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Abstract: Assume G is a non-abelian finite group. The non-commuting
graph ΓG of G is defined as a graph with vertex set G − Z(G) in which Z(G)
is the center of G and two distinct vertices x and y are joined if and only
if xy 6= yx. Various topological indices have been determined for simple and
connected graphs. Since non-commuting graph is a simple and connected graph,
topological indices could be defined for it. The main objective of this article
is to calculate various topological indices including the Szeged index, Edge-
Wiener index, the first Zagreb index and the second Zagreb index for the non-
commuting graph of G.
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1. Introduction

In this paper, G is a non-abelian finite group. Various graphs could be at-
tributed to G, one of which is the non-commuting graph, denoted by ΓG. The
set of vertices and edges of ΓG are V (ΓG) and E(ΓG), respectively so that
V (ΓG) = G−Z(G) in which Z(G) is the center of G and for every x, y ∈ V (ΓG)
we have {x, y} ∈ E(ΓG) ⇔ xy 6= yx. The centralizer of x within G which is de-
noted by CG(x) is a subset of G which is defined as {g ∈ G : gx = xg}. Accord-
ing to [3], the non-commuting graph of a finite group G was first introduced by
Paul Erdos.
Assume that G = (V,E) is a graph in which V is the set of vertices and E is the
set of edges. This graph is a finite graph whenever |V | and |E| are finite. The
distance between two vertices x and y is denoted by d(x, y), which the length
of the shortest path between the two vertices x and y. The degree of the vertex
x is denoted by deg(x), equal to the number of edges through x. The diameter
of G is defined as follows:

diam(G) = max{d(x, y) : x, y ∈ V (ΓG)}.

The Szeged index of the graph G = (V,E) is defined as follows: This index is a
recently introduced invariant of a graph which is based on the distances of the
vertices of the graph [5] and [6]. Let e = xy be an edge of G. We define the
following sets:

Nx(e|G) = {w ∈ V : d(w, x) < d(w, y)},

Ny(e|G) = {w ∈ V : d(w, y) < d(w, x)}.

Hence Nx(e|G) is the set of all vertices of G which are closer to x than y and
Ny(e|G) is the set of all vertices of G which are closer to y than x. The size of
Nx(e|G) are Ny(e|G) are denoted by nx(e|G) and ny(e|G), respectively.
The Szeged index of the graph G is defined by

Sz(G) =
∑

e=xy∈E(G)

nx(e|G) · ny(e|G).

Let G be a connected graph. The Edge-Wiener index of G is defined as follows:

We(G) =
∑

{e,f}⊆E(G)

d(e, f).

Where e, f are two edges in G and d(e, f) is the distance between two vertices
in the line-graph. In view of the above definition We(G) = W (G) (G is the
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line-graph of G). For more details, refer to the [4]. The first Zagreb index of G
is denoted by Z1(G) and is defined by:

Z1(G) =
∑

x∈V

(deg(x))2.

The second Zagreb index of the graph G is defined by:

Z2(G) =
∑

{x,y}⊆V

deg(x) · deg(y).

The readers can refer to [7] for more details. Our main goal is to calculate
the above mentioned indices for the non-commuting graph of G in terms of the
order of G, Z(G) and the number of conjugacy classes of G. The following
lemmas will be used repeatedly.

Lemma 1. [1]. Let G be a finite group. Then diam(ΓG) = 2.

Lemma 2. [1]. Let G be a finite group and k(G) the number of conjugacy
classes of G, then

|E(ΓG)| =
1

2
|G|(|G| − k(G)).

Lemma 3. [1]. Let G be a finite group. If x be one of the vertices of ΓG,
then

deg(x) = |G| − |CG(x)|.

2. The Szeged Index of a Non-Commuting Graph

In this section, we find the Szeged index for the non-commuting graph of a
finite group.

Lemma 4. Let G be a finite group. Then

∑

x 6∈Z(G)

|CG(x)| = |G|(k(G) − |Z(G)|).

Proof. We know that G is the union of its conjugacy classes. Assume that
{xi}

k
i=1 are the representative of the conjugacy classes and class(xi) denotes the

conjugacy class of xi and G =
k
⋃

i=1
class(xi).

Now, let {xi}
t
i=1 6∈ Z(G), thus we have k(G) = t+ |Z(G)|. Every x which is not
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placed within Z(G) would be placed within one of class(xi)s in which 1 ≤ i ≤ t.
Therefore we have:

∑

x 6∈Z(G)

|CG(x)| =

t
∑

i=1

| class(xi)||CG(xi)| = |G|t = |G|(k(G) − |Z(G)|).

