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Abstract 

In chemistry, point group is a type of group used to describe the symmetry of molecules. It is a 
collection of symmetry elements controlled by a form or shape which all go through one point in 
space, which consists of all symmetry operations that are possible for every molecule. Next, a set of 
number or matrices which assigns to the elements of a group and represents the multiplication of the 
elements is said to constitute representation of a group. Here, each individual matrix is called a 
representative that corresponds to the symmetry operations of point groups, and the complete set of 
matrices is called a matrix representation of the group. This research was aimed to relate the 
symmetry in point groups with group theory in mathematics using the concept of isomorphism, where 
elements of point groups and groups were mapped such that the isomorphism properties were 
fulfilled. Then, matrix representations of point groups were found based on the multiplication table 
where symmetry operations were represented by matrices. From this research, point groups of order 
less than eight were shown to be isomorphic with groups in group theory. In addition, the matrix 
representation corresponding to the symmetry operations of these point groups wasis presented. This 
research would hence connect the field of mathematics and chemistry, where the relation between 
groups in group theory and point groups in chemistry were shown. 
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INTRODUCTION 

Group theory is a study about an algebraic structure known as 

group in mathematics and abstract algebra. It is also a mathematical 

branch in which symmetry of molecules can be determined. Besides 

being the systematic treatment of symmetry, it is a powerful tool that 

simplifies the process of obtaining information about molecules. Both 

group theory and symmetry provide a formal method for identifying 

the geometry of objects by describing the shapes in their structure.  

Point group is an important property of molecules that is widely 

used in some branches of chemistry, which are crystallography, 

spectroscopy and quantum chemistry. Besides that, point groups are 

also used in solid state physics, in which the definitions of all 

symmetry operations, the multiplication table, all classes, their 

permutation counterparts and matrix representations, abelian 

subgroups and also some other subgroups of cubic point group hO

have been discussed (Delibas, Aykan, Turkkan, & Akkus, 2013). A 

point group can be used to classify the shapes of molecules based on 

their symmetry elements. It is known as point group because all 

symmetry elements which include planes, lines and points are 

intersected at a one point. The notation used to represent point group 

of a molecule is the Schoenflies notation which is commonly used by 

spectroscopists and chemists.  

The mathematical equivalence between two or more groups is 

known as isomorphism. It is a map that preserves sets and relations 

among elements. The concept of isomorphism is beneficial as it 

reduces the number of groups that need to be studied for obtaining 

properties of groups. The isomorphic groups have the same form or 

structure of Cayley table although they are different in notation or in 

the nature of their elements. Fong (2004) determined the isomorphism 

of groups of order eight with certain point groups. Hence, the point 

groups in chemistry and groups in group theory can be mapped using 

isomorphism.  

For each of the point groups, the symmetry operations in a group 

can be represented by matrices. The concept of matrices in algebra 

can be applied to the elements in point groups. A set of number or 

matrices which is assigned to the elements of a group and represented 

the multiplication of the elements is said to constitute representation 

of a group (Ferraro & Ziomek, 1969). Here, each individual matrix is 

called a representative that corresponded to the symmetry operations 

of point groups, and the complete set of matrices is called a matrix 

representation of the group.  

This paper was organized as following: Section 1 woud introduce 

the background of the research. In Section 2, some necessary 

definitions and notations used in this research were presented. Next, 

the isomorphisms between point groups of order less than eight with 

groups in group theory and the matrix representation of point groups 

of order less than eight were discussed and shown in Section 3. In 

Section 4, the results on the isomorphisms and matrix representation 

of point groups of order less than eight were given. 
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Table 1 The List of point groups of order less than eight. 

 

 Point Group Symmetry Element Order Example Of Molecule 

The non-axial 
groups 1C  E  1 

Bromochlorofluoromethane, 

CHFCIBr  

 sC  , hE   2 
1-bromo-2-chloroethene, 

2 2C H BrCI  

 iC  ,E i  2 
1,2-dichloro-1,2-difluoroethane, 

2CHCI  

The cyclic groups 2C  1
2,E C  2 Hydrogen peroxide, 2 2H O  

 3C  1 2
3 3, ,E C C  3 Triphenylphosphine, ( )6 5 3

P C H  

 4C  1 2 3
4 4 2 4, , ,E C C C C=  4 Tetra-aza copper (II) 

