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Abstract In DNA splicing system, DNA molecules are cut and recombined with the

presence of restriction enzymes and a ligase. The splicing system is analyzed via formal

language theory where the molecules resulting from the splicing system generate a

language which is called a splicing language. In nature, DNA molecules can be read

in two ways; forward and backward. A sequence of string that reads the same forward

and backward is known as a palindrome. Palindromic and non-palindromic sequences

can also be recognized in restriction enzymes. Research on splicing languages from

DNA splicing systems with palindromic and non-palindromic restriction enzymes have

been done previously. This research is motivated by the problem of DNA assembly to

read millions of long DNA sequences where the concepts of automata and grammars

are applied in DNA splicing systems to simplify the assembly in short-read sequences.

The splicing languages generated from DNA splicing systems with palindromic and non-

palindromic restriction enzymes are deduced from the grammars which are visualised as

automata diagrams, and presented by transition graphs where transition labels represent