
MATEMATIKA: MJIAM, 2019, Volume 35, Number 3, 283–296
c© Penerbit UTM Press. All rights reserved

Static Watson-Crick Linear Grammars and Its
Computational Power

1Aqilahfarhana Abdul Rahman, 2Wan Heng Fong∗,3Nor Haniza Sarmin,
4Sherzod Turaev and 5Nurul Liyana Mohamad Zulkufli

1,2,3Department of Mathematical Sciences, Universiti Teknologi Malaysia
81310 UTM Johor Bahru, Malaysia

4Department of Computer Science and Software Engineering, College of Information Technology,
United Arab Emirates University, P.O. Box 15551, Al-Ain, United Arab Emirates

5Department of Computer Science, Faculty of Information and Communication Technology,
International Islamic University Malaysia, 53100 Kuala Lumpur, Malaysia

∗Corresponding author: fwh@utm.my

Article history
Received: 3 October 2018
Received in revised form: 10 June 2019
Accepted: 8 July 2019
Published online: 1 December 2019

Abstract DNA computing, or more generally, molecular computing, is a recent

development on computations using biological molecules, instead of the traditional silicon-

chips. Some computational models which are based on different operations of DNA

molecules have been developed by using the concept of formal language theory. The

operations of DNA molecules inspire various types of formal language tools which

include sticker systems, grammars and automata. Recently, the grammar counterparts

of Watson-Crick automata known as Watson-Crick grammars which consist of regular,

linear and context-free grammars, are defined as grammar models that generate double-

stranded strings using the important feature of Watson-Crick complementarity rule. In

this research, a new variant of static Watson-Crick linear grammar is introduced as

an extension of static Watson-Crick regular grammar. A static Watson-Crick linear

grammar is a grammar counterpart of sticker system that generates the double-stranded

strings and uses rule as in linear grammar. There is a difference in generating

double-stranded strings between a dynamic Watson-Crick linear grammar and a static

Watson-Crick linear grammar. A dynamic Watson-Crick linear grammar produces each

stranded string independently and only check for the Watson-Crick complementarity of

a generated complete double-stranded string at the end; while the static Watson-Crick

linear grammar generates both stranded strings dependently, i.e., checking for the Watson-

Crick complementarity for each complete substring. The main result of the paper is to

determine some computational properties of static Watson-Crick linear grammars. Next,

the hierarchy between static Watson-Crick languages, Watson-Crick languages, Chomsky

languages and families of languages generated by sticker systems are presented.

Keywords Sticker system; computational power; Watson-Crick grammar; linear

grammar.

Mathematics Subject Classification 68Q45, 92B05.

35:3 (2019) 283–296 | www.matematika.utm.my | eISSN 0127-9602 |

Aqilahfarhana Abdul Rahman et al. / MATEMATIKA 35:3 (2019) 283–296 284

1 Introduction

In DNA computing techniques, there are two fundamental features which are necessary to
overcome the limitation of traditional silicon-based computing technologies known as Watson-
Crick complementarity and massive parallelism of DNA strands. DNA computing is based
on the double stranded structure of DNA molecule composed of four nucleotides as its bases
known as adenine (A), thymine (T), cytosine (C), and guanine (G), paired as A-T and C-G
according to Watson-Crick complementarity. Massive parallelism of DNA strands, which is
another feature of DNA molecules, allows construction of many copies of DNA strands where
numerous operations are carried out on the encoded information simultaneously.

Some computational models which are based on different operations of DNA molecules
have been developed such as Watson-Crick automata and sticker systems [1]. Watson-Crick
automata [2] is an extension from finite automata which works on a double-stranded string. The
input of both strands are scanned separately in a corresponding way reading from left to right
which is controlled by a state. On the other hand, Adleman [3] has used sticker operation in
his experiment of computing a Hamiltonian path problem in a graph by using DNA molecules.
In 1998, Kari et al. [4] proposed the concept of sticker system as a language generating device
using sticker operation.

Historically, some grammar models that were introduced did not use the fundamental
feature of Watson-Crick (WK) complementarity of DNA molecules [5–7]. Then, a broad
variety of dynamic WK grammars that use this fundamental feature have been proposed [8–10].
Although these grammars use different restrictions of production rules, they still have some
weaknesses when generating double-stranded strings. These model produce each stranded
string independently and did not fully illustrate the synthesis of DNA molecules. Motivated
by the Watson-Crick grammars, this research introduces a new variant of static WK grammars
known as a static WK linear grammar, as an extension of static WK regular grammar [11].
A static WK linear grammar is a grammar counterpart of sticker system which uses WK
complementarity feature of DNA molecules; starting from the incomplete double-stranded
sequence and iteratively using sticking operation until complete double-stranded sequence is
obtained.

