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Abstract. A grouplike, which has been introduced earlier, is an al-
gebraic structure between semigroups and groups and its axioms are
generalization of the four group axioms. We observe that every group-
like is a homogroup (a semigroup containing an ideal subgroup) with
a unique central idempotent. On the other hand, decomposer and as-
sociative functions on groups, semigroups and even magmas have been
introduced in 2007. In this paper, we introduce special type of group-
likes (namely f -grouplike) that is motivated from the both topics. We
prove that f-grouplikes is a proper subclass of Class United Grouplikes,
and we study some of their properties.
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1. Introduction

The term “homogroup” was introduced by G. Thierrin on 1961, but ear-
lier it was studied by Clifford, and Miller in [1]. A semigroup is called
homogroup (see [1, 6, 7]) if it contains an ideal subgroup. Also, “grou-
plikes” have been introduced and studied by Hooshmand [2]. The grou-
plike axioms are generalization of the four group axioms and there is
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a close relation between grouplikes and homogroups. It is shown that
a semigroup Γ is grouplike if and only if it contains a unique central
idempotent e that is solvable (i.e. for every x ∈ Γ there exists y ∈ Γ
in which xy = yx = e). The first ideas of the grouplikes are motivated
from b-parts of real numbers, introduced by the first author and also
are studied in [5]. Recall that an epigroup is a semigroup in which every
element has a power that belongs to a subgroup (see [8]). Every “class
united grouplike” (i.e. a grouplike with the property exy = xy for all
x, y, see [2]) is a unipotent epigroup and homogroup. The class united
grouplikes are completely characterized in [2], and also regular group-
likes are studied in [4].
On the other hand, decomposer and associative functions on groups,
semigroups (and even magmas) were introduced by the first author and
their general form were characterized on arbitrary groups (see [3]). If
(G, ·) is a group and f : G → G is an associative function, then the
f -multiplication “·f” is an associative binary operation and (G, ·f ) is a
semigroup with some additional properties.

2. Grouplikes

Recall that a magma (or groupoid) is a basic kind of algebraic structures
which consists of a set X equipped with a single binary operation X ×
X → X. For every magma X, we consider Z(X) and It(X) = E(X) as
the center and the set of all idempotents of X, respectively (it may be
empty) and put Zt(X) := Z(X) ∩ It(X) that is the set of all central
idempotents. Now, we give a summary about grouplikes introduced and
studied in [2].

Definition 2.1. We call a semigroup (Γ, ·) grouplike if it satisfies the
following axioms:
(a) There exists ε ∈ Γ such that

εx = ε2x = xε2 = xε : ∀x ∈ Γ,

(b) For every ε satisfying (a) and every x ∈ Γ, there exists y ∈ Γ such
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that
xy = yx = ε2.

We call every ε ∈ Γ satisfying the axioms (a) and (b) an identity-like.

Note that axiom (a) is equivalent to Zt(Γ) = ∅ and (b) says ε2 is solvable
for every ε satisfying (a). If (Γ, ·) is a grouplike but not a group, then we
call it proper grouplike. If a semigroup (S, ·) satisfies axiom (a), then we
call it monoidlike. By unipotent monoidlike [resp. grouplike], we mean
a monoidlike [resp. grouplike] with only one idempotent (equivalently, a
semigroup with a central idempotent and no other idempotents).

Lemma 2.2.([2]) Every grouplike contains a unique idempotent identity-
like element (denoted by e).
Let Γ be a grouplike and let e be the unique idempotent identity-like
element of Γ. Then, we call e standard identity-like and use the notation
(Γ, ·, e).
Note that every identity-like ε satisfies ε2 = e = e2, by Lemma 2.2.
Every y that is corresponded to x in axiom (b) is called inverse-like of x
and is denoted by xe or x

, and the set of all inverse-likes x is denoted
by Inve(x) = Inv(x). So y is an inverse-like of x (for a given identity-
like ε) if and only if xy = yx = e.
Therefore, we get the following axioms for grouplikes that is very similar
to the four groups axioms:
(i) Closure,
(ii) Associativity,
(iii) There exists a unique element e ∈ Γ such that ex = xe , e2 = e for
all x ∈ X (i.e. e is its unique central idempotent),
(iv) For every x ∈ Γ, there exists y ∈ Γ (not necessarily unique) such
that xy = yx = e.
(Of course, we can minimize these axioms and give several equivalent
conditions for a semigroup to be grouplike, see [2]).