 5C  1 2 3 4
5 5 5 5, , , ,E C C C C  5 ( )( )5 5Fe Me -Cp P    

 6C  

1 2 1 3
6 6 3 6 2, , , ,E C C C C C= =

 
4 2 5

6 3 6,C C C=  

6 Alpha-cyclodextrin, 36 60 30C H O  

 7C  
1 2 3 4 5 6

7 7 7 7 7 7, , , , , ,E C C C C C C

 
7 - 

 1S  , hE   2 
1-bromo-2-chloroethene, 

2 2C H BrCI  

 2S  1
2,E S i=  2 

1,2-dichloro-1,2-difluoroethane, 

2CHCI  

 3S  

1 2 2 3
3 3 3 3, , , ,hE S S C S = =

4 1 5
3 3 3,S C S=  

6 Boric acid, ( )
3

B OH  

 4S  1 2 3
4 4 2 4, , ,E S S C S=  4 Tetrabomoneopentane, 5 8 4C H Br  

 6S  

1 2 1 3
6 6 3 6, , , ,E S S C S i= =

4 2 5
6 3 6,S C S=  

6 Ethane, 2 6C H  

The axial groups 
containing mirror 
planes 

1hC  , hE   2 
Chlorofluoromethane, 

2CH CIF  

2hC  2 2, , hE C S i=   4 
1,2-dichloroethylene (trans), 

2 2 2C H CI  

 3hC  

1 2 2 3
3 3 3 3, , , ,hE S S C S = =

4 1 5
3 3 3,S C S=  

6 Boric acid, ( )
3

B OH  

 1vC  , vE   2 - 

 2vC  ( ) ( )2, , , 'v vE C xz yz   4 Water, 2H O  

 3vC  
1 2

3 3, , , ', '', '''v v vE C C   

 
6 Ammonia, 3NH  

The axial groups 
with multiple 
rotation axes 

1D  1
2,E C  2 Hydrogen peroxide, 2 2H O  

2D  2 2 2, , ', ''E C C C  4 Twistane, 10 16C H  

3D  ( ) ( ) ( )1 2
3 3 2 2 2, , , , ,E C C C x C y C z

 
6 

Ruthenium triethylenediamine, 

( )
3

Ru en  
 

 

 1hD  ( ) ( )2, , , 'v vE C xz yz   4 Water, 2H O  

 1dD  2 2, , hE C S i=   4 
1,2-dichloroethylene (trans), 

2 2 2C H CI  

 
 

in the next section, some preliminaries concepts used in this paper 

were discussed. 

 
LITERATURE REVIEW  
 

This section included some preliminary concepts and definitions 

that were used in this paper. first, two basic concepts in point groups 

that were needed when performing an operation to a molecule, namely 

symmetry operation and symmetry element, were discussed.  

 

a symmetry operation is a movement of a body where every point of 

the body is correspondent with an equivalent point (or a similar point) 

of the body in its own orientation after the movement has been done; 

while symmetry element is a geometrical element with respect to 
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which at least one symmetry operations that might be carried out such 

as a line, a plane, or a point (cotton, 2008).  

Both symmetry operation and symmetry element are interrelated 

since the operation is defined with respect to the element. There are 

only four types of symmetry elements and operations to be considered 

in treating the symmetry of molecules, which are symmetry planes 

and reflections, inversion center, proper axes and proper rotations, 

improper axes and improper rotations, denoted as  , i , nC and nS

respectively(Cotton, 2008). The identity operation (denoted as E ) 
which is used to represent any combination of operations which takes 

the molecule to a same configuration with the original one in treating 

molecular symmetry since all molecules have the same identity 

element. Next, the definition of a point group was stated. 

Definition 1 (Windle, 1977): Point Group 
A point group is a collection of symmetry elements possessed by a 

shape or form which all passed through one point in space. 

The symmetry of point groups can be classified into six groups, 

the non-axial groups, the cyclic groups, the axial groups containing 

mirror plane, the axial groups with multiple rotation axes, the special 

groups for linear molecules and the cubic groups (Willock, 2009). In 

this research, the list of point groups was started with point groups of 

the least symmetry and ended with point groups of order seven in 

which only four of these six groups were discussed, namely the non-

axial groups, the cyclic groups, the axial groups containing mirror 

plane and the axial groups with multiple rotation axes. The rest of 

them which were special groups for linear molecules and the cubic 

groups were not presented in this research since the lowest order of 

those groups was infinity and order 12 respectively.  Table 1 shows 

the list of point groups of order less than eight with their respective 

symmetry elements, order and example of molecules. Next, the 

equivalence between two or more groups could be found and mapped 

using isomorphism, in which the definition of isomorphism was stated 

next. 

Definition 2 (Gallian, 2012) : Isomorphism 

An isomorphism  from a group G to a group G is a one-to-one 

mapping (or function) from G onto G that preserves the group 

operation, that is ( ) ( ) ( )ab a b  = for all ,a b in G . If there is 

an isomorphism from G onto G , we say that G and G are 

isomorphic, denoted as  . 