This paper is organised as follows: Section 1 gives the background and introduction of the
paper. Section 2 presents some necessary definitions and notations from the theories of formal
languages, automata and sticker systems. The definitions of WK grammars and static WK
regular grammar are also stated. In addition, the definition of static WK linear grammar is given
in Section 3. In Section 4, some examples are provided to illustrate the computational power of
static WK linear grammar. Besides, some new facts on the computational power of static WK
linear grammar and the hierarchy between static WK languages, WK languages, Chomsky
languages and families of languages generated by sticker systems are presented. Lastly, the
conclusion is given in Section 5.

2 Preliminaries

This section includes some preliminary concepts which involves the basic terms, theorem and
definitions that are used in this paper. The reader may refer to [2,12,13] for detailed information
regarding on the basic concepts of formal language theory, automata and sticker systems.

Aqilahfarhana Abdul Rahman et al. / MATEMATIKA 35:3 (2019) 283–296 285

In this paper, the symbol ⊆ denotes the inclusion while ⊂ denotes the strict (proper)
inclusion. The membership of an element to a set is denoted by ∈ and the empty set is denoted
by the symbol ∅. Let T be a finite alphabet, then T ∗ is the set of all finite strings (words)
over T . A string with no symbols, or we called it as empty string, is denoted by λ. The set T ∗

always contain λ and to exclude the empty string, the symbol T + is defined as the set of all
nonempty finite strings over T where T + = T ∗ − λ.

Next, a Chomsky grammar is defined as a quadruple G = (N, T, S, P), where the alphabet
N is defined as the nonterminal alphabet, T is the terminal alphabet, S ∈ N is the axiom or
start alphabet, and P ⊆ (N ∪ T)∗N(N ∪ T)∗ × (N ∪ T)∗ is the set of production rules of G.
The rule (x, y) ∈ P is written in the form of x → y where x ∈ (N ∪ T)+ and y ∈ (N ∪ T)∗.
We say that u directly derives v or v is derived from u with respect to G which is written
as u ⇒ v if and only if u = u1xu2, v = u1yu2 for some u1u2 ∈ (N ∪ T)∗ and x → y ∈ P .
The set of all terminal strings is the language generated by the grammar which defined by
L(G) = {w ∈ T ∗ : S ⇒∗ w}.

The Chomsky grammar is classified depending on their respective form of production rules.
A grammar G = (N, T, S, P) is called context-sensitive if each rule u → v ∈ P has u = u1Au2,
v = u1xu2, for u1, u2 ∈ (N ∪ T)∗, A ∈ N and x ∈ (N ∪ T)+; context-free if each rule u → v ∈ P
has u ∈ N ; linear if each rule u → v ∈ P has u ∈ N and v ∈ T ∗ ∪ T ∗NT ∗; regular if each rule
u → v ∈ P has u ∈ N and v ∈ T ∪ TN ∪ {λ}.

All those families of languages generated by context-sensitive, context-free, linear and regular
are denoted as CS, CF, LIN and REG respectively. Other than that, RE and FIN represent
the family of recursive enumerable language and finite language. The languages are classified
into four language types, type 0 to type 3 which make up the Chomsky hierarchy. Unrestricted
grammars which generate recursively enumerable languages are referred to as Type 0. Besides,
Type 1 grammars refer to context-sensitive grammars, Type 2 grammars refer to context-free
grammars and Type 3 grammars refer to regular grammars which generate context-sensitive
languages, context-free languages and regular languages respectively. Hence, the following strict
inclusion holds for Chomsky hierarchy:

Theorem 1 FIN ⊂ REG ⊂ LIN ⊂ CF ⊂ CS ⊂ RE.

The definitions of WK grammars are presented as follows.

Definition 1 [8] A Watson Crick (WK) grammar G = (N, T, S, P, ρ) is called

(i) regular if each production has the form A −→ 〈u/v〉B or A −→ 〈u/v〉 where A, B ∈ N and
〈u/v〉 ∈ 〈T ∗/T ∗〉.

(ii) linear if each production has the form A −→ 〈u1/v1〉B〈u2/v2〉 or A −→ 〈u/v〉 where
A, B ∈ N and 〈u1/v1〉, 〈u2/v2〉, 〈u/v〉 ∈ 〈T ∗/T ∗〉.

(iii) context-free if each production has the form A −→ α where A ∈ N and α ∈ (N∪〈T ∗/T ∗〉)∗.

The notation 〈u/v〉 represents the element (u, v) ⊆ V × V in the set of pairs of strings and
〈T ∗/T ∗〉 is written instead of 〈V ∗/V ∗〉.

