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Abstract. The operation of insertion has been studied extensively throughout the years for its impact in many areas of theoretical
computer science such as DNA computing. First introduced as a generalization of the concatenation operation, many variants
of insertion have been introduced, each with their own computational properties. In this paper, we introduce a new variant that
enables the generation of some special types of groups called sequential insertion systems with interactions. We show that these
new systems are able to generate all finite cyclic and dihedral groups.

INTRODUCTION

The operation of insertion is a generalization of the operation of concatenation. Insertion allows a word to be inserted
in arbitrary positions in an axiom or an iterated/generated word, where before, in the case of concatenation, the
addition of a word could only be done at the right extremity of an axiom word. Kari in [1] had introduced many
variants of insertion, that include sequential, parallel, controlled, permuted, and scattered. From there, the concept of
bonded insertion systems were introduced in [2, 3]. Not only that, by combining the operations of contextual insertion
and contextual deletion, the insertion-deletion systems were introduced in [4], which was later shown to be of high
computability [5, 6, 7, 8].

The combination of formal languages and group theory has been done before as seen in [9, 10, 11, 12], where
it was shown that automata diagrams could be used to describe different types of groups, which include Abelian and
permutation groups.

The interdisciplinary work between formal languages and group theory motivated the work in this paper, where
we use the insertion operation to introduce a new system that will enable us to generate several types of groups called
sequential insertion systems with interactions.

This paper is organized as follows: in Section 2 we provide the preliminaries necessary for the work in this paper.
Next, we present our findings in Section 3. Lastly, we give our conclusion and some suggestions for future work in
Section 4.
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PRELIMINARIES

In this section, we only recall some notations and definitions used in this paper as we assume that the reader is
knowledgeable regarding the basic concepts in formal languages and group theory. For further details, we direct the
reader to [13] and [14], respectively.

The cardinality of a set S is denoted by |S |. The inclusion of a set A in a set B is denoted by A ⊆ B and the proper
inclusion by A ⊂ B.

An alphabet is a finite nonempty set of symbols and is denoted by Σ, while Σ∗ is the set of strings over the
alphabet Σ. A language L over an alphabet Σ is a subset of Σ∗. The empty word is denoted by λ. For a word w, the
length is denoted by |w|.

An insertion system, introduced in [1], is a triple γ = (Σ, A, I), where Σ is the alphabet, A ⊆ Σ∗ is a finite set of
axioms and I ⊆ Σ∗ is a finite set of insertion rules. The derivation relation⇒γ of an insertion system γ = (Σ, A, I) is
defined as follows: let α, β ∈ Σ∗. Then α ⇒γ β if and only if α = α1α2 for α1, α2 ∈ Σ∗ and there is an α′ ∈ I such that
β = α1α

′α2. The reflexive and transitive closure of⇒γ is denoted by⇒∗γ. Should there be no danger of confusion, we
write⇒ and⇒∗ instead of⇒γ and⇒∗γ, respectively.

The language generated by an insertion system γ = (Σ, A, I) is defined as

L(γ) = {β | there exists an axiom α ∈ A such that α⇒∗γ β}.
A sequential insertion system is an insertion system that works sequentially, that is, only one insertion is done at

one position at every derivation step.
The following definitions are as found in [14].
A group 〈G, ∗〉 is a set G, closed under a binary operation ∗ such that the following axioms are satisfied:

1. For all a, b, c ∈ G we have
(a ∗ b) ∗ c = a ∗ (b ∗ c).

2. There is a unique element e ∈ G such that for all x ∈ G,

x ∗ e = e ∗ x = x.

3. Corresponding to each a ∈ G, there is an element a−1 ∈ G such that

a ∗ a−1 = a−1 ∗ a = e.

The order of a group G is denoted by |G| and is equal to the number of elements in G.
A group G = 〈a〉 is said to be a cyclic group if for an element a ∈ G,

G = {an | n ∈ Z},
where a is the generator of G. The order of the group G is the order of the cyclic group generated by its generator i.e.
|G| = |〈a〉|.

A multiplicative group of integers modulo n, denoted by U(n) is the set of non-negative integers less than n and
relatively prime to n under the operation multiplication modulo n.