Example 2.3. Consider the additive group R and fix b ∈ R \ {0}. For
each real number a denote by [a] the largest integer not exceeding a and
put (a) = a− [a] (the decimal or fractional part of a). Now, set

[a]b = b[
a

b
] , (a)b = b(

a

b
).
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We call [a]b b-integer part of a and (a)b b-decimal part of a. Also,
[ ]b, ( )b are called b-decimal part function and b-integer part function,
respectively. By +b we mean the b-addition x +b y := (x + y)b for all
real numbers x, y. It is shown that

(x+b y) +b z = (x+ y + z)b = x+b (y +b z) : ∀x, y, z ∈ R,

(R,+b, 0) is a proper grouplike (namely real b-grouplike, and specially
real grouplike if b = 1). Moreover, the set of all its identity-likes is bZ
that is also the set of all inverse-likes of 0.

Lemma 2.4.([2]) For every grouplike (Γ, ·, e) we have
(i) eΓ is the least ideal which is also a maximal subgroup of Γ and Zt(Γ)
is singleton. Therefore, every grouplike is a homogroup with a unique
central idempotent (and visa versa).
(ii) Γ is unipotent grouplike if and only if It(Γ) ⊆ Z(Γ) (equivalently
It(Γ) = Zt(Γ)), so every commutative grouplike is unipotent grouplike.
(iii) It(Γ) ⊆ Inv(e).
(v) In each of the following descriptions, e is the unique element of Γ:
- There exists a unique central idempotent element in Γ.
- There exists a unique idempotent identity-like in Γ.
- There exists the least idempotent in Γ.
- There exists a unique solvable identity-like in Γ.

Corollary 2.5. For every semigroup S, the following statements are
equivalent.
(i) S is a grouplike [resp. unipotent grouplike],
(ii) S has an ideal subgroup containing all its central idempotents [resp.
idempotents],
(iii) S contains a minimum ideal which is also its maximal [resp. max-
imum] subgroup and Zt(S) is singleton.

For every x, y ∈ Γ we use the notation x ∼e y if and only if ex = ey. The
relation ∼e is a semigroup congruence and Γ ∼e= Γ ( the set of all
equivalent classes x that are gotten from ∼e) is its quotient semigroup
with the binary operation ◦ defined by x ◦ y = xy.

Theorem 2.6.([2]) The quotient semigroup (Γ ∼e, ◦) is a group and
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Γ ∼e
∼= eΓ.

An important class of grouplikes is class united grouplikes that are char-
acterized in [2]. It is shown that a grouplike is class united if and only
if it satisfies the identity-like hypothesis (H1) (i.e. exy = xy for all
x, y ∈ Γ, which means e is a left bi-identity of Γ). Therefore, (Γ, ·) is
class united grouplike if and only it satisfies the four axioms (i)-(iv) and
also (H1). It is shown that every class united grouplike is unipotent
epigroup (x2 = ex2 ∈ eΓ for all x).
We say Γ1 is isomorphic to Γ2 and denote by Γ1 ∼= Γ2 if there exists
a grouplike isomorphism (equivalently semigroup isomorphism) between
them.

3. Decomposer, associative and canceler func-
tions on groups

Let (G, .) be a group with the identity element e. If f, g are functions
from G to G, then define the functions f.g and f− by

f.g(x) = f(x)g(x) , f−(x) = f(x)−1 : ∀x ∈ G.

We denote the identity function on G by ιG and put f∗ = ιG.f
− , f∗ =

f−.ιG and call f∗ [resp. f∗] left ∗-conjugate of f [resp. right ∗-conjugate
of f ]. They are also called ∗-conjugates of f . Note that f∗(e) = f∗(e) =
f−(e) = f(e)−1.
If (G,+) is additive group, then the notations e, f−, f.g, f.g− are re-
placed by 0, −f , f + g, f − g and we have f∗ = f∗ = ιG − f .