In order to generate or form a complete double sequence of DNA, the sticker system uses
sticker operation on DNA molecules. Let V be an alphabet (a finite set of abstract symbol)

Aqilahfarhana Abdul Rahman et al. / MATEMATIKA 35:3 (2019) 283–296 286

and a symmetric relation ρ ∈ V × V over V (of complementarity). The set

WKρ(V) =

[

V
V

]

∗

ρ

where

[

V
V

]

ρ

= {

[

a
b

]

|a, b ∈ V,

(

a

b

)

∈ ρ}.

denotes the Watson-Crick domain associated to alphabet V and complementarity relation ρ.

The elements

[

w1

w2

]

∈ WKρ(V) is called well-formed double stranded sequences, or also known

as double stranded sequences. The string w1 is the upper strand and w2 is the lower strand of

the molecule. Note that there is a difference between

(

a

b

)

and

[

a
b

]

; for the pair of

(

a

b

)

, there

is no relation between the elements a and b, while

[

a
b

]

indicates that the elements in the upper

strand and lower strand are complement and have the same length.
Apart from that, the set of incomplete molecules is denoted as: Wρ(V) = Lρ(V) ∪Rρ(V) ∪

LRρ(V) where

Lρ(V) = (

(

λ

V ∗

)

∪

(

V ∗

λ

)

)

[

V
V

]

∗

ρ

,

Rρ(V) =

[

V
V

]

∗

ρ

(

(

λ

V ∗

)

∪

(

V ∗

λ

)

),

LRρ(V) = (

(

λ

V ∗

)

∪

(

V ∗

λ

)

)

[

V
V

]+

ρ

(

(

λ

V ∗

)

∪

(

V ∗

λ

)

).

In this research, we modified the definition of LRρ(V) according to our grammar, where

LR∗

ρ(T) = (

(

λ

T ∗

)

∪

(

T ∗

λ

)

)

[

T
T

]

∗

ρ

(

(

λ

T ∗

)

∪

(

T ∗

λ

)

),

LR+

ρ (T) = (

(

λ

T ∗

)

∪

(

T ∗

λ

)

)

[

T
T

]+

ρ

(

(

λ

T ∗

)

∪

(

T ∗

λ

)

),

and the alphabet V which is defined in Wρ(V) is changed to the alphabet T according to the
definition in the Chomsky grammar. Next, the sticker system is defined as follows.

A sticker system is a construct γ = (V, ρ, A, D), where V is an alphabet, ρ ∈ V × V is a
symmetric relation, A is finite subset of LRρ(V) (called axioms) and D is a finite subset of
Wρ(V) × Wρ(V) (called domimoes). For the two sequences x, y ∈ LRρ(V), x ⇒ y if and only
if y = µ(u,µ(x, v)) for some (u, v) ∈ D, where µ is defined as the sticking operation. Hence,
µ(u,µ(x, v)) = µ(µ(u, x), v) since the prolongation to the left is independent as to the one at
the right such that the sticker operation is associative. Moreover, a sequence x1 ⇒ x2 ⇒ ... ⇒
xk is obtained and is called a computation in γ as x1 ∈ A and xk ∈ WKρ(V). Thus, a complete
computation, σ is represented as x1 ⇒∗ xk when there is no sticky end in the last sequence.
The language generated by the sticker system, γ is called a sticker language and is defined by

L(γ) = {w ∈

(

V

V

)

∗

ρ

|x ⇒∗ w, x ∈ A}.

Aqilahfarhana Abdul Rahman et al. / MATEMATIKA 35:3 (2019) 283–296 287

There are several restricted variants of sticker system which are arbitrary, one-sided, regular,
simple, simple and one-sided, or simple and regular denoted as ASL(α), OSL(α), RSL(α),
SSL(α), SOSL(α), SRSL(α) respectively where α ∈ {n, p, b} and the letters n,p,b represent no
restrictions, primitive and delay computation, respectively.

In the next section, the definition of static WK linear grammar with an example are
presented.

3 Static Watson-Crick Linear Grammar

In this section, the definition of static WK regular grammar introduced in [12] is used to
extend the basic concept to linear grammars. Here, we define a grammar called static WK
linear grammar, a grammar counterpart of the sticker system that has rules as in a linear
grammar in the following.