A group of integers modulo n, denoted by Zn is the set of non-negative integers less than n under the operation
addition modulo n.

A permutation of a set A is a function φ : A→ A that is both one to one and onto. For a finite set A = {1, 2, · · · , n},
the group of all permutations of A is the symmetric group on n letters, and is denoted by S n with an order of n!.

The nth dihedral group Dn is the group of symmetries of the regular n-gon, where the order of Dn is 2n.
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MAIN RESULTS

Sequential Insertion Systems with Interactions
In this section we introduce a new variant of insertion systems called sequential insertion systems with interactions.
This system will enable us to generate languages that mimic groups with specific binary operations by defining in-
teractions between two consecutive symbols in a derivation step. The idea behind using the concept of interactions
comes from the concept of L-systems with interactions (IL-systems for short) [15].

The formal definition of this new system is as follows.

Definition 1 A sequential insertion system with interaction (∗SINS-system for short) is a quadruple ζ = (Σ, A, I, ∗),
where Σ is an alphabet, A ⊆ Σ∗ is a finite set of axioms, I ⊆ Σ∗ is a finite set of insertion rules and ∗ is a binary
operation, such that for all β ∈ Σ∗, β = α1α2 = α1 ∗ α2, where α1, α2 ∈ Σ∗.

The derivation relation⇒ζ is defined as follows: for α, β ∈ Σ∗, α ⇒ζ β if and only if there exists an α′ ∈ I such
that α ∗ α′ = β.

The reflexive and transitive closure of⇒ζ is denoted by⇒∗ζ . Should there be no danger of confusion, we write⇒
and⇒∗ instead of⇒ζ and⇒∗ζ , respectively.

The language generated by a ∗SINS-system ζ = (Σ, A, I, ∗) is defined as

L(ζ) = {β | there exists an axiom α ∈ A such that α⇒∗ζ β}.

The following examples demonstrate how sequential insertion systems with interactions work.

Example 1 Let ζ1 = ({0, 1, 2, 3}, {0}, {1}, addition modulo 4) be a ∗SINS-system. The derivation steps of ζ1 are as
follows:

0⇒ 0 ∗ 1 = 1⇒ 1 ∗ 1 = 2⇒ 2 ∗ 1 = 3⇒ 3 ∗ 1 = 0.

Hence, we obtain the language generated by ζ1,

L(ζ1) = {0, 1, 2, 3} = Z4.

Example 2 Let ζ2 = ({1, 2, 3, 4}, {1}, {2},multiplication modulo 5) be a ∗SINS-system. The derivation steps of ζ2
are as follows:

1⇒ 1 ∗ 2 = 2⇒ 2 ∗ 2 = 4⇒ 4 ∗ 2 = 3⇒ 3 ∗ 2 = 1.

Hence, we obtain the language generated by ζ2,

L(ζ2) = {1, 2, 3, 4} = U(5).

Example 3 Let ζ3 = (S 3, {(1)}, {(123), (12)}, composition) be a ∗SINS-system. The derivation steps of ζ3 are as
follows:

(1)⇒ (1) ∗ (123) = (123)⇒ (123) ∗ (123) = (132)⇒ (132) ∗ (123) = (1),

(1)⇒ (1) ∗ (12) = (12),

(1)⇒ (1) ∗ (123) = (123)⇒ (123) ∗ (12) = (13),

(1)⇒ (1) ∗ (123) = (123)⇒ (123) ∗ (123) = (132)⇒ (132) ∗ (12) = (23).

Hence, we obtain the language generated by ζ3,

L(ζ3) = {(1), (123), (132), (12), (13), (23)} = S 3.
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Generating Finite Cyclic and Dihedral Groups
We have seen in Examples 1–3 how a ∗SINS-system can generate the cyclic groups Z4 or U(5) or the symmetric
group, S 3, which is also known as the dihedral group D3 of order 6. Those results provided the inspiration towards
obtaining the results presented in this section.

In this section, we show that ∗SINS-systems can generate all finite cyclic groups and dihedral groups. Firstly, we
show the former.

