal.

THE DETERMINATION OF METABELIAN GROUPS OF ORDER LESS THAN 24

We will show that all groups of order less than 24 are metabelian.

Proof

First we start with all abelian groups. There are 59 groups of order less than 24 . Only 34 groups that are abelian (refer Table 1), thus they are metabelian by Proposition 2.

Now we consider all nonabelian groups of order less than 24 . There are 25 of them (refer Table 1). We will consider each of the cases below.

Table 1: All Groups of Order Less Than 24

No	Groups	Group Order	Abelian or not	No	Groups	Group Order	Abelian or not
1	Z_{1}	1	Yes	31	$Z_{2} \times Z_{4} \times Z_{2}$	16	Yes
2	Z_{2}	2	Yes	32	$Z_{2} \times Z_{8}$	16	Yes
3	Z_{3}	3	Yes	33	$Z_{4} \times Z_{4}$	16	Yes
4	Z_{4}	4	Yes	34	D_{8}	16	No
5	$Z_{2} \times Z_{2}$	4	Yes	35	Quasihedral-16	16	No
6	Z_{5}	5	Yes	36	Q_{8}	16	No
7	Z_{6}	6	Yes	37	$D_{4} \times Z_{2}$	16	No
8	S_{3}	6	No	38	$Q \times Z_{4}$	16	No
9	Z_{7}	7	Yes	39	$M o d u l a r-16$	16	No
10	Z_{8}	8	Yes	40	B	16	No
11	$Z_{2} \times Z_{4}$	8	Yes	41	K	16	No
12	$Z_{2} \times Z_{2} \times Z_{2}$	8	Yes	42	$G_{4,4}$	16	No
13	D_{4}	8	No	43	Z_{17}	17	Yes

Table 1: continued

14	Q = Quarternion	8	No	44	Z_{18}	18	Yes
15	Z_{9}	9	Yes	45	$Z_{3} \times Z_{6}$	18	Yes
16	$Z_{3} \times Z_{3}$	9	Yes	46	D_{8}	18	No
17	Z_{10}	10	Yes	47	$S_{3} \times Z_{3}$	18	No
18	D_{5}	10	No	48	$\left(Z_{3} \times Z_{3}\right)^{\rtimes} Z_{2}$	18	No
19	Z_{11}	11	Yes	49	Z_{19}	19	Yes
20	Z_{12}	12	Yes	50	Z_{20}	20	Yes
21	$Z_{2} \times Z_{6}$	12	Yes	51	$Z_{2} \times Z_{10}$	20	Yes
22	$T=Z_{3} \rtimes Z_{4}$	12	No	52	D_{10}	20	No
23	A_{4}	12	No	53	$F r_{20} \cong Z_{5} \rtimes Z_{4}$	20	No
24	D_{6}	12	No	54	$Z_{4} \rtimes Z_{5}$	20	No
25	Z_{13}	13	Yes	55	Z_{21}	21	Yes
26	Z_{14}	14	Yes	56	$F_{21} \cong Z_{7} \rtimes Z_{3}$	21	No
27	D_{7}	14	No	57	Z_{22}	22	Yes
28	Z_{15}	15	Yes	58	D_{11}	22	No
29	Z_{16}	16	Yes	59	Z_{23}	23	Yes
30	$Z_{2} \times Z_{2} \times Z_{2} \times Z_{2}$	16	Yes				

Theorem 3.1

S_{3} is metabelian.
Proof: S_{3} has six elements which are $\{(1),(12),(13),(23),(123),(132)\}$. Let A_{3} be the alternating subgroup of S_{3} with elements $\{(1),(123),(132)\} . A_{3}$ is cyclic since the order is prime (Theorem 2.8). Thus A_{3} is abelian (Theorem 2.7). A_{3} is a normal subgroup of S_{3} since it has index two (Theorem 2.9) which is $\left|S_{3} / A_{3}\right|=2$. The factor group of S_{3} / A_{3} is abelian since $S_{3} / A_{3} \cong \mathbb{Z}_{2}$ Thus, by definition, S_{3} is metabelian. \square

Theorem 3.2

By Theorem 2.6, any dihedral groups are metabelian. Therefore, all dihedral groups of order less than 24 such as $D_{3} D_{4}, D_{5}, D_{6}, D_{7}, D_{8}, D_{9}, D_{10}$ and D_{11} are all metabelian.

Theorem 3.3

$Q=\left\langle a, b \mid a^{4}=1, a^{2}=b^{2}, a b a=b\right\rangle$, the quaternion group of order eight is metabelian.
Proof: The elements of Q can be written as $Q=\{1,-1, i,-i, j,-j, k,-k\}$. Let $A=\langle-1\rangle=\{-1,1\}$ and A is the center of a group Q. Then $A=Z(G)$ is normal in Q (Theorem 2.10). is also abelian since it is cyclic. Furthermore, the order of factor group $|Q / A|=|Q| /|A|=8 / 2=4$. Hence $Q / A \cong \mathbb{Z}_{4}$ or $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ Thus the factor group, Q / A is abelian. Hence, is metabelian.

Theorem 3.4

$T=Z_{3} \rtimes \mathrm{Z} 4=\left\langle a, b \mid a^{4}=b^{3}=1, a b a=a\right\rangle$, the semidirect product of a cyclic group of order three with a cyclic group of order four is metabelian.
Proof: Since T is semidirect product, then there exist one normal subgroup, that is $\mathbb{Z}_{3 \triangleleft} T$ (Definition 2.3). Let $A=\mathbb{Z}_{3}$. Then, $|A|=3$ and A is abelian since the order is prime. The order of factor group, $|T / A|=|T| /|A|=12 / 3=4$. Hence, $T / A \cong \mathbb{Z}_{4}$ or $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Furthermore, the factor group T / A is abelian. Therefore is metabelian.