Definition 2 A static Watson-Crick linear grammar is a 5 -tuple G = (N, T, ρ, S, P) where
N , T are disjoint nonterminal and terminal alphabets, respectively, ρ ∈ T × T is a symmetric
relation (WK complementarity), S ∈ N is the start symbol (axiom) and P is a finite set of
production in the form of

(i) S−→

[

u1

v1

](

x1

y1

)

A

(

x2

y2

)[

u2

v2

]

where A ∈ N − {S},

[

u1

v1

] (

x1

y1

)

∈ Rρ(T) and

(

x2

y2

) [

u2

v2

]

∈

Lρ(T);

(ii) A−→

(

x1

y1

)

B

(

x2

y2

)

where A, B ∈ N − {S} and

(

x1

y1

)

,

(

x2

y2

)

∈ LR∗

ρ(T); or

(iii) A−→

(

x1

y1

)

where A ∈ N − {S} and

(

x1

y1

)

∈ LR∗

ρ(T) .

Remark 1. The elements

[

u
v

]

in the set of all pairs of strings T × T can be classified into

two cases, whether in the form of

[

u
v

]

6=

[

λ
λ

]

or

[

u
v

]

=

[

λ
λ

]

.

The derivation for a static WK linear grammar is presented as follows.

Definition 3 Let G = (N, T, ρ, S, P) be a static WK linear grammar. We say that α derives
β in G, denoten or written as α ⇒ β if and only if

(i) α = S and β =

[

u1

v1

](

x1

y1

)

A

(

x2

y2

) [

u2

v2

]

where α ⇒ β ∈ P ;

(ii) α =

[

w1

w2

] (

x1

y1

)

A

(

x2

y2

) [

w3

w4

]

and β =

[

w1

w2

](

x1

y1

)(

x3

y3

)

B

(

x4

y4

)(

x2

y2

) [

w3

w4

]

where A, B ∈

N − {S},

[

w1

w2

] (

x1

y1

)

∈ Rρ(T),

(

x2

y2

) [

w3

w4

]

∈ Lρ(T) and A −→

(

x3

y3

)

B

(

x4

y4

)

∈ P ; or

Aqilahfarhana Abdul Rahman et al. / MATEMATIKA 35:3 (2019) 283–296 288

(iii) α =

[

w1

w2

] (

x1

y1

)

A

(

x2

y2

) [

w3

w4

]

and β =

[

w1

w2

] (

x1

y1

)(

x3

y3

)(

x2

y2

) [

w3

w4

]

where A, B ∈ N−{S},
[

w1

w2

](

x1

y1

)

∈ Rρ(T),

(

x2

y2

) [

w3

w4

]

∈ Lρ(T) and A −→

(

x3

y3

)

∈ P .

The reflexive and transitive closure of =⇒
G

or (⇒) is denoted by =⇒
G

∗ or (⇒∗). The language

generated by a static WK linear grammar G, denoted by L(G), is defined as

L(G) = {u :

[

u
v

]

∈ WKρ(T) and S ⇒ [G]∗
[

u
v

]

}.

The family of languages generated by static WK linear grammar is denoted by SLIN.
Next, an example is illustrated to show the family of languages generated by static WK linear
grammar.

Example 1 Let G = ({S, A, B}, {a, b, c}, {(a, a), (b, b), (c, c)}, S, P) be a static WK linear
grammar, where P consists of the following rules:

S →

[

a
a

] (

a

λ

)

A

(

λ

b

) [

b
b

]

,

A →

(

λ

a

) [

a
a

](

a

λ

)

A

(

λ

b

) [

b
b

](

b

λ

)

A →

(

λ

a

) [

c
c

] (

c

λ

)

B

(

b

λ

)

B →

(

λ

c

) [

c
c

] (

c

λ

)

B

B →

(

λ

c

)

.

From this, we obtain the derivation:

S ⇒

[

a
a

](

a

λ

)

A

(

λ

b

) [

b
b

]

⇒∗

[

an−1

an−1

] (

a

λ

)

A

(

λ

b

)[

bn−1

bn−1

]

⇒

[

anc
anc

] (

c

λ

)

B

[

bn

bn

]

⇒∗

[

ancm−1

ancm−1

](

c

λ

)

B

[

bn

bn

]

⇒

[

ancmbn

ancmbn

]

.

Therefore, L(G) = {ancmbn | n, m ≥ 2}.

In the next section, the generative power of static WK linear grammar is discussed.

Aqilahfarhana Abdul Rahman et al. / MATEMATIKA 35:3 (2019) 283–296 289

4 Generative Power of Static Watson-Crick Linear Grammar

In this section, the relationship between the family of static WK linear grammar with family in
the Chomsky hierarchy, sticker system and also WK grammar are determined. The following
lemma follows immediately from Definition 2, where LIN indicates the set of languages
generated by linear grammars.

Lemma 1 The following inclusion holds:

LIN ⊆ SLIN.