In the next theorem, we calculate the Szeged index of ΓG.

Theorem 5. Assume G is a finite group and ΓG its non-commuting graph.
Then the Szeged index of ΓG is

Sz(ΓG) =
1

2
(

n
∑

i=1





∑

xj 6∈CG(xi)

(|CG(xi) ∩ CG(xj)|)
2





+

n
∑

i=1

deg(xi)





∑

xj 6∈CG(xi)

+2|CG(xi) ∩ CG(xj)| − |CG(xj)|





+ |G|





n
∑

i=1





∑

xj 6∈CG(xi)

−2|CG(xi) ∩ CG(xj)|+ |CG(xj)|







).

Proof. Assume that x and y are two arbitrary vertices of the graph ΓG that
are joined together by e (where e is one of the edges of the non-commuting
graph). Now we calculate nx(e|ΓG) and ny(e|ΓG):

Nx(e|ΓG) = {w ∈ V (ΓG) : d(w, x) < d(w, y)}.

According to Lemma 1, we have:
If d(w, y) = 1 then d(w, x) = 0 and w = x. If d(w, y) = 2 then d(w, x) = 0 or
1. So

nx(e|ΓG) = (|CG(y)− 1)− |CG(x) ∩CG(y)|+ 1

= |CG(y)| − |CG(x) ∩CG(y)|

In order to

ny(e|ΓG) = (|CG(x)| − 1)− |CG(x) ∩ CG(y)|+ 1

= |CG(x)| − |CG(x) ∩ CG(y)|.



THE TOPOLOGICAL INDICES OF... 31

Sz(ΓG) =
∑

e=xy∈E

nx(e|ΓG) · ny(e|ΓG)

=
∑

e=xy∈E

(|CG(y)| − |CG(x) ∩CG(y)|)(|CG(x)| − |CG(x) ∩CG(y)|)

=
∑

e=xy∈E

|CG(x) ∩ CG(y)|
2

−
∑

e=xy∈E

(|CG(x)|+ |CG(y)|)|CG(x) ∩ CG(y)|+
∑

e=xy∈E

|CG(x)||CG(y)|

Now, we have to calculate the all of summations.
Letting |G| − |Z(G)| = n, we obtain

∑

e=xy∈E

|CG(x) ∩ CG(y)|
2:

∑

e=xy∈E

|CG(x) ∩CG(y)|
2 =

1

2

n
∑

i=1





∑

xj 6∈CG(xi)

(|CG(xi) ∩ CG(xj)|)
2





So we can gain
∑

e=xy∈E
(|CG(x)|+ |CG(y)|)|CG(x) ∩ CG(y)|,

∑

e=xy∈E

(|CG(x)|+ |CG(y)|)|CG(x) ∩ CG(y)| =
∑

x∈G−Z(G)
y 6∈CG(x)

|CG(x)||CG(x) ∩ CG(y)|

=
n
∑

i=1

|CG(xi)|





∑

xj 6∈CG(xi)

|CG(xi) ∩CG(xj)|





=

n
∑

i=1

(|G| − deg(xi))





∑

xj 6∈CG(xi)

|CG(xi) ∩ CG(xj)|





=
n
∑

i=1

− deg(xi)





∑

xj 6∈CG(xi)

|CG(xi) ∩ CG(xj)|





+ |G|

n
∑

i=1





∑

xj 6∈CG(xi)

|CG(xi) ∩ CG(xj)|



 .

Now, calculating
∑

e=xy∈E
|CG(x)||CG(y)|.

∑

e=xy∈E

|CG(x)||CG(y)| =
1

2

n
∑

i=1



|CG(xi)|
∑

xj 6∈CG(xi)

|CG(xj)|
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=
1

2

n
∑

i=1



(|G| − deg(xi))
∑

xj 6∈CG(xi)

|CG(xj)|





= −
1

2

n
∑

i=1



deg(xi)
∑

xj 6∈CG(xi)

|CG(xj)|





+
|G|

2

n
∑

i=1





∑

xj 6∈CG(xi)

|CG(xj)|



 .