Theorem 3.5

$A_{4}=\left\langle a, b, c \mid a^{2}=b^{2}=c^{3}=1, b a=a b, c a=a b c, c b=a c\right\rangle$, the alternating group of order 12 is metabelian.
Proof: Let $A \leq A_{4}$. The elements of A can be written as
$A=\{(1),(12),(34),(13),(24),(14),(23)\}$ and $|A|=4$. Now, we have the elements of
$A_{4}=\{(1),(12),(34),(13),(24),(14),(23),(123),(132),(234),(243),(134),(143),(124),(142)\}$.
Then, we have the left cosets and the right cosets as follows:
(1) $A=A=\{(1),(12),(34),(13),(24),(14),(23)\}$
(123) $A=\{(123),(134),(243),(142)\}=A(123)\}$
(132) $A=\{(132),(234),(143),(124)=A(23)\}$

Since the left cosets and the right cosets are same, then $A \triangleleft A_{4}$ and A is also abelian since its commute with all of its elements, i.e $a b=b a$, for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$. Furthermore, the order of factor group $\left|A_{4} / A\right|=\left|A_{4}\right| /|A|=12 / 4=3$. Hence, $A_{4} / A \cong \mathbb{Z}_{3}$ thus A_{4} / A is abelian. Therefore, A_{4} is metabelian.

Theorem 3.6

Quasihedral-16 $=\left\langle a, b \mid a^{8}=b^{2}=1, b a b=a^{3}\right\rangle$ is metabelian.
Proof: Let $G=$ Quasihedral-16 and $\mathrm{A}=\langle\alpha\rangle$. Then, $|A|=8$ since $\alpha^{8}=1$. Furthermore A is cyclic thus A is abelian. Next, $A \triangleleft G$ since the index of A in G is 2 (Theorem 2.9). That is, $|G / A|=|G| / A \mid=16 / 8=2$. Furthermore, $G / A \cong \mathbb{Z}_{2}$. Hence, G / A is abelian. Therefore, Quasihedral-16 is metabelian.

Theorem 3.7

$Q_{8}=\left\langle a, b \mid a^{8}=1, a^{4}=b^{2}, a b a=b\right\rangle$, the quarternion group of order 16 is metabelian.
Proof: Let $\mathrm{A}=\langle a\rangle$. Then $|A|=8$ since $a^{8}=1 . A$ is cyclic thus A is abelian. Next, $A \triangleleft Q_{s}$ since the index is 2 (Theorem 2.9). Furthermore, $\left|Q s_{s} / A\right|=|Q s| / \mid=16 / 8=2$. Hence, $Q_{s} / A \cong \mathbb{Z}_{2}$. Thus Q_{s} / A is abelian. Therefore, is metabelian.

Theorem 3.8

By Theorem 2.5, the direct product of metabelian groups is metabelian. Therefore, $D_{4} \times \mathbb{Z}_{2} Q \times \mathbb{Z}_{2}$ and $S_{3} \times \mathbb{Z}_{3}$ are metabelian.

Theorem 3.9

Modular $-16=\left\langle a, b \mid a^{8}=b^{2}=1, a b=b a^{5}\right\rangle$ is metabelian.
Proof: Let $G=$ Modular -16 and $A=\langle a\rangle$. Then, $|A|=8$ since $a^{8}=1$ and A is cyclic thus A is abelian. Next, $A \triangleleft G$ since the index is 2 (Theorem 2.9). Furthermore, the order of factor group, $|G / A|=|G| /|A|=16 / 8=2$. Hence, $G / A \cong \mathbb{Z}_{2}$ and the factor group G / A is abelian. Therefore, is metabelian.

Theorem 3.10

$\left\langle a, b \mid a^{4}=b^{4}=1, a b=b a 3\right\rangle$ is metabelian.
Proof: Let $A=\left\langle a^{2}\right\rangle=\left\{a^{2}, e\right\}$. Then, $|A|=2$ since $a^{4}=1 . A$ is cyclic. Thus A is abelian. Next, we find the left cosets and the right cosets of B. Let the elements of B are:

$$
B=\left\{e, a, a^{2}, a^{3}, b, b^{2}, b^{3}, a b, a b^{2}, a b^{3}, a^{2} b, a^{2} b^{2}, a^{2} b^{3}, a^{3} b, a^{3} b^{2}, a^{3} b^{3}\right\}
$$

Then, we have the left cosets and right cosets as follows:

$$
\begin{aligned}
& e A=\left\{a^{2}, e\right\}=A=A e \\
& a A=\left\{a^{3}, e\right\}=A a \\
& b A=\left\{a^{2}, b, b\right\}=A b \\
& b^{2} A=\left\{a^{2}, b^{2}, b^{2}\right\}=A b^{2} \\
& b^{3} A=\left\{a^{2}, b^{2}, b^{3}\right\}=A b^{3} \\
& a b A=\left\{a^{3}, b, a b\right\}=A a b \\
& a b^{2} A=\left\{a^{3}, b^{2}, a b^{2}\right\}=A a b^{2} \\
& a b^{3} A=\left\{a^{3}, b^{3}, a b^{3}\right\}=A a b^{3}
\end{aligned}
$$

Since the left cosets $=$ the right cosets, then $A \triangleleft B$. Furthermore, the factor group $B / A=\{A, a A$, $\left.b A, b^{2} A, b^{3} A, a b A, a b^{2} A, a b^{3} A\right\}$. Then, the order of factor group $|B / A|=|B| /|A|=16 / 8=8 . B / A$ is abelian since for all. Therefore, is metabelian.