Proof For a linear grammar G = (N, T, S, P), its static WK variant G′ = (N, T, ρ, S, P ′) is
defined where ρ = {(a, a)|a ∈ T} and for each production A → α ∈ P , every terminal string x

in α is changed to

[

x
x.

]

. Then, it is easy to see that L(G′) = L(G). 2

In the next lemma, we show the relationship between the static WK regular grammar and
static WK linear grammar. According to the Chomsky hierarchy, the linear languages are more
powerful than the regular languages. Thus, this idea is true for the inclusion between static
WK regular and linear grammars such that all the languages generated by static WK regular
grammars can be generated directly by static WK linear grammars.

Lemma 2 The following inclusion holds:

SREG ⊆ SLIN.

Next, Example 2 shows the language generated by a static WK linear grammar. Through
this example, we can relate the generative power in Lemma 2 by using the same language as
in Lemma 4 [11] where L(G) = {anbncn|n ≥ 2}.

Example 2 Consider the static WK linear grammar G = ({S, A, B, C, D, E}, {a, b, c}, S, ρ, P)
where P contains the following productions:

(i) S →

[

a
a

](

a

λ

)

A

(

c

λ

) [

c
c

]

, (v) C →

(

b

λ

)

B,

(ii) A →

(

a

λ

)

A

(

c

λ

)

, (vi) C →

(

λ

b

)

D

(

λ

c

)

,

(iii) A →

(

b

λ

)

B, (vii) D →

(

λ

b

)

D

(

λ

c

)

,

(iv) B →

(

λ

a

)

C, (viii) D →

[

b
b

]

.

Here, we need to show that the language L(G) = {anbncn|n ≥ 2} ∈ SLIN. We define the
production rules of static WK linear grammar as follows:

Aqilahfarhana Abdul Rahman et al. / MATEMATIKA 35:3 (2019) 283–296 290

Step 1. From rule (i):

S ⇒

[

a
a

](

a

λ

)

A

(

c

λ

) [

c
c

]

. (1)

Step 2. Derivation (1) can be continued with rule (ii) or rule (iii). Without loss of generality,
we apply rule (ii) k ≥ 0 times and apply rule (iii):

S ⇒∗

[

a
a

](

a

λ

)(

ak

λ

)(

b

λ

)

B

(

ck

λ

)(

c

λ

) [

c
c

]

=

[

a
a

] (

ak+1

λ

)(

b

λ

)

B

(

ck+1

λ

) [

c
c

]

. (2)

Step 3. Derivation (2) can only be continued with rule (iv):

S ⇒∗

[

a
a

] (

ak+1

λ

)(

b

λ

)(

λ

a

)

C

(

ck+1

λ

) [

c
c

]

=

[

aa
aa

] (

ak

λ

)(

b

λ

)

C

(

ck+1

λ

) [

c
c

]

. (3)

Step 4. Derivation (3) can be continued with rule (v) or (vi). Rule (v) must be applied k

times to complete the lower strand of

(

ak

λ

)

, which results in applying rule (iv) to applied

k times, and then we apply rule (vi):

S ⇒∗

[

aa
aa

] (

ak

ak

)(

b

λ

)(

bk

λ

)

C

(

ck+1

λ

) [

c
c

]

=

[

ak+2

ak+2

] [

b
b

] (

bk

λ

)

D

(

ck

λ

) [

cc
cc

]

. (4)

Step 5. To complete derivation (4), we apply rule (vii) k times to complete the lower strand

of

(

bk

λ

)

and

(

ck

λ

)

. The derivation is completed with rule (viii):

S ⇒∗

[

ak+2bk+2ck+2

ak+2bk+2ck+2

]

.

Thus, L(G) = {anbncn|n ≥ 2} ∈ SLIN. 2

The theorem below also follows immediately from Example 2. Theorem 2 shows that the
family of languages generated by linear grammar is strictly included in the family of languages
generated by static WK linear grammar, and that static WK linear grammar can generate some
non context-free languages.

Theorem 2 The following inclusions hold:

LIN ⊂ SLIN and SLIN−CF 6= ∅.

Proof From Example 2, the static WK linear grammar can generate some non context-free
languages. Since context-free languages can generate the linear grammars and context-free
grammars, then the language L(G) = {anbncn|n ≥ 2} ∈ SLIN cannot be generated by linear
grammars and context-free grammars. Thus, the theorem follows from Lemma 1 and Example
2. 2

On the other hand, we can relate the language in Example 1 with static WK regular grammar
whereby L(G) = {ancmbn|n, m ≥ 2} ∈ SREG as shown in Example 3.