Example 3.1. Fix b ∈ R\{0}. Then, ( )∗b = [ ]b and [ ]∗b = ( )b, both are
idempotent, so their compositions are zero and (R)b = Rb = b[0, 1) =
{bd|0  d < 1} and [R]b = bZ = b.
If f is an arbitrary function from G to G and f(x) = f(y), then x =
f∗(x)f(y) = f(y)f∗(x). The converse is valid if f is decomposer and we
have the following definition (see [3]).

Definition 3.2. Let f be a function from G to G. We call f :
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(a) right [resp. left] decomposer if

f(f∗(x)f(y)) = f(y) [resp. f(f(x)f∗(y)) = f(x)] : ∀x, y ∈ G.

(b) right [resp. left] strong decomposer if

f(f∗(x)y) = f(y) [resp. f(xf∗(y)) = f(x)] : ∀x, y ∈ G.

(c) right canceler [resp. left canceler ] if

f(xf(y)) = f(xy) [resp. f(f(x)y) = f(xy)] : ∀x, y ∈ G.

(d) associative if

f(xf(yz)) = f(f(xy)z) : ∀x, y, z ∈ G.

(e) strongly associative if

f(xf(yz)) = f(f(xy)z) = f(xyz) : ∀x, y, z ∈ G.

Note: We call f decomposer or two-sided decomposer [resp. canceler] if
it is left and right decomposer [resp. canceler]. In each parts of the above
and other definitions if f(e) = e, then we will add the word standard to
the titles.

Example 3.3. The b-decimal part function f = ( )b is standard strong
decomposer, canceler and strongly associative. But the b-integer part
function f∗ = [ ]b is only standard decomposer.
Consider G = {1, a, a2, a3, b, ba, ba2, ba3} ∼= D4 (a4 = b2 = 1, bab =
a−1 = a3). Put Ω = {1, ba, ba2, ba3} and

g(x) =


x x ∈ Ω
bx x /∈ Ω

Considering the relation x /∈ Ω ⇔ bx ∈ Ω, it can be seen that g is
(standard) right strong decomposer.

Theorem 3.4. If f : G → G, then all statements of (A), (B) and (C)
are equivalent
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(A)
(i) f is associative,
(ii) There exists a constant c ∈ G (c = f(e)) and a standard strongly
associative function g such that f = c · g and g(cxy) = g(xcy) = g(xyc)
for all x, y, z (i.e c ∈ Cc(f) = Cc(g), see [3]).
(ii) There exists a constant d ∈ G and a standard strongly associative
function h such that f = h · d and h(dxy) = h(xdy) = h(xyd) for all
x, y, z.
(B)
(i) f is strongly associative,
(ii) f is associative and idempotent,
(iii) f is associative and f(e)-periodic (i.e. f(f(e)t) = f(tf(e)) = f(t),
for all t),
(iv) f is strong decomposer,
(v) f is decomposer and f∗(G) = f∗(G)  G,
(vi) f is canceler,
(ii) f is associative and f(f(e)) = f(e).
(C)
(i) f is standard associative,
(ii) f is standard strongly associative,
(iii) f is standard case of all (one) items of (B).
By using the above theorem, it can be shown that if f is associative,
then for every x, y ∈ G

f(f(x)y) = f(xf(y)) = f(f(e)xy) = f(xf(e)y) = f(xyf(e)) = f2(xy),

f(f∗(x)y) = f(f∗(e)y) = f(yf∗(e)),

f(xf∗(y)) = f(xf∗(e)) = f(f∗(e)x).

Also, we observe that f∗(G) = f∗(G) and it is a normal subgroup if f is
strongly associative (see part (B) of the above theorem).