Theorem 3.11

$K=\left\langle a, b, c \mid a^{4}=b^{2}=c^{2}=1, c b c a^{2} b=1, b a b=a, c a c=a\right\rangle$ is metabelian.
Proof: Let $\mathrm{A}=\langle\alpha\rangle=\left\{e, a, a, a^{2}, a^{3}\right\}$. Then, $\left.\mid \mathrm{A}\right\}=4$ since $a^{4}=1$. is cyclic. Thus is abelian. Next, we find the left cosets and the right cosets of K. Let the elements of K are:
$K=\left\{e, a, a^{2}, a^{3}, b, c, a b, a c, b c, a^{2} b, a^{2} c, a^{3} b, a^{3} c, a b c, a^{2} b c, a^{3} b c\right\}$
Then, we have the left cosets and right cosets as follows:
$e A=\left\{e, a, a^{2}, a^{3}\right\}=A=A e$
$b A=\left\{b, a^{2} b, a^{3} \mathrm{~b}\right\}=A b$
$c A=\left\{\mathrm{c}, a c, a^{2} c^{2}, a^{3} c\right\}=A c$
$b c A=\left\{\mathrm{bc}, a b c, a^{2}, \mathrm{bc}, a^{3} b c\right\}=A b c$

Since the left cosets $=$ the right cosets, then $A \triangleleft K$. Furthermore, the order of factor group $|K / A|=|K| /|A|=16 / 8=4$. Hence, $K / A \cong \mathbb{Z}_{4}$ or $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and K / A is abelian. Therefore K,is metabelian.

Theorem 3.12

$G_{4,4}=\left\langle a, b \mid a^{4}=b^{4}=1, a b a b=1, b a^{3}=a b^{3}\right\rangle$ is metabelian.
Proof: Let $A=\left\langle a^{2} b^{2}\right\rangle=\left\{e, a^{2} b^{2}\right\}$. Then, $|A|=2$. A is cyclic. Thus A is abelian. Next, we find the left cosets and the right cosets of $G_{4,4}$. Let the elements of $G_{4,4}$ are:
$G_{4,4}=\left\{e, a, a^{2}, a^{3}, b, b^{2}, a b, a b^{2}, a^{2} b, a^{2} b^{2}, a^{3} b, a^{3} b^{2}, a b a, a^{2} b a, a^{3} b a, b a\right\}$
Then, we have the left cosets and right cosets as follows:

$$
\begin{aligned}
& e A=\left\{e, a^{2}, b^{2}\right\}=A=A e \\
& a A=\left\{\mathrm{a}, a^{3}, b^{2}\right\}=A a \\
& a^{2} A=\left\{a^{2}, b^{2}\right\}=A a^{2} \\
& a^{3} A=\left\{a^{3}, a b^{2}\right\}=A a^{3} \\
& b A=\left\{b, a^{3}, b a\right\}=A a^{3} \\
& a b A=\{a b, b a\}=A a b
\end{aligned}
$$

$a^{2} b A=\left\{a^{2} b, a b a\right\}=A a^{2} b$
$a^{3} b A=\left\{a^{3} b, a^{2} b a\right\}=A a^{3} b$

Since the left cosets $=$ the right cosets, then $A \triangleleft G_{44}$. Furthermore, the order of factor group $\left|G_{4,4} / A\right|=\left|G_{4,4}\right| /|A|=16 / 4=4$. . Hence, $\quad G_{4,4} / A \cong \mathbb{Z}_{4}$ or $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and the factor group $G_{4,4} / \mathrm{A}$ is abelian. Therefore, $G_{4,4}$ is metabelian.

Theorem 3.13

$\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \rtimes \mathbb{Z}_{2}=\left\langle a, b, c \mid a^{2}=b^{3}=c^{3}=1, b c=c b, b a b=a, c a c=a\right\rangle$, the semidirect product of two direct product of cyclic group of order three with the cyclic group of order two is metabelian. Proof: Let $G=\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \rtimes \mathbb{Z}_{2}$ and $A=\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right)$. Then $A \triangleleft G$ since the index is 2 (Theorem 2.9) and is abelian since the direct product of abelian group (Theorem 2.4). Next, the order of factor group, $|G / A|=|G| /|A|=18 / 9=2$.. Hence, $G / A \cong \mathbb{Z}_{2}$ and the factor group, G / A is abelian. Therefore, $\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \rtimes \mathbb{Z}_{2}=$ is metabelian.

Theorem 3.14

$F r_{20} \cong \mathbb{Z}_{5} \rtimes \mathbb{Z}_{4}=\left\langle a, b \mid a^{4}=b^{5}=1, b a=a b^{2}\right\rangle$, the frobenius group of order 20 isomorphic to semidirect product of cyclic group of order five with the cyclic group of order four is metabelian.
Proof: Let $G=F r_{20} \cong \mathbb{Z}_{5} \rtimes \mathbb{Z}_{4}$ and $A=\mathbb{Z}_{5}=\langle b\rangle$ Then, $|A|=5$ since $b^{5}=1 . A$ is cyclic thus, A is abelian. $A \triangleleft G$ since it is the semidirect product of G (Definition 2.3). Furthermore, the order of factor group, $|G / A|=|G| / A \mid=20 / 5=4$.. Hence, $G / A \cong\left(\mathbb{Z}_{4}\right.$ or $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and the factor group, G / A is abelian. Therefore, $F r_{20}$ is metabelian.