Theorem 1 For every finite cyclic group G, there exists a ∗SINS-system ζ = (Σ, A, I, ∗) such that L(ζ) = G.
Proof. Let G be a finite cyclic group which is closed under a binary operation ∗. By definition, G contains the identity
element e and for all g in G, there exists an element g−1 the inverse of g such that gg−1 = e. Also, since G is cyclic,
there exists an element a in G such that G is generated by a.

Now, we define a ∗SINS-system ζG = (Σ, A, I, ∗) to generate a language that is equal to a finite cyclic group G.
We do this by constructing the system as follows:

Let
Σ be the set of all the elements in G i.e. Σ = G,
A ⊆ Σ∗ be the set containing the identity element e of G,
I ⊆ Σ∗ be the set containing the generator a of G and its inverse a−1,
∗ be the binary operation of G.
Then, the language generated by ζG is

L(ζG) = {an, a−n | n ∈ Z} = G.

�
The following example provides a clearer simulation of our proof.

Example 4 Let Z6 be the set of non-negative integers less than 6. By definition, Z6 is a finite cyclic group under
addition modulo 6, generated by 1 and 5 and has the identity element 0. We may construct the ∗SINS-system to
generate Z6 as follows:
Let ζZ6

= ({0, 1, 2, 3, 4, 5}, {0}, {1, 5}, addition modulo 6) be a ∗SINS-system. The derivation steps of ζZ6
are as follows:

0⇒ 0 ∗ 1 = 1⇒ 1 ∗ 1 = 2⇒ 2 ∗ 1 = 3⇒ 3 ∗ 1 = 4⇒ 4 ∗ 1 = 5⇒ 5 ∗ 1 = 0,

0⇒ 0 ∗ 5 = 5⇒ 5 ∗ 5 = 4⇒ 4 ∗ 5 = 3⇒ 3 ∗ 5 = 2⇒ 2 ∗ 5 = 1⇒ 1 ∗ 5 = 0.

Hence, we obtain the language generated by ζZ6
,

L(ζZ6
) = {0, 1, 2, 3, 4, 5} = Z6.

Note that the inclusion of both the generator and its inverse in the set of insertion rules is necessary to guarantee
that all the elements in a group G are generated. However, in some cases it suffices to only include the generator of
the group without its inverse, as shown in Examples 1, 2 and 4. Thus, we obtain at the following corollaries.

Corollary 1 For all cyclic groups Zn, it suffices to only include the generator of Zn in the set I of insertion rules
of a ∗SINS-system ζ = (Σ, A, I, ∗) to obtain L(ζ) = Zn.

Corollary 2 For all cyclic groups U(n), it suffices to only include the generator of U(n) in the set I of insertion
rules of a ∗SINS-system ζ = (Σ, A, I, ∗) to obtain L(ζ) = U(n).

Next, we show that ∗SINS-systems can generate all dihedral groups.
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Theorem 2 For every dihedral group Dn, there exists a ∗SINS-system ζ = (Σ, A, I, ∗) such that L(ζ) = Dn.
Proof. Let Dn be a dihedral group which is closed under its binary operation ∗. By definition, Dn contains n number
of rotations and n number of reflections, which includes the identity element e.

Now, we define a ∗SINS-system ζDn = (Σ, A, I, ∗) to generate a language that is equal to a dihedral group Dn. We
do this by constructing the system as follows:

Let
Σ be the set of all the elements in Dn i.e. Σ = Dn,
A ⊆ Σ∗ be the set containing the identity element e of Dn,
I ⊆ Σ∗ be the set containing a rotation ρ which is not the identity and a reflection μ,
∗ be the binary operation of Dn, which is composition.

Then, the language generated by ζDn is

L(ζDn ) = {ρn, μn, ρmμn | m, n ∈ Z,m ≤ n} = Dn.

�
For further clarification, we provide the following example.