Aqilahfarhana Abdul Rahman et al. / MATEMATIKA 35:3 (2019) 283–296 291

Example 3 Let G = ({S, A, B, C, D, E, F}, {a, b, c},{(a, a), (b, b), (c, c)}, S, P) be a static WK
regular grammar where P contains the following productions:

(i) S →

(

aa

λ

)

A, (vii) D →

(

b

λ

)

C,

(ii) A →

(

a

λ

)

A, (viii) D →

(

λ

c

)

E,

(iii) A →

(

cc

λ

)

B, (ix) E →

(

λ

c

)

E,

(iv) B →

(

c

λ

)

B, (x) E →

(

λ

b

)

F,

(v) B →

(

b

λ

)

C, (xi) F →

(

λ

b

)

F,

(vi) C →

(

λ

a

)

D, (xii) F →

(

λ

λ

)

.

From this, we obtain the derivation:

S ⇒∗

(

an−1

λ

)

A ⇒

(

an

λ

)

A ⇒∗

(

ancm−1

λ

)

B ⇒

(

ancm

λ

)

B ⇒

(

ancm

λ

)(

b

λ

)

C

⇒∗

(

ancmbn−1

an−1

)(

b

λ

)

C ⇒

[

an

an

](

cmbn

λ

)(

λ

c

)

E ⇒∗

[

ancm

ancm

](

bn

bn−1

)

F ⇒

[

ancmbn

ancmbn

]

.

Therefore, L(G) = {ancmbn | n, m ≥ 2}.

In [4], the relationship between WK linear language (WKLIN) and the family of arbitrary
sticker languages with no restriction ASL (n) has been established, where ASL (n) ⊆
WKLIN. Here, we show that ASL (n) can be simulated by SLIN in the following proposition.

Proposition 1 The following hold:

ASL(n) ⊆ SLIN.

Proof Let γ = (T, ρ, A, D) be an arbitrary sticker system. We construct a static WK
linear grammar G = (N, T, ρ, S, P) with L(γ) = L(G) where N = {S, B} and P contains
the productions in the form of:

(i) S → uBv for all

(

u

v

)

∈ D where u ∈ Rρ(T) and v ∈ Lρ(T),

(ii)B → uBv for all

(

u

v

)

∈ D where u, v ∈ LRρ(T),

(iii) B → x for all x ∈ A.

Aqilahfarhana Abdul Rahman et al. / MATEMATIKA 35:3 (2019) 283–296 292

First, we need to show that L(γ) ⊆ L(G). Suppose w ∈ L(γ). Then, there are some x ∈ A
and (u1, v1), (u2, v2), . . . , (uk, vk) such that

x ⇒ µ(µ(u1, x), v1)

⇒ µ(µ(u2, µ(µ(u1, x), v1)), v2)

⇒∗ µ(µ(µk . . . (µ(µ(u2, µ(µ(u1, x), v1)), v2)) . . .), vk)

⇒

[

w
w

]

.

(5)

The computation in (5) can be simulated by the following derivation in G in a reversed
order, starting from the last used pair in D and progressing toward the center of the sequence,
where an axiom x in A will be used such that

S ⇒ ukBvk ⇒ ukuk−1Bvk−1vk ⇒ . . .

⇒ ∗ukuk−1 . . . u1Bv1 . . . vk−1vk

⇒ ukuk−1 . . . u1xv1 . . . vk−1vk

⇒

[

w
w

]

.

The similar construction also holds for the inverse case where L(G) ⊆ L(γ). Therefore, we
can conclude that every derivation in G can also be simulated by a computation in γ and vice
versa. 2

The following example illustrates Proposition 1.

Example 4 Let γ = (T, ρ, A, D) be an arbitrary sticker system, ASL(n) with

L(γ) = {

[

a
a

]n [

b
b

]m [

c
c

]n

|n ≥ 2, m ≥ 3}

where

ρ = {(a, a), (b, b), (c, c)|a, b, c ∈ T},

A = {

(

λ

b

) [

b
b

]

|

(

λ

b

) [

b
b

]

∈ LRρ(T)},

D = {(

(

λ

b

) [

b
b

](

b

λ

)

,

(

λ

λ

)

)where

(

λ

b

) [

b
b

](

b

λ

)

∈ u1,

(

λ

λ

)

∈ v1,

(

(

λ

a

) [

b
b

] (

b

λ

)

,

(

c

λ

)

)where

(

λ

a

) [

b
b

](

b

λ

)

∈ u2,

(

c

λ

)

∈ v2,

(

(

λ

a

) [

a
a

](

a

λ

)

,

(

λ

c

) [

c
c

] (

c

λ

)

)where

(

λ

a

) [

a
a

] (

a

λ

)

∈ u3,

(

λ

c

) [

c
c

] (

c

λ

)

∈ v3,

(

[

a
a

](

a

λ

)

,

(

λ

c

) [

c
c

]

)where

[

a
a

] (

a

λ

)

∈ u4,

(

λ

c

) [

c
c

]

∈ v4}.