Theorem 3.15

$\mathbb{Z}_{4} \rtimes \mathbb{Z}_{5}=\left\langle a, b \mid a^{4}=b^{5}=1, b a=a b^{2}\right\rangle$, the semidirect product of cyclic group of order four with the cyclic group of order 5 is metabelian.

Proof: Let $G=G=\mathbb{Z}_{4} \rtimes \mathbb{Z}_{5}$ and $A=\mathbb{Z}_{4}$. Then, $|A|=4$ and A is cyclic thus, is abelian. Next, $A \triangleleft G$ (Definition 2.3). Furthermore, the order of factor group, $|G / A|=|G| /|A|=20 / 4=5$. Hence, $G / A \cong \mathbb{Z}_{5}$ and the factor group, G / A is abelian. Therefore, $\mathbb{Z}_{4} \rtimes \mathbb{Z}_{5}$ is metabelian.

Theorem 3.16

$F r_{21} \cong \mathbb{Z}_{7} \rtimes \mathbb{Z}_{3}=\left\langle a, b \mid a^{3}=b^{7}=1, b a=a b^{2}\right\rangle$, the frobenius group of order 21 isomorphic to semidirect product of cyclic group of order seven with the cyclic group of order three is metabelian. Proof: Let $G=F r_{21} \cong \mathbb{Z}_{7} \rtimes \mathbb{Z}_{3}$ and $A=\mathbb{Z}_{7}=\langle b\rangle$. Then, $|A|=7$ since $b^{7}=1 . A$ is cyclic thus, A is
abelian. $A \triangleleft G$ since it is the semidirect product of G (Definition 2.3). Furthermore, the order of factor group, $|G / A|=|G| / A \mid=21 / 7=3$. Hence, $G / A \cong \mathbb{Z}_{3}$ and the factor group, G / A is abelian. Therefore, is metabelian.-

In this section, we conclude that all groups of order less than 24 are metabelian. -

THE DETERMINATION OF METABELIAN GROUPS OF ORDER 24.
Now, we will prove for all group of order 24 whether it is metabelian or not. In Table 4.1, there are 15 groups of order 24.

Table 42: All Groups of Order 24

No	Groups	Group Order	Abelian or not	No	Groups	Group Order	Abelian or not
1	Z_{24}	24	Yes	9	$A_{4} \times Z_{2}$	24	No
2	$Z_{2} \times Z_{12}$	24	Yes	10	Q_{12}	24	No
3	$Z_{2} \times Z_{2} \times Z_{6}$	24	Yes	11	$S l(2,3)$	24	No
4	S_{4}	24	No	12	D_{12}	24	No
5	$S_{3} \times Z_{4}$	24	No	13	$M=Z_{2} \times\left(Z_{3} \times\right.$	24	No
6	$S_{3} \times Z_{2} \times Z_{2}$	24	No	14	$N=\left(Z_{3} \times Z_{8}\right)$	24	No
7	$D_{4} \times Z_{3}$	24	No	15	$Z_{3} \times Q$	24	No
8	$Q \times Z_{3}$	24	No				

Using same method as above, we can conclude that all three abelian groups, groups of direct product and dihedral groups are metabelian which are,
$\mathbb{Z}_{24}, \mathbb{Z}_{2} \times \mathbb{Z}_{12}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{6}, S_{3} \times \mathbb{Z}_{4}, S_{3} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, D_{4} \times \mathbb{Z}_{3}, Q \times \mathbb{Z}_{3} A_{4} \times \mathbb{Z}_{2}$ and D_{12}.

Theorem 4.1

$S_{4}=\left\langle a, b, c \mid a^{2}=b^{2}=c^{2}=1,(a b)^{3}=(b c)^{3}=(a c)^{3}=1\right\rangle$, the symmetric group of order 24 is metabelian.

Proof: We have,
$S_{4}=\{(1),(12),(13),(14),(23),(24),(34),(12),(34),(13),(234),(14),(23),(123),(132),(234),(243)$ (134),)143), (124), (142), (1234), (1243), (1324), (1342), (1423), (1432)

Normal subgroups of S_{4} are (1), A_{4} and A. (1) is normal since it is the trivial subgroup. The trivial subgroup is always normal and abelian but the factor group $S_{4} /(1)$ is not abelian. Next, A_{4} is normal since the index is 2 , but A_{4} is not abelian. Now, will prove the normality of A in S_{4}. Let the elements of $A=\{(1),(12),(34),(13),(24),(14),(23)\}$. Then, the factor group of S_{4} is $S_{4} / A=\{(1),(12),(13),(14),(23),(24),(34), \ldots\} /\{(1),(12),(34),(13),(24),(314),(23)\}$

Then we have, the left and the right cosets as follows:

$$
\begin{aligned}
& (1) A=A=\{(1),(12),(34),(13),(24),(14),(23)\}=A(1) \\
& (12) A=\{(12),(34),(1423),(1324)\}=A(12) \\
& (13) A=\{(13),(1432),(24),(1234)=A(13)\} \\
& (14) A=\{(14),(1342),(31243),(23)\}=A(14) \\
& (123) A=\{(123),(243),(142),(134)\}=A(123) \\
& (124) A=\{(124),(234),(143),(132)=A(124)\}
\end{aligned}
$$

Since the left and the right cosets are same, hence $A \triangleleft S_{4}, A$ is also abelian since its commute with all of its elements,i.e $a b=b a$, for all a, $b \in A$. But the factor group of S_{4} is not abelian since, for example:
since, for example:

$$
\{(12) A\},\{(13) A\}=(12)(13) A=(132) A \neq(123) A=(13)(12) A=\{(13) A\}\{(12) A\}
$$

Hence S_{4} is not metabelian.