4. f-Grouplikes

We call G a class group if G is a group for which all its elements are
nonempty disjoint sets. For example, every quotient group is a class
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group. Now, in view of [2] one can see that:
• Every grouplike (Γ, ·, e) gives us the class group G = Γ = Γ ∼e, and
conversely every class group G gives us the grouplike Γ = ∪G.
• Every grouplike gives us the group G = eΓ, now as the converse we
want to construct a class of grouplikes by using a given group G (instead
of class groups). For the order we need to consider the f -multiplications.
Consider a magma (X, ·) and a function f from X to X. We get another
binary operation in X by defining x ·f y = f(xy). In fact ·f = fo·, hence
we call it f-multiplication of “·”. Clearly (X, ·f ) is a semigroup if and
only if f is associative (e.g. if f is constant function). Also it is seen that
Z(X, ·) ⊆ Z(X, ·f ). But in general Z(X, ·f )  Z(X, ·), for if X = G is a
group with the center {e} and f is a non-standard associative function
on X, then (e = f(e) and) {e, f(e)} ⊆ Z(X, ·f ). By the following main
theorem, we can introduce f -grouplikes in several ways.

Theorem 4.1. If f : G → G, then the following statements are equiva-
lent:
(i) (G, ·f ) is a grouplike,
(ii) (G, ·f ) is a monoidlike,
(iii) (G, ·f ) is a semigroup,
(iv) f is associative.

Proof. Clearly (i) ⇒ (ii) ⇒ (iii) ⇒ (iv). Now let f be associative.
There exists a standard strongly associative function g such that f = c·g
and c = f(e). Putting ∆g := g∗(G) = g∗(G), ∆f := f∗(G) = f∗(G) and
considering δ ∈ G, we have ∆f = c−1∆g = ∆gc

−1, ∆g  G and

δ ·f x = δ ·f δ ·f x ⇔ f(δx) = f(f(δ2)x)⇔ g(δx) = g(cδ2x)

⇔ cδ2x ∈ ∆gδx ⇔ δ ∈ c−1∆g = ∆f .

On the other hand if δ ∈ ∆f , then δ = f∗(x0) for some x0 ∈ G and

δ ·f x = f(f∗(x0)x) = cg(g∗(x0)c−1x) = cg(c−1x)

= cg(c−1xg∗(x0)) = cg(xg∗(x0)c−1) = f(xf∗(x0)) = x ·f δ.
Now if x ∈ G and δ ∈ ∆f , then putting y = f−(e)δx−1 we have

x ·f y = f(xy) = f(xf−(e)δx−1) = f(f−(e)f(xf−(e)δ)x−1)
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= f(f−(e)f(xf−(e)f−(e))x−1) = f(xf(e)−2x−1) = f(f(e)−2xx−1) = δ·fδ.

Similarly we have f(yx) = f(f(e)−2) = δ ·f δ. Therefore (G, ·f ) is a
grouplike and the proof is complete. 

Therefore, if f : (G.·) → (G, ·) is associative, then (G, ·f ) is a grouplike
and its standard identity-like is ef := f(f(e)−2) = f(f∗(e)f∗(e)).

Corollary 4.2. If f : G → G, then the following statements are equiv-
alent:
(i) (G, ·f , f(e)) is a grouplike,
(ii) (G, ·f ) is a grouplike and {f(e), f(e)−3} ⊆ f∗(G),
(iii) (G, ·f ) is a grouplike and f(e)−3 ∈ f∗(G),
(iv) f is associative and f(f∗(e)f∗(e)) = f(e).

Proof. If (G, ·f , f(e)) is a grouplike, then f(e) = ef = f(f(e)−2) ∈
f∗(G) and so f(e)−3 = f∗(f(e)−2) ∈ f∗(G). Conversely, if f(e)−3 ∈
f∗(G), then f(e)−2 = f∗(x0)f(e), for some x0 ∈ G, and

f(f(e)−2) = f(f∗(x0)f(e)) = f(f∗(e)f(e)) = f(e).

Now, one can obtain these results by Theorem 4.1. 