Now, the Szeged index is equal to

Sz(ΓG) =
∑

e=xy∈E

|CG(x) ∩CG(y)|
2 −

∑

e=xy∈E

(|CG(x)|+ |CG(y)|)|CG(x) ∩ CG(y)|

+
∑

e=xy∈E

|CG(x)||CG(y)|

=
1

2

n
∑

i=1





∑

xj 6∈CG(xi)

(|CG(xi) ∩CG(xj)|)
2





+
n
∑

i=1

deg(xi)





∑

xj 6∈CG(xi)

|CG(xi) ∩ CG(xj)|





− |G|

n
∑

i=1





∑

xj 6∈CG(xi)

|CG(xi) ∩ CG(xj)|





−
1

2

n
∑

i=1



deg(xi)
∑

xj 6∈CG(xi)

|CG(xj)|





+
|G|

2

n
∑

i=1





∑

xj 6∈CG(xi)

|CG(xj)|





=
1

2
(

n
∑

i=1





∑

xj 6∈CG(xi)

(|CG(xi) ∩ CG(xj)|)
2





+
n
∑

i=1

deg(xi)





∑

xj 6∈CG(xi)

+2|CG(xi) ∩CG(xj)| − |CG(xj)|
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+ |G|





n
∑

i=1





∑

xj 6∈CG(xi)

−2|CG(xi) ∩CG(xj)|+ |CG(xj)|







).

3. The Edge-Wiener Index of a Non-Commuting Graph

In this section, we find the Edge-Wiener index of a non-commuting graph. We
start with a couple of lemmas.

Lemma 6. [2]. Assume G is a finite group and ΓG its non-commuting
graph. If ΓG is a line-graph then,

|V (ΓG)| = |E(ΓG)| , |E(ΓG)| =
∑

x∈V (ΓG)

(

deg(x)

2

)

.

Lemma 7. Assume G is a finite group and ΓG a line-graph of ΓG. Then
ΓG is a connected graph and diam(ΓG) = 2.

Proof. First, we prove that there is a path between two vertices of ΓG.
Assume that two arbitrary vertices e and f belong to ΓG, thus e is an edge
in ΓG, so there are two vertices x and y of ΓG that are joined together by e.
Furthermore, there are two vertices x1 and y1 that are connected together by
f . We know that diam(ΓG) = 2, thus there is at least an edge between all
mentioned vertices. It means: there is a path between two edges.
Now, we prove that diam(ΓG) = 2. Suppose that diam(ΓG) = 1, then ΓG is a
complete graph. Next

∃ x ∈ G ∋ x 6= x−1 ⇒ ∃ y ∈ G ∋ x
e
→ y

f
→ x−1

G 6= CG(x) ∪CG(y) ⇒ ∃ z ∈ G−CG(x) ∪ CG(y).

Therefore, we have z
h
→ x

e
→ y

g
→ z, but ΓG is a complete graph, so h and f

are joined together, which is impossible. Since z 6= x, y and x 6= y, x−1. Thus
diam(ΓG) 6= 1. Hence diam(ΓG) = 2.

Theorem 8. Let G be a finite group and ΓG a line-graph of ΓG. Then

We(ΓG) = |E(ΓG)|
2 + |G|2

(

k(G) −
1

2
|Z(G)| −

1

2
|G|

)

−
1

2

∑

x∈G−Z(G)

|CG(x)|
2.
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Proof. By definition, We(ΓG) =
∑

{e,f}⊆E(ΓG)

d(e, f) = 1
2

∑

e∈E(ΓG)

d(e) where

d(e) =
∑

f∈E(ΓG)

d(e, f).

First we compute d(e) for an arbitrary vertex of the graph ΓG. According to
Lemma 7, d(e) =

∑

f∈E(ΓG)

d(e, f) = 2 (the number of vertices whose distance

from e is 2)+1 (the number of vertices whose distance from e is 1). Let x and
y be joined together by e. Then

d(e) =
∑

f∈E(ΓG)

d(e, f)

= 1((deg(x)− 1) + (deg(y)− 1)) + 2(|E(ΓG)| − deg(x)− deg(y) + 1)

= 2|E(ΓG)| − (deg(x) + deg(y)).

Using the above formula, we can calculate We(ΓG):

We(ΓG) =
1

2

∑

e∈E(ΓG)

d(e)

=
1

2

∑

e∈E(ΓG)

2|E(ΓG)| − (deg(x) + deg(y))

= |E(ΓG)|
2 −

1

2

∑

e∈E(ΓG)

(deg(x) + deg(y))

= |E(ΓG)|
2 −

1

2

∑

x∈G−Z(G)

(deg(x))2

= |E(ΓG)|
2 −

1

2

∑

x∈G−Z(G)

(|G| − |CG(x)|)
2

= |E(ΓG)|
2 −

1

2
|G|2(|G| − |Z(G)|) + |G|

∑

x∈G−Z(G)

|CG(x)|

−
1

2

∑

x∈G−Z(G)

|CG(x)|
2

= |E(ΓG)|
2 −

1

2
|G|2(|G| − |Z(G)|) + |G|2(k(G) − |Z(G)|)

−
1

2

∑

x∈G−Z(G)

|CG(x)|
2
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= |E(ΓG)|
2 + |G|2

(

k(G) −
1

2
|Z(G)| −

1

2
|G|

)

−
1

2

∑

x∈G−Z(G)

|CG(x)|
2.