Theorem 4.2

$Q_{12}=\left\langle a, b, c \mid a^{2}=b^{6}=c^{12}=1, b a b=a\right\rangle$, quartenion group of order 24 is metabelian.
Proof: Let $A=\langle c\rangle$. Then, $|\mathrm{A}|=12$ since $c^{12}=1$. A is cyclic thus A is abelian. Next, $A \triangleleft Q_{12}$ since the index is 2 (Theorem 2.9). Furthermore, the order of factor group, $\left|Q_{12} / A\right|=|Q 12| /|A|=24 / 12=2$. Hence, $\left|Q_{12} / A\right| \cong \mathbb{Z}_{2}$ and the factor group, Q_{12} / A is abelian. Therefore, is metabelian.•

Theorem 4.3

$\operatorname{Sl}(2,3)=\left\langle a, b, c \mid a^{4}=c^{3}=1, a^{2}=b^{2}, a b a=b, a c=c b, c a b=b c\right\rangle$ is metabelian.
Proof: First we need to find normal subgroup of $S l(2,3)$ then show it metabelian or not. Suppose $A \leq \operatorname{Sl}(2,3)$.
a) Let $A=\langle e\rangle=\{e\}$ is trivial subgroup. A is normal subgroup of A since the trivial subgroups is always normal.
b) Let $A=\langle e\rangle=\{e\}$. Then, we have the left cosets and the right cosets are as follows:
$e A=\{e, a\}=A e=A$
$b A=\{b, a c\} \neq\{b, a b\}=A b$
Since there exist the left cosets not equal to right cosets, therefore $A=\langle a\rangle=\{e, a\}$ is not normal in $S l(2,3)$.
c) Let $A=\langle b\rangle=\{e, b, d, b d\}$. Then, we have the left cosets and the right cosets are as follows: $e A=\{e, b, d, b d\}=A e=A$
$a A=\{a, a b, a d, a b d\} \neq\{a, a c, a d, a c d\}=A a$
Since there exist the left cosets not equal to right cosets, therefore $A=\langle b\rangle=\{e, b, d, b d\}$ is not normal in $S l(2,3)$.
d) $A=\langle c\rangle=\{e, c, d, c d\}$

Then, we have the left cosets and the right cosets are as follows:
$e A=\{e, c, d, c d\}=A e=A$
$a A=\{a, a c, a d, a c d\} \neq\{a, a b c, a d, a b c d\}=A a$
Since there exist the left cosets not equal to right cosets, therefore $A=\langle c\rangle=\{e, c, d, c d\}$ is not normal in $S l(2,3)$.
e) $A=\langle d\rangle=\{e, d$,

Then, we have the left cosets and the right cosets are as follows:
$e A=\{e, d\}=,A e=A$
$a A=\{a, a d\}=A a$
$b A=\{b, b d\}=A b$
$c A=\{c, c d\}=A c$
$a^{2} A=\left\{a^{2}, a^{2} d\right\}=A a^{2}$
$a b A=\{a b, a b d\}=A a b$
$a c A=\{a c, a c d\}=A a c$
$b c A=\{b c, b c d\}=A b c$
$a^{2} b A=\left\{a^{2} b, a^{2} b d\right\}=A a^{2} b$
$a^{2} c A=\left\{a^{2} c, a^{2} c d\right\}=A a^{2} c$
$a b c A=\{a b c, a b c d\}=A a b c$
Since the left cosets equal to right cosets, therefore $A=\langle c\rangle=\{e, c, d, c d\}$ is normal in $S l(2,3)$.
f) $A=\left\langle a^{2}\right\rangle=\left\{e, a, a^{2}\right\}$

Then, we have the left cosets and the right cosets are as follows:
$e A=\left\{e, a, a^{2}\right\}=A e=A$
$b A=\left\{b, a c, a^{2} b c\right\} \neq\left\{b, a b, a^{2} b\right\}=A b$
Since there exist the left cosets not equal to right cosets, therefore $A=\left\langle a^{2}\right\rangle=\left\{e, a, a^{2}\right\}$ is not normal in $S l(2,3)$.
g) $A=\langle a b\rangle=\left\{e, a b, a^{2} b c d\right\}$

Then, we have the left cosets and the right cosets are as follows:
$e A=\left\{e, a b, a^{2} b c d\right\}=A e$
$a A=\left\{a, a^{2} b, b c d\right\} \neq\left\{a, a^{2} c, b d\right\}=A a$
Since there exist the left cosets not equal to right cosets, therefore $A=\langle a b\rangle=\left\{e, a b, a^{2} b c d\right\}$ is not normal in $S l(2,3)$.
h) $A=\langle a c\rangle=\left\{e, a c, a^{2} b d\right\}$

Then, we have the left cosets and the right cosets are as follows:
$e A=\left\{e, a c, a^{2} b d\right\}=A e=A$
$a A=\left\{a, a^{2} c, b d\right\} \neq\left\{a, a^{2} b c, c d\right\}=A a$
Since there exist the left cosets not equal to right cosets, therefore $A=\langle a c\rangle=\left\{e, a c, a^{2} b d\right\}$ is not normal in $S l(2,3)$.
i) $\quad A=\langle a d\rangle=\left\{e, a, d, a^{2}, a d, a^{2} d\right\}$

Then, we have the left cosets and the right cosets are as follows:
$e A=\left\{e, a, d, a^{2}, a d, a^{2} d\right\}=A e=A$
$b A=\left\{b, a c, b d, a^{2} b c, a c d, a^{2} b c d\right\} \neq\left\{b, a b, b d, a^{2} b, a b d, a^{2} b d\right\}=A b$
Since there exist the left cosets notequal to right cosets, therefore $A=\langle a d\rangle=\left\{e, a, d, a^{2}, a d, a^{2} d\right\}$ is not normal in $S l(2,3)$.
j) $A=\langle b c\rangle=\{e, d, b c, b c d\}$