Corollary 4.3. If f : G → G, then the following statements are equiv-
alent:
(i) (G, ·f , f(e)) is a grouplike and e is an identity-like element,
(ii) (G, ·f ) is a grouplike and e is an identity-like,
(iii) (G, ·f ) is a grouplike and e ·f f(e) = f(e),
(iv) f is associative and f2(e) = f(e),
(v) f is strongly associative.

Proof. Note that if e is an identity-like element, then e ∈ f∗(G) and so
e = f∗(x0) for some x0 ∈ G. Thus

f(e) = f(f∗(x0)e) = f(f∗(e)e) = f(f∗(x0)f∗(e))

= f(f∗(e)f∗(e)) = ef ,

and
f(f(e)) = f(f(f(e)−2)) = f(f(e)−2f(e)) = f(f(e)−1)

f -GROUPLIKES 49

= f(f−(e)f(xf−(e)f−(e))x−1) = f(xf(e)−2x−1) = f(f(e)−2xx−1) = δ·fδ.

Similarly we have f(yx) = f(f(e)−2) = δ ·f δ. Therefore (G, ·f ) is a
grouplike and the proof is complete. 

Therefore, if f : (G.·) → (G, ·) is associative, then (G, ·f ) is a grouplike
and its standard identity-like is ef := f(f(e)−2) = f(f∗(e)f∗(e)).

Corollary 4.2. If f : G → G, then the following statements are equiv-
alent:
(i) (G, ·f , f(e)) is a grouplike,
(ii) (G, ·f ) is a grouplike and {f(e), f(e)−3} ⊆ f∗(G),
(iii) (G, ·f ) is a grouplike and f(e)−3 ∈ f∗(G),
(iv) f is associative and f(f∗(e)f∗(e)) = f(e).

Proof. If (G, ·f , f(e)) is a grouplike, then f(e) = ef = f(f(e)−2) ∈
f∗(G) and so f(e)−3 = f∗(f(e)−2) ∈ f∗(G). Conversely, if f(e)−3 ∈
f∗(G), then f(e)−2 = f∗(x0)f(e), for some x0 ∈ G, and

f(f(e)−2) = f(f∗(x0)f(e)) = f(f∗(e)f(e)) = f(e).

Now, one can obtain these results by Theorem 4.1. 

Corollary 4.3. If f : G → G, then the following statements are equiv-
alent:
(i) (G, ·f , f(e)) is a grouplike and e is an identity-like element,
(ii) (G, ·f ) is a grouplike and e is an identity-like,
(iii) (G, ·f ) is a grouplike and e ·f f(e) = f(e),
(iv) f is associative and f2(e) = f(e),
(v) f is strongly associative.

Proof. Note that if e is an identity-like element, then e ∈ f∗(G) and so
e = f∗(x0) for some x0 ∈ G. Thus

f(e) = f(f∗(x0)e) = f(f∗(e)e) = f(f∗(x0)f∗(e))

= f(f∗(e)f∗(e)) = ef ,

and
f(f(e)) = f(f(f(e)−2)) = f(f(e)−2f(e)) = f(f(e)−1)



50 M. H. HOOSHMAND AND N. H. SARMIN

= f(f∗(x0)f(e)−1) = f(f∗(e)f(e)−1) = ef = f(e).

Therefore, one can drive them. 

Corollary 4.4. If f : G → G, then the following statements are equiv-
alent:
(i) (G, ·f , e) is a grouplike,
(ii) (G, ·f ) is a grouplike and e is idempotent,
(iii) f is standard associative,
(iv) f is standard strongly associative.

Proof. If (G, ·f , e) is a grouplike, then e = f(f(e)−2) ∈ f∗(G) and so

f(e) = f(f∗(x0)e) = f(f∗(e)e) = f(f∗(x0)f∗(e)) = f(f∗(e)f∗(e)) = e,

(i.e. e ·f e = f(e) = e). Now, we arrive at the results by Theorem 4.1. 