The computation starts with an axiom and the sequence is prolonged to the left and to the
right directions using the pair of dominoes, (u1, v1), (u2, v2), (u3, v3) and (u4, v4). Let n = 4 and
m = 5. The computations are as follows:

Aqilahfarhana Abdul Rahman et al. / MATEMATIKA 35:3 (2019) 283–296 293

1. µ{

(

λ

b

) [

b
b

]

, [

(

λ

b

) [

b
b

] (

b

λ

)

,

(

λ

λ

)

]} =

(

λ

b

) [

b
b

](

b

λ

)(

λ

b

) [

b
b

]

.

2. µ{

(

λ

b

) [

b
b

]3

, [

(

λ

a

) [

b
b

] (

b

λ

)

,

(

c

λ

)

]} =

(

λ

a

) [

b
b

] (

b

λ

)(

λ

b

) [

b
b

]3 (

c

λ

)

.

3. µ{

(

λ

a

) [

b
b

]5 (

c

λ

)

, [

(

λ

a

) [

a
a

](

a

λ

)

,

(

λ

c

) [

c
c

] (

c

λ

)

]} =

(

λ

a

) [

a
a

] (

a

λ

)(

λ

a

) [

b
b

]5 (

c

λ

)(

λ

c

) [

c
c

](

c

λ

)

.

4. µ{

(

λ

a

) [

a
a

]2 [

b
b

]5 [

c
c

]2 (

c

λ

)

, [

[

a
a

] (

a

λ

)

,

(

λ

c

) [

c
c

]

]} =

[

a
a

](

a

λ

)(

λ

a

) [

a
a

]2 [

b
b

]5 [

c
c

]2 (

c

λ

)(

λ

c

) [

c
c

]

.

Therefore,

(

λ

a

)[

b
b

]

⇒

(

λ

b

) [

b
b

]3

⇒

(

λ

b

) [

b
b

]5 (

c

λ

)

⇒

(

λ

a

) [

a
a

]2 [

b
b

]5 [

c
c

]2 (

c

λ

)

⇒

[

a
a

]4 [

b
b

]5 [

c
c

]4

. Hence, the language generated from the computation is L(γ) =

{

[

a
a

]n [

b
b

]m [

c
c

]n

|n ≥ 2, m ≥ 3}.
Next, we build a static WK linear grammar G = (N, T, ρ, S, P) from γ , where P contains

the following rules:

S →

[

a
a

](

a

λ

)

A

(

λ

c

) [

c
c

]

, which is obtained from (u4, v4) ∈ D,

A →

(

λ

a

) [

a
a

] (

a

λ

)

A

(

λ

c

) [

c
c

](

c

λ

)

, which is obtained from (u3, v3) ∈ D,

A →

(

λ

a

) [

b
b

] (

b

λ

)

B

(

c

λ

)

, which is obtained from (u2, v2) ∈ D,

B →

(

λ

b

) [

b
b

] (

b

λ

)

B, which is obtained from (u1, v1) ∈ D,

B →

(

λ

b

) [

b
b

]

, which is obtained from A.

From this, we obtain the same derivation of G as in Example 1 where L(G) = {anbmcn|n ≥
2, m ≥ 3}. The static WK linear grammar G generates the same sequences of double-stranded
string as the sticker system do. It follows that every derivation in G can also be simulated by γ.

Next, the results show that the family of WK linear languages is included in the family of
static WK linear languages.

Lemma 3 The following hold:

WKLIN ⊆ SLIN.

Aqilahfarhana Abdul Rahman et al. / MATEMATIKA 35:3 (2019) 283–296 294

Proof Let G = (N, T, ρ, S, P) be a WK linear grammar. From G, we build a (sticker) static
WK linear grammar where G′ = (N ′, T, ρ, S ′, P ′) such that L(G) = L(G′).

Let P1 = {A →

(

u1

v1

)

B

(

u2

v2

)

∈ P |u1 6= λ, v1 6= λ or u2 6= λ, v2 6= λ} and

P2 = {A →

(

u

v

)

∈ P |u 6= λ, v 6= λ}.

(i) For each production r : A →

(

u1

v1

)

B

(

u2

v2

)

∈ P1, we define the new productions, A →
(

u1

λ

)

Br

(

u2

λ

)

and Br →

(

λ

v1

)

B

(

λ

v2

)

where Br is a new nonterminal.

(ii) For each production r : A →

(

u

v

)

∈ P2, we introduce the new productions A →

(

u

λ

)

Br,

Br →

(

λ

v

)

.