Then, we have the left cosets and the right cosets are as follows:
$e A=\{e, d, b c, b c d\}=A e=A$
$a A=\{a, a d, a b c, a b c d\} \neq\{a, a d, a b, a b d\}=A a$
Since there exist the left cosets not equal to right cosets, therefore $A=\langle b c\rangle=\{e, d, b c, b c d\}$ is not normal in $S l(2,3)$.
k) $A=\langle b d\rangle=\{e, b, d, b d\}$

Then, we have the left cosets and the right cosets are as follows:
$e A=\{e, b, d, b d\}=A e=A$
$a A=\{a, a b, a d, a b d\} \neq\{a, a c, a d, a c d\}=A a$
Since there exist the left cosets not equal to right cosets, therefore $A=\langle b d\rangle=\{e, b, d, b d\}$ is not normal in $S l(2,3)$.

1) $A=\langle c d\rangle=\{e, c, d, c d\}$

Then, we have the left cosets and the right cosets are as follows:
$e A=\{e, c, d, b c d\}=A e=A$
$a A=\{a, a c, a d, a c d\} \neq\{a, a b c, a d, a b c d\}=A a$
Since there exist the left cosets not equal to right cosets, therefore $A=\langle c d\rangle=\{e, c, d, c d\}$ is not normal in $S l(2,3)$.
m) $A=\left\langle a^{2} b\right\rangle=\left\{e, d, a c, a^{2} b, a c d, a^{2} b d\right\}$

Then, we have the left cosets and the right cosets are as follows:
$e A=\left\{e, d, a c, a^{2} b, a c d, a^{2} b d\right\}=A e=A$
$a A=\left\{a, a d, a^{2} c, b, a^{2} c d, b d\right\} \neq\left\{a, a d, a^{2} b c, c, a^{2} b c d, c d\right\}=A a$
Since there exist the left cosets not equal to right cosets, therefore $A=\left\langle a^{2} b\right\rangle=\left\{e, d, a c, a^{2} b, a c d, a^{2} b d\right\}$ is not normal in $S l(2,3)$.
n) $A=\left\langle a^{2} c\right\rangle=\left\{e, d, a^{2} c, a b c, a^{2} c d, a b c d\right\}$

Then, we have the left cosets and the right cosets are as follows:
$e A=\left\{e, d, a^{2} c, a b c, a^{2} c d, a b c d\right\}=A e=A$
$a A=\left\{a, a d, c, a^{2} b c, c d, a^{2} b c d\right\} \neq\left\{a, a d, b c, a^{2} b, b c d, a^{2} b d\right\}=A a$
Since there exist the left cosets not equal to right cosets, therefore $A=\left\langle a^{2} c\right\rangle=\left\{e, d, a^{2} c, a b c, a^{2} c d, a b c d\right\}$ is not normal in $\operatorname{Sl}(2,3)$.
o) $A=\left\langle a^{2} d\right\rangle=\left\{e, a, d, a d, a^{2}, a^{2} d\right\}$

Then, we have the left cosets and the right cosets are as follows:
$e A=\left\{e, a, d, a d, a^{2}, a^{2} d\right\}=A e=A$
$b A=\left\{b, a c, b d, a^{2} b c, a c d, a^{2} b c d\right\} \neq\left\{b, a b, b d, a b d, a^{2} b, a^{2} b d\right\}=A b$
Since there exist the left cosets not equal to right cosets, therefore
$A=\left\langle a^{2} d\right\rangle=\left\{e, a, d, a d, a^{2}, a^{2} d\right\}$ is not normal in $S l(2,3)$.
p) $A=\langle a b c\rangle=\left\{e, a b c, a^{2} c d\right\}$

Then, we have the left cosets and the right cosets are as follows:
$e A=\left\{e, a b c, a^{2} c d\right\}=A e=A$
$a A=\left\{a, a^{2} b c, c d\right\} \neq\left\{a, a^{2} b, b c d\right\}=A a$
Since there exist the left cosets not equal to right cosets, therefore
$A=\langle a b c\rangle=\left\{e, a b c, a^{2} c d\right\}$ is not normal in $S l(2,3)$.
q) $A=\langle a b d\rangle=\left\{e, d, a b, a b d, a^{2} b c, a^{2} b c d\right\}$

Then, we have the left cosets and the right cosets are as follows:
$e A=\left\{e, d, a b, a b d, a^{2} b c, a^{2} b c d\right\}=A e=A$
$a A=\left\{a, a d, a^{2} b, a^{2} b d, b c, b c d\right\} \neq\left\{a, a d, a^{2} c, a^{2} c d, b, b d\right\}=A a$
Since there exist the left cosets not equal to right cosets, therefore
$A=\langle a b d\rangle=\left\{e, d, a b, a b d, a^{2} b c, a^{2} b c d\right\}$ is not normal in $S l(2,3)$.
r) $A=\langle a c d\rangle=\left\{e, d, a c, a c d, a^{2} b, a^{2} b d\right\}$

Then, we have the left cosets and the right cosets are as follows:
$e A=\left\{e, d, a c, a c d, a^{2} b, a^{2} b d\right\}=A e=A$
$a A=\left\{a, a d, a^{2} c, a^{2} c d, b, b d\right\} \neq\left\{a, a d, a^{2} b c d, c, c d, a^{2} b c\right\}=A a$
Since there exist the left cosets not equal to right cosets, therefore
$A=\langle a c d\rangle=\left\{e, d, a c, a c d, a^{2} b, a^{2} b d\right\}$ is not normal in $\operatorname{Sl}(2,3)$.
s) $\quad A=\langle b c d\rangle=\{e, d, b c, b c d\}$