4. The First Zagreb Index of a Non-Commuting Graph

In this section, the first Zagreb index of a non-commuting graph is computed.

Theorem 9. Let G be a finite group and ΓG its non-commuting graph.
Then

Z1(ΓG) = |G|2(|G|+ |Z(G)| − 2k(G)) +
∑

x∈G−Z(G)

|CG(x)|
2.

Proof. Using the definition of Z1(ΓG), we have

Z1(ΓG) =
∑

x∈G−Z(G)

deg(x)2

=
∑

x∈G−Z(G)

(|G| − |CG(x)|)
2

= |G|2(|G| − |Z(G)|) − 2|G|
∑

x∈G−Z(G)

|CG(x)|+
∑

x∈G−Z(G)

|CG(x)|
2

= |G|2(|G| + |Z(G)| − 2k(G)) +
∑

x∈G−Z(G)

|CG(x)|
2.

5. The Second Zagreb Index of a Non-Commuting Graph

In this section, we calculate the second Zagreb index of a non-commuting graph.

Theorem 10. Let G be a finite group and ΓG its non-commuting graph.
Then

Z2(ΓG) =
1

2



|G|2(|G| − k(G))2 + |G|2(k(G) − |Z(G)|) −
∑

1≤i≤n

|CG(xi)|
2



 .
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Proof. Assume that x is an arbitrary vertex of ΓG and is fixed. Now be
calculated

∑

x 6=y∈G−Z(G)

deg(x) · deg(y):

∑

x 6=y∈G−Z(G)

deg(x) · deg(y) =
∑

x 6=y∈G−Z(G)

(|G| − |CG(x)|)(|G| − |CG(y)|)

=
∑

x 6=y∈G−Z(G)

(|G| − |CG(x)|)|G|

−
∑

x 6=y∈G−Z(G)

(|G| − |CG(x)|)|CG(y)|

= |G|(|G| − |Z(G)| − 1)(|G| − |CG(x)|)

− (|G| − |CG(x)|)
∑

x 6=y∈G−Z(G)

|CG(y)|.

We know that
∑

y∈G−Z(G)

|CG(y)| = |G|(k(G)−|Z(G)|), thus
∑

x 6=y∈G−Z(G)

|CG(y)|.

Can be found as follows:
∑

x 6=y∈G−Z(G)

|CG(y)| = |G|(k(G) − |Z(G)|)− |CG(x)| where

∑

x 6=y∈G−Z(G)

deg(x) · deg(y) = (|G| − |CG(x)|)(|G|(|G| − k(G)) + |CG(x)| − |G|).

Next, we calculate the second Zagreb index of the non-commuting graph. Let
G− Z(G) = {x1, x2, . . . , xn}. Then

Z2(ΓG) =
∑

{x,y}⊆V

deg(x) · deg(y)

=
1

2
(

∑

x1 6=y∈G−Z(G)

deg(x1) · deg(y)

+
∑

x2 6=y∈G−Z(G)

deg(x2) · deg(y)

+ . . . +
∑

xn 6=y∈G−Z(G)

deg(xn) · deg(y))

=
1

2
[(|G| − |CG(x1)|)(|G|(|G| − k(G)) + |CG(x1)| − |G|)

+ (|G| − |CG(x2)|)(|G|(|G| − k(G)) + |CG(x2)| − |G|)

+ . . . + (|G| − |CG(xn)|)(|G|(|G| − k(G)) + |CG(xn)| − |G|)]
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=
1

2
(|G|2(|G| − k(G))(|G| − |Z(G)|) − |G|(|G| − k(G))

∑

1≤i≤n

|CG(xi)|

+ |G|
∑

1≤i≤n

|CG(xi)| −
∑

1≤i≤n

|CG(xi)|
2

− |G|2(|G| − |Z(G)|) + |G|
∑

1≤i≤n

|CG(xi)|)

=
1

2



|G|2(|G| − k(G))2 + |G|2(k(G) − |Z(G)|) −
∑

1≤i≤n

|CG(xi)|
2



 .
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