Example 5 Let D4 be the dihedral group of order 8. By definition, D4 contains 4 rotations and 4 reflections, with
the identity element ρ0. To generate D4, we construct the ∗SINS-system ζD4

= (D4, {ρ0}, {ρ90, μH}, composition). The
derivation steps of ζD4

are as follows:

ρ0 ⇒ ρ0 ∗ ρ90 = ρ90 ⇒ ρ90 ∗ ρ90 = ρ180 ⇒ ρ180 ∗ ρ90 = ρ270,

ρ0 ⇒ ρ0 ∗ μH = μH ,

ρ0 ⇒ ρ0 ∗ ρ90 = ρ90 ⇒ ρ90 ∗ μH = μD,

ρ0 ⇒ ρ0 ∗ ρ90 = ρ90 ⇒ ρ90 ∗ ρ90 = ρ180 ⇒ ρ180 ∗ μH = μV ,

ρ0 ⇒ ρ0 ∗ ρ90 = ρ90 ⇒ ρ90 ∗ ρ90 = ρ180 ⇒ ρ180 ∗ ρ90 = ρ270 ⇒ ρ270 ∗ μH = μD′ .

Hence, we obtain the language generated by ζD4
,

L(ζD4
) = {ρ0, ρ90, ρ180, ρ270, μH , μD, μV , μD′ } = D4.

In both of the proofs in Propositions 1 and 2, we require the alphabet Σ to include all the elements in the desired
group. Although it may seem trivial i.e. the inclusion of all the elements in the alphabet Σ will automatically generate
a language equal to the desired group, this is in fact not the case. Instead, we require the alphabet Σ to include all the
elements in the desired group so that the system is able to identify the elements in the input and sentential form and
also that the system does not skip any desired element in the final output.

CONCLUSION

In this paper, a new variant of insertion systems was introduced, namely the sequential insertion systems with inter-
actions (∗SINS-system). We have simulated the generation of languages that are equal to some well-known groups,
namely two cyclic groups of order four and the symmetric group of order six. Other than that, we have also shown
that the ∗SINS-system is able to generate all finite cyclic and dihedral groups, as seen in Theorems 1 and 2.

In the future, we hope to extend the idea of generating groups using the ∗SINS-system to other types of groups
and also subgroups. We also hope to determine the generative power of the ∗SINS-system with respect to the Chomsky
hierarchy.

Our results have shown a significant relation between formal languages and group theory, which we hope will
spur even more interdisciplinary research and collaborations between theoretical computer scientists and mathemati-
cians. Not only that, due to its immense potential, we also foresee the application of ∗SINS-system in DNA computing.
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[5] L. Kari, Gh. Păun, G. Thierrin, and Sh. Yu, “At the Crossroads of DNA Computing and Formal Languages:

Characterizing RE using Insertion-Deletion Systems,” in Proceedings of 3rd DIMACS Workshop on DNA
Based Computing, 1999, pp. 318–333.

[6] A. Takahara, and T. Yokomori, Natural Computing 2, 321–336 (2003).
[7] S. Verlan, Computer Science Journal of Moldova 18, 210–245 (2010).
[8] A. Krassovitskiy, “Complexity and Modeling Power of Insertion-Deletion Systems”, Ph.D. thesis, Universitat

Rovira i Virgili (2011).
[9] Y. S. Gan, W. H. Fong, N. H. Sarmin, and S. Turaev, Malaysian Journal of Fundamental and Applied Sciences

8, 24–30 (2012).
[10] Y. S. Gan, W. H. Fong, N. H. Sarmin, and S. Turaev, Malaysian Journal of Fundamental and Applied Sciences

9, 35–40 (2013).
[11] W. H. Fong, Y. S. Gan, N. H. Sarmin, and S. Turaev, “Automata Diagram over Abelian Groups,” in AIP

Conference Proceedings, 2013.
[12] W. H. Fong, Y. S. Gan, N. H. Sarmin, and S. Turaev, “Automata for Subgroups,” in AIP Conference Proceed-

ings, 2014.
[13] G. Rozenberg, and A. Salomaa, Handbook of Formal Languages, Springer-Verlag, Berlin, 1997.
[14] J. B. Fraleigh, A First Course in Abstract Algebra, 7th Edition, Addison Wesley, 2003.
[15] G. Rozenberg, and A. Salomaa, The Mathematical Theory of L-systems, Academic Press, 1980.

070005-6

http://dx.doi.org/10.1006/inco.1996.0091
http://dx.doi.org/10.1023/B:NACO.0000006769.27984.23