Then, we have the left cosets and the right cosets are as follows:
$e A=\{e, d, b c, b c d\}=A e=A$
$a A=\{a, a d, a b c, a b c d\} \neq\{a, a d, a b, a b d\}=A a$
Since there exist the left cosets not equal to right cosets, therefore $A=\langle b c d\rangle=\{e, d, b c, b c d\}$ is not normal in $S l(2,3)$.
t) $\quad A=\left\langle a^{2} b c\right\rangle=\left\{e, d, a b, a b d, a^{2} b c, a^{2} b c d\right\}$

Then, we have the left cosets and the right cosets are as follows:
$e A=\left\{e, d, a b, a b d, a^{2} b c, a^{2} b c d\right\}=A e=A$
$a A=\left\{a, a d, a^{2} b, a^{2} b d, b c, b c d\right\} \neq\left\{a, a d, a^{2} c, a^{2} c d, b, b d\right\}=A a$
Since there exist the left cosets not equal to right cosets, therefore
$A=\left\langle a^{2} b c\right\rangle=\left\{e, d, a b, a b d, a^{2} b c, a^{2} b c d\right\}$ is not normal in $\operatorname{Sl}(2,3)$.
u) $A=\left\langle a^{2} b d\right\rangle=\left\{e, a c, a^{2} b d\right\}$

Then, we have the left cosets and the right cosets are as follows:
$e A=\left\{e, a c, a^{2} b d\right\}=A e=A$
$a A=\left\{a, a^{2} c, b d\right\} \neq\left\{a, a^{2} b c, c d\right\}=A a$
Since there exist the left cosets not equal to right cosets, therefore $A=\left\langle a^{2} b d\right\rangle=\left\{e, a c, a^{2} b d\right\}$ is not normal in $S l(2,3)$.
v) $A=\left\langle a^{2} c d\right\rangle=\left\{e, a b c, a^{2} c d\right\}$

Then, we have the left cosets and the right cosets are as follows:
$e A=\left\{e, a b c, a^{2} c d\right\}=A e=A$
$a A=\left\{a, a^{2} b c, c d\right\} \neq\left\{a, a^{2} b, b c d\right\}=A a$
Since there exist the left cosets not equal to right cosets, therefore $A=\left\langle a^{2} c d\right\rangle=\left\{e, a b c, a^{2} c d\right\}$ is not normal in $S l(2,3)$.
w) $A=\langle a b c d\rangle=\left\{e, d, a^{2} c, a b c, a^{2} c d, a b c d\right\}$

Then, we have the left cosets and the right cosets are as follows:
$e A=\left\{e, d, a^{2} c, a b c, a^{2} c d, a b c d\right\}=A e=A$
$a A=\left\{a, a d, c, a^{2} b c, c d, a^{2} b c d\right\} \neq\left\{a, a d, b c, a^{2} b, b c d, a^{2} b d\right\}=A a$
Since there exist the left cosets not equal to right cosets, therefore $A=\langle a b c d\rangle=\left\{e, d, a^{2} c, a b c, a^{2} c d, a b c d\right\}$ is not normal in $\operatorname{Sl}(2,3)$.
x) $A=\left\langle a^{2} b c d\right\rangle=\left\{e, a b, a^{2} b c d\right\}$

Then, we have the left cosets and the right cosets are as follows:
$e A=\left\{e, a b, a^{2} b c d\right\}=A e=A$
$a A=\left\{a, a^{2} b, b c d\right\} \neq\left\{a, a^{2} c, b d\right\}=A a$
Since there exist the left cosets notequal to right cosets, therefore $A=\left\langle a^{2} b c d\right\rangle=\left\{e, a b, a^{2} b c d\right\}$ is not normal in $S l(2,3)$.

Since we have two normal subgroup of $\operatorname{Sl}(2,3)$ which is the trivial subgroup, $\langle e\rangle$ and $\langle d\rangle=\{e, d\}$ now we show whether $S l(2,3)$ is metabelian or not. First let $A=\langle e\rangle$ is normal subgroup. A is cyclic. Thus A is abelian. But the factor group $S l(2,3) / A$ is not abelian since $S l(2,3) / A=S l(2,3)$ which is not abelian. Next, let $B=\langle d\rangle=\{e, d$,$\} be normal$ subgroup. B is cyclic. Thus B is abelian. But the factor group $S l(2,3) / B$ is not abelian since $(a B)(b B)=(a b) B=\{a b, a b d\} \neq\{a c, a c d\}(a c) B=(b B)(a B)$. Hence $\operatorname{Sl}(2,3)$ is not metabelian.

Theorem 4.4

$M=\mathbb{Z}_{2} \times\left(\mathbb{Z}_{3} \rtimes \mathbb{Z}_{4}\left\langle a, b, c, d \mid a^{4}=b^{6}=1, b a b=a\right\rangle\right.$ is metabelian.
Proof: Let $M=\mathbb{Z}_{2} \times\left(\mathbb{Z}_{3} \rtimes \mathbb{Z}_{4}\right)$ and $A=\langle c d\rangle$. The elements of M and A can be written as follows: $M=\left\{e, a, b, c, d, a b, a c, a d, b c, b d, c d, d^{2}, a b c, a b d, a c d^{2}\right\}$
$\left.a d^{2}, b c d, b d^{2}, c d^{2}, a b c d . a b d^{2}, a c d^{2}, b c d^{2}, a b c d^{2}\right\}$
$A=\left\{e, c, d, c d, d^{2}, c d^{2}\right\}$.