Note. The assumption “(G, ·f , f(e)) is a grouplike” alone, does not im-
ply “f is strongly associative”. For instance consider (R,+f , 12), where
f(x) = 1

2 + (x). Hence, we have

f is associative⇔ (G, ·f , f(f(e)−2)) is a grouplike.

f is standard (strongly) associative⇔ (G, ·f , e) is a grouplike.

f is strongly associative⇒ (G, ·f , f(e)) is a grouplike.

Now, we are ready to introduce f -grouplikes.

Definition 4.5. We say a magma (Γ, ) is f-grouplike if there exists
a binary operation · in Γ such that (Γ, ·) is group and there exists an
associative function f : (Γ, ·)→ (Γ, ·) such that  = ·f .
Therefore, every grouplike (Γ, ) is f -grouplike if and only there ex-
ists a binary operation · in Γ such that (Γ, ·) is group and  is an f -
multiplication of “·”. Note that, in this case  = ·f implies f : (Γ, ·) →
(Γ, ·) is associative.

Example 4.6. If G is equal to the inner direct product of subgroups
H and K (i.e., G = H×̇K), and f is one of the projections in H or K,
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then (G, ·f ) is an f -grouplike. Also, every group, the real b-grouplike,
and the Klein four-grouplike are some other examples of f -grouplikes.

Lemma 4.7. A grouplike (Γ, , e) is f-grouplike if and only if there ex-
ists an f-grouplike (G, ·f ) (described in Theorem 4.1) such that (Γ, ) ∼=
(G, ·f ) (as the sense of isomorphic semigroups).

Proof. Let µ : (G, ·f ) → (Γ, ) be an isomorphism. Define a binary
operation  in Γ by x y = µ(µ−1(x) · µ−1(y)). Then (Γ,) is a group
(isomorphic to (G, ·)) and F = µfµ−1 is a function from Γ to Γ. Now
we have

xF y = F (xy) = µ(f(µ−1(x)·µ−1(y))) = µ(µ−1(x)·f µ−1(y))) = xy,

for all x, y ∈ Γ, so  = F . The converse is clear, thus the proof is
complete. 

Now, we are ready to prove another main theorem by using the previous
theorem and lemma.

Theorem 4.8. (a) Every f-grouplike is class united grouplike but the
converse is not valid (hence the hypothesis (H1) holds in every f-grouplike).
Therefore, every f-grouplike is a unipotent epigroup and homogroup.
(b) Let (Γ, ) be an f-grouplike and (Γ, ·, e) the related ground group. Then,
the set of all its identity-likes is equal to ∆f := f∗(Γ) = f∗(Γ) and
its standard identity-like is ef = f∗(e) ·f f∗(e). Moreover, e is an
identity-like if and only if f is standard associative (i.e. f(e) = e, so
e  e = e). Also, we have

x ∼ef y ⇔ f(f∗(e)x) = f(f∗(e)y)⇔ x∆f = y∆f ,

so x = f−1({x}).
(c) Putting Ωf := f(Γ) we have

ef  Γ = e  Γ = Ωf ∼= (Γ, ·)f(e)∆f = (Γ, ·)∆ff(e) = Γ ∼e . (1)

Proof. Let (Γ, ) be an f -grouplike, g : (Γ, ·) → (Γ, ·) be the standard
strongly associative function in which f = c ·g = f(e) ·g. Then for every
x, y in Γ
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then (G, ·f ) is an f -grouplike. Also, every group, the real b-grouplike,
and the Klein four-grouplike are some other examples of f -grouplikes.

Lemma 4.7. A grouplike (Γ, , e) is f-grouplike if and only if there ex-
ists an f-grouplike (G, ·f ) (described in Theorem 4.1) such that (Γ, ) ∼=
(G, ·f ) (as the sense of isomorphic semigroups).

Proof. Let µ : (G, ·f ) → (Γ, ) be an isomorphism. Define a binary
operation  in Γ by x y = µ(µ−1(x) · µ−1(y)). Then (Γ,) is a group
(isomorphic to (G, ·)) and F = µfµ−1 is a function from Γ to Γ. Now
we have

xF y = F (xy) = µ(f(µ−1(x)·µ−1(y))) = µ(µ−1(x)·f µ−1(y))) = xy,

for all x, y ∈ Γ, so  = F . The converse is clear, thus the proof is
complete. 