In point groups, the stereographic projection is used to visualize 

the symmetry operations. Stereographic projection or stereogram is a 

convenient way of mapping the points on the surface of a sphere onto 

a two-dimensional figure (Gallian, 2012). The notation + is used if 

the mark is above the plane while the notation  is used if the mark is 

below the plane. 

METHODOLOGY 

In this section, the isomorphism between point groups of order 

less than eight with groups in group theory and the matrix 

representation of point groups were determined. Here, the mapping 

between elements of point groups and groups was shown to fulfill the 

properties of isomorphism which were one-to-one, onto and operation 

preserving. The notation ≅ was used to represent the isomorphism.  

Here, the isomorphism of the group of order six, 6Z was discussed. 

The group presentation for the group 6Z was 
6|a a e=

where

 2 3 4 5
6 , , , , ,Z e a a a a a= . As mentioned earlier, the point group 

6C consisted of elements
1 1 2 5

6 3 2 3 6, , , , ,E C C C C C . Fig. 1 shows the 

stereographic projection for the point group 6C (Cracknell, 2016). 

Fig. 1 Stereographic Projection for the Point Group 6C

The symmetry operations of the point group 6C were listed as 

following:  

E : Identity, 
1

6C : Rotation through 3,

1
3C : Rotation through 2 3,

2C : Rotation through ,

2
3C : Rotation through 4 3,

5
6C : Rotation through 5 3.

The Cayley table of the point group 6C was given in Table 2.  

Table 2  Cayley Table of the Point Group 6C . 

∙ E 1
6C

1

3C 2C 2

3C 5

6C

E E 1
6C

1

3C 2C 2

3C 5

6C

1
6C 1

6C
1

3C 2C 2

3C 5

6C E
1

3C 1

3C 2C 2

3C 5

6C E 1
6C

2C 2C 2

3C 5

6C E 1
6C

1

3C

2

3C 2

3C 5

6C E 1
6C

1

3C 2C

5

6C 5

6C E 1
6C

1

3C 2C 2

3C

The isomorphism mapping  from 6Z to the point group 6C was 

given below: 

,e E  →
1

6: ,a C →

2 1

3: ,a C →

3

2: ,a C →

4 2

3: ,a C →

5 5

6: .a C →

The mapping wasone-to-one, onto and operation preserving. Below 

were some calculations used to show the operation preserving 

between these two groups: 

( ) ( )2 1
3 ,aa a C = = ( ) ( ) 1 1 1

6 6 3 ,a a C C C  = =

( ) ( )2 3
2 ,aa a C = = ( ) ( )2 1 1

6 3 2 ,a a C C C  = =

( ) ( )3 4 2
3 ,aa a C = = ( ) ( )3 1 2

6 2 3 ,a a C C C  = =

( ) ( )4 5 5
6 ,aa a C = = ( ) ( )4 1 2 5

6 3 6 ,a a C C C  = =

( ) ( ) ( )5 6 ,aa a e E  = = = ( ) ( )5 1 5
6 6 .a a C C E  = =

ith  
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The rest of the calculations could be obtained in a similar manner. 

As a conclusion, the group 6Z was isomorphic to the point group 6C

. Here it was also found that 6Z  point group 6C  point group

6S  point group 3 .hC Similar steps could be applied to the rest of 

the groups.   

Next, the point group was represented in the form of matrices by 

using the Cayley table of point groups. The matrix representation of 

the point group of order six, 6C was discussed in this section and the 

Cayley table of this point group has been shown in Table 2. 

Firstly for 6C , using the equation ( )Er D E r= , where 

( )D E

wasis a matrix used to transform ,r which represented the original 

position of symmetry operations into Er , which represented the 

position of symmetry operations after the operation of 

E was 

performed, then the transformation matrix of E could be represented 

as 

5 1
6 6

2 1
3 3

2 2

1 2
3 3

1 5
6 6

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0
.