Next, we find the left and the right cosets of $M / A^{\text {, which are, }}$
$A=\langle c d\rangle=\left\{e, c, d, c d, d^{2}, c d^{2}\right\}=A$
$a A=\left\{a, a c, a d, a c d, a d^{2}, a c d^{2}\right\}=A a$
$b A=\left\{b, b c, b d, b c d, b d^{2}, b c d^{2}\right\}=A b$
$a b A=\left\{a b, a b c, a b d, a b c d, a b d^{2}, a b c d^{2}\right\}=A a b$

Therefore, we can see that $A \triangleleft M$ since left cosets $=$ right cosets. $A=\langle c d\rangle$ is cyclic thus is abelian. Furthermore, $|M|=24$ and $|A|=6$. Then, the order of factor group, $|M / A|=|M| /|A|=24 / 6=4$ Hence, $M / A \cong \mathbb{Z}_{4}$ or \mathbb{Z}_{2} and the factor group, M / A is abelian. Therefore, M is metabelian.

Theorem 4.5

$N=\left(\mathbb{Z}_{3} \rtimes \mathbb{Z}_{8}\right)=\left\langle a, b, c, d \mid a^{3}=b^{4}=c^{2}=1, b c b=c, a b a=b, a c=c a\right\rangle$ is metabelian.
Proof: Let $A=\langle b d\rangle$ and the elements of can be written as $A=\langle b d\rangle=\left\{b d, c d^{2}, b c, d, b d^{2}, c, b c d, d^{2}, b, c d, b c d^{2}, e\right\}$. Then, $|A|=12$ and A is cyclic. Thus A is abelian. $A \triangleleft N$ since the index is two (Theorem 2.9). Furthermore $|N / A|=|N| /|A|=24 / 12=2$, Hence, $N / A \cong \mathbb{Z}_{2}$ and the factor group, N / A is abelian Therefore, N is metabelian •.

Theorem 4.6

$\mathbb{Z}_{3} \rtimes Q=\left\langle a, b, c, d \mid a^{2}=b^{6}=c^{2}=1, a b=b a, a c=c a, c b c b=1\right\rangle$ is metabelian.
Proof: Let $G=\mathbb{Z}_{3} \rtimes Q$ and $A=\langle b d\rangle$ and the elements of can be written as $A=\langle b d\rangle=\left\{b d, c d^{2}, b c, d, b d^{2}, c, b c d, d^{2} b, c d, b c d^{2}, e\right\}$. Then, $|A|=12$ and A is cyclic thus A is abelian. $A \triangleleft G$ since the index is two (Theorem 2.9). Furthermore, $|G / A|=|G| /|A|=24 / 12=2$ Hence, $G / A \cong \mathbb{Z}_{2}$ and the factor group, G / A is abelian. Therefore, $\mathbb{Z}_{3} \rtimes Q$ is metabelian.

Then, we conclude that there exist two groups of order 24 that is not metabelian which is S_{4} and $S l(2,3)$

CONCLUSIONS

With the scope of this research, 72 from 74 groups of order at most 24 are detected as metabelian groups and the rest two groups of order 24 are not metabelian which are
i) $S_{4}=<a, b, c \mid a^{2}=b^{2}=c^{2}=1,(a b)^{3}=(b c)^{3}=(a c)^{3}=1>$ and
ii) $S l(2,3)=\left\langle a, b, c \mid a^{4}=c^{3}=1, a^{2}=b^{2}, a b a=b, a c=c b, c a b=b c\right\rangle$

All groups of order at most 24 have been proved as metabelian groups using their group presentations. The Groups, Algorithms and Programming (GAP) software has been used to facilitate some of the computations and proofs.

REFERENCES

Kurosh, A.G., The Theory of Groups , 1-2 , Chelsea (1955-1956) (Translated from Russian). 1955.
Neumann, H., Varieties of Groups. Germany: Springer-Verlag,Berlin. 1967.
Kargapolov, M.I. \& Merzljakov, Ju.I., Fundamentals of the Theory of Groups. pp 20 USA: Springer-Verlag New York Inc. 1979.

Schmidt, O.U., Abstract Theory of Groups. USA: W.H Freeman and Company. 1966.
Wisnesky, R.J., Solvable Groups. Math 120. (2005). http://eecs.harvard.edu/~ryan/wim3.pdf .
Snaith, V.P., Groups, Rings and Galois Theory. $2^{\text {nd }}$ Ed. pp 40. Singapore: World Scientific Publishing Co. Pte. Ltd. 2003.

Robinson, D. J. S., A Course in the Theory of Groups. New York: Springer-Verlag. 1993.
Fraleigh, J.B., A First Course in Abstract Algebra. $7^{\text {th }}$ Ed. USA: Addison Wesley Longman, Inc. 2000.
The group property wiki, Metabelian group, online, retrieved 10 Jan 2010, from http://groupprops.subwiki.org/ wiki/Metabelian_group. 2010.
Rotman, J.J., An Introduction to The Theory of Groups. $4^{\text {th }}$ Ed. pp 41. USA: Springer-Verlag. 1994.
Pedersen, J. \& Joyner, D., Groups of small order, online, retrieved $9^{\text {th }}$ May 2007, from http://www. opensourcemath.org/gap/small_groups.html. 2007.
Wedd, N.S., Cayley Diagrams, online, retrieved 11 ${ }^{\text {th }}$ Jun 2007, from http://www.weddslist.com/groups/cayley-31/ index.html. 2007.