Now, we are ready to prove another main theorem by using the previous
theorem and lemma.

Theorem 4.8. (a) Every f-grouplike is class united grouplike but the
converse is not valid (hence the hypothesis (H1) holds in every f-grouplike).
Therefore, every f-grouplike is a unipotent epigroup and homogroup.
(b) Let (Γ, ) be an f-grouplike and (Γ, ·, e) the related ground group. Then,
the set of all its identity-likes is equal to ∆f := f∗(Γ) = f∗(Γ) and
its standard identity-like is ef = f∗(e) ·f f∗(e). Moreover, e is an
identity-like if and only if f is standard associative (i.e. f(e) = e, so
e  e = e). Also, we have

x ∼ef y ⇔ f(f∗(e)x) = f(f∗(e)y)⇔ x∆f = y∆f ,

so x = f−1({x}).
(c) Putting Ωf := f(Γ) we have

ef  Γ = e  Γ = Ωf ∼= (Γ, ·)f(e)∆f = (Γ, ·)∆ff(e) = Γ ∼e . (1)

Proof. Let (Γ, ) be an f -grouplike, g : (Γ, ·) → (Γ, ·) be the standard
strongly associative function in which f = c ·g = f(e) ·g. Then for every
x, y in Γ
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ef  x  y = f(f(f(e)−2)f(xy)) = cg(cg(c−2)cg(xy))

= cg(cc−2cxy) = f(xy) = x  y.

Therefore the hypothesis (H1) holds in (Γ, ) and so it is class united
grouplike. Also

x ∼ef y ⇔ ef  x = ef  y ⇔ f(f(f(e)−2)x) = f(f(f(e)−2)y)

⇔ f(f(e)f(e)−2x) = f(f(e)f(e)−2y)⇔ f(f∗(e)x) = f(f∗(e)y)

⇔ x∆g = y∆g ⇔ x∆ff(e) = y∆ff(e).

The function f : (Γ, ·)→ (Ω, ), defined by f(x) = ex is an epimorphism
and its kernel is f(e)∆f = ∆ff(e), and if f is strongly associative, then
the kernel is ∆f .
Now, consider the class united grouplike Γ = {0, 1, ε} with the following
multiplication table

 0 1 ε

0 0 1 0
1 1 0 1
ε 0 1 0

We have ε Γ ∼= Z2. If there exists a binary operation ”·” such that (Γ, ·)
is group and f : (Γ, ·) → (Γ, ·) is associative, then |Γ| = |f∗(Γ)||f(Γ)|,
so |f(Γ)| is 1 or 3. On the other hand if e is its identity element, then

f(Γ) = e ·f Γ = e  Γ = {0, 1},

for every possible cases of e ∈ Γ. But this is a contradiction, so Γ is not
f -grouplike.
The proof of the other parts is easy, by using Theorem 4.1. 

Example 4.9. Put (R)b = {(r)b|r ∈ R} and [R]b = {[r]b|r ∈ R} for
every subset R of real numbers. If R is an additive sub-group of R and
b ∈ R \ {0}, then (R)b = R ∩ Rb, (R,+b) is an f -grouplike, where
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f = ( )b|R, ((R)b,+b) is a group (the group eΓ = 0 +f Γ) and

R

b =
R

[R]b
∼= (R)b = R ∩ Rb ∼= (

1
b
(R)b,+1).

Specially if 1 ∈ R, then R
Z

∼= (R)1 = R∩[0, 1). Therefore, RZ ∼= ([0, 1),+1)
that is also a result in [5].

Remark 4.10. For every f-grouplike (Γ, ) we have the following related
items:

(A) The unipotent homogroup and epigroup (Γ, ),
(B) The ground group (Γ, ·),
(C) The normal subgroup f(e)∆f of (Γ, ·),
(D) The group (Ωf , ·f ) = (e  Γ, ·f ),
(E) The factor subset Ωf of the group (Γ, ·).

So, there exist several aspects of the topic for future researches.
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