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

E E

C C

C C

C C

C C

C C

   
     

   
 

   
 

   =  
   

 
   

 
            
   

The procedure could be repeated for each symmetry operation. So, the 

transformation matrix of 
1 1 2

6 3 2 3, , ,C C C C and 
5

6C be represented in 

the following: 

1
6

1
6

5 1
6 3

2
23
2

2 3

1 5
3 6

0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1
,

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

EC

E C

C C

CC

C C

C C

   
     

   
 

   
 

   =  
   

 
   

 
            
   

1
3

11
66
1

3

5
26
22

33
5

62

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0
,

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

EC

CC

CE

CC

CC

CC

        
    
    
   =  
    
    
              

2

1 1
3 6

1 1
6 3

2

5 2
6 3

2 5
3 6

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0
,

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

C E

C C

C C

E C

C C

C C

   
     

   
 

   
 

   =  
   

 
   

 
            
   

2
3

1
2 6

1 1
3 3

1
26
2

3

5 5
6 6

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0
,and

0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1

EC

C C

C C

CC

E C

C C

   
     

   
 

   
 

   =  
   

 
   

 
            
   

5
6

12
63
1

32

1
23
21

36
5

6

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0
, respectively.

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

EC

CC

CC

CC

CC

CE

        
    
    
   =  
    
    
              

Since the point groups 6 6,C S and 3 3hC S= shared the same 

structure of Cayley table but were different on the symmetry 

operations, hence their transformation matrices were the same.  

In the next section, the results for the isomorphisms of point 

groups of order less than eight with groups and the matrix 

representation of point groups of order less than eight were discussed. 

RESULTS AND FINDINGS 

In this research, the isomorphisms between point groups of order 

less than eight with groups in group theory were found. The group of 

order one, 1Z was isomorphic to the point group 1C . For group of 

order two, 2Z was isomorphic to all point groups of order two which 

were 1 1 1 2,h s v iC C C S S C= = = = and 2 1C D= . Besides that, the 

group of order three, 3Z was isomorphic to the point group 3C . Next, 

there were two groups of order four, namely 4Z and 2 2Z Z . The 

group 4Z was  isomorphic to the point groups 4C and 4S ; while 

the group 2 2Z Z was isomorphic to the point groups 

2 1 2 1,h d v hC D C D= = and 2D . The group of order five, 5Z was 

isomorphic to the point group 5C . Next, there were five point groups 

of order six, namely 6 6 3 3 3, , ,h vC S C S C= and 3D ; while there 

were only two groups of order six in group theory, namely 6Z and 

3S . The group 6Z was is isomorphic to the point groups 6 6,C S and 

3 3;hC S= while the group 3S was isomorphic to the point groups 

3vC and 3D . Lastly, the group of order seven, 7Z was  isomorphic 

to the point group 7C . The list of isomorphisms was presented in 

Table 3. 

ith  



Fong et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 15, No. 1 (2019) 88-92 

92 

No. Group Order Isomorphic Point Groups 

1. 1Z 1 
1C

2. 2Z 2 
1 1 1 2,h s v iC C C S S C= = = = ,

2 1C D=

3. 3Z 3 3C

4. 4Z 4 4 4,C S

5. 2 2Z Z 4 2 1 2 1 2, ,h d v hC D C D D= =

6. 5Z 5 5C

7. 3S 6 3 3,vC D

8. 6Z 6 6 6 3 3, , hC S C S=

9. 7Z 7 7C

The concept of isomorphism was beneficial as it helped in 

reducing the number of groups that needed to be studied in obtaining 

the properties of groups. The isomorphic groups have the same form 

or structure of Cayley table although they were different in notation or 

in the nature of their elements. 

Next, the matrix representation of all point groups of order less 

than eight were obtained by using matrices to represent the elements 

of the point groups. The representation of each element in point 

groups was obtained from the Cayley table. For point groups of order 

one, three, five and seven, each of them have their own matrix 

representation. All point groups of order two, namely 

1 1 1 2,h s v iC C C S S C= = = = and 2 1C D= have the same matrix 

representations. The point group of order four, 4C has the same 

matrix representation with the point group 4S ; while the point group 

2 1h dC D= has the same matrix representation with the point groups 

2 1v hC D= and 2D . The point group of order six, 6C has the same 

matrix representation with the point group 6S and 3 3hC S= ; while 

the point group 3vC has the same matrix representation with the point 

group 3D .  

CONCLUSION 

In this paper, the concept of isomorphism was used to relate point 

groups with groups in group theory. The mappings between elements 

in point groups and groups in group theory fulfilled the properties of 

isomorphism which were one-to-one, onto and operation preserving. 

In order to visualize the symmetry operations of point groups, 

stereographic projection was used in this research. Therefore, the 

isomorphisms of point groups of order less than eight with groups 

were obtained. Next, matrix representation of point groups of order 

less than eight was determined. Matrix representation was one of the 

ways to understand the symmetry operations of a molecule by 

representing the set of matrices that reflected the group multiplication 

tables. The symmetry operations were represented by matrices since 

matrices could be used in dealing with transformation coordinates. In 

this paper, the matrix representation of all point groups of order less 

than eight was obtained from the Cayley table. 
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