Using the similar arguments in the proof of Lemma 5 in [11] , we can show that L(G) = L(G′).
Hence, WKLIN ⊆ SLIN. 2

The inclusion for LIN and WKLIN has already been proved in Theorem 13 [9] where
LIN ⊂ WKLIN. By combining the above results with the results from [8, 11], we obtain the
following relation. The relation in Figure 1 holds where the solid arrows represent the proper
inclusions of the lower families into the upper families, while the dotted arrow represents the
inclusions.

Figure 1: The Hierarchy of Static WK, WK, Chomsky and Sticker Language Families

5 Conclusion

In this paper, we define a static Watson-Crick linear grammar, which is one of the variants
of static Watson-Crick grammars and determine its computational power in order to correlate
with other family of languages. Based on the results obtained, we can conclude that the family
of linear languages is strictly included in the family of static Watson-Crick linear languages
and static Watson-Crick linear grammars can generate non context-free languages. Also, the
arbitrary sticker languages is included in static Watson-Crick linear languages and the family of

Aqilahfarhana Abdul Rahman et al. / MATEMATIKA 35:3 (2019) 283–296 295

Watson-Crick linear languages is included in the family of static Watson-Crick linear languages.
However, the relation between the family of static Watson-Crick linear languages with the family
of static Watson-Crick regular languages and the family of linear languages with the family
of static Watson-Crick regular languages remain open. This research can be further studied
by defining other variants of grammars such as static WK context-free grammars, regulated
variants of static WK grammars and the computational power of the variants of grammars
which is useful for DNA based computing devices and algorithmic techniques.

Acknowledgments

The first author would like to thank Universiti Teknologi Malaysia (UTM) for the Zamalah
Scholarship. The second and third authors would also like to thank the Ministry of Education
(MOE) and Research Management Centre (RMC), UTM for the financial funding through
Fundamental Research Grant Scheme Vote No. 5F022.

References

[1] Kari, L., Seki, S. and Sosik, P. DNA computing–foundations and implications. In Handbook
of Natural Computing. New York: Springer-Verlag, Berlin. 2012. 1073–1127.

[2] Paun, G., Rozenberg, G. and Salomaa, A. DNA Computing: New Computing Paradigms.
New York: Springer-Verlag Berlin, 1998.

[3] Adleman, L. M. Molecular computation of solutions to combinatorial problems. Science.
1994. 266(5187): 1021–1024.

[4] Kari, L., Paun, G., Rozenberg, G., Salomaa, A. and Yu, S. DNA computing, sticker
systems and universality. ActaInformatica. 1998. 35(5): 401–420.

[5] Varun, R.K. and Gupta, S. Analyzing the ambiguity in RNA structure using probabilistic
approach. International Journal of Information Technology. 2012. 5(1): 107–110.

[6] Sutapa, D. and Mukhopadhyay, S. A composite method based on formal grammar and
DNA structural features in detecting human polymerase II promoter region. PLoS One.
2013. 8(2): e54843.

[7] Algwaiz, A., Ammar, R. and Rajasekaran, S. Framework for data mining of big data using
probabilistic grammars. In e-Learning (econf) Fifth International Conference on. 2015.
241–246.

[8] Zulkufli, N.L.M., Turaev, S., Tamrin, M.I.M and Azeddine, M. Closure properties of
Watson-Crick grammars. In AIP Conference Proceedings 2015. 1691(1): 040032.

[9] Zulkufli, N.L.M., Turaev, S., Tamrin, M.I.M. and Messikh, A. Generative power and
closure properties of Watson-Crick grammars. Applied Computational Intelligence and
Soft Computing. 2016. 1–12.

[10] Zulkufli, N.L.M., Turaev, S., Tamrin, M.I.M., Messikh, A. and Alshaikhli, I.F.T.
Computational properties of Watson-Crick context-free grammars. In Advanced Computer
Science Applications and Technologies (ACSAT), 2015 4th International Conference.
2015. 186–191.

Aqilahfarhana Abdul Rahman et al. / MATEMATIKA 35:3 (2019) 283–296 296

[11] Rahman, A.F.A, Fong, W.H., Sarmin, N. H., Turaev, S. and Zulkufli, N.L.M. Static
Watson-Crick regular grammar. Malaysian Journal of Applied and Fundamental Sciences.
2018. 14: 457–462.

[12] Czeizler, E. and Czeizler, E. A short survey on Watson-Crick automata. Bulletin of the
EATCS . 2006. 88(3): 104-119.

[13] Linz, P. An Introduction to Formal Languages and Automata. United States: Jones and
Barlett Publishers. 2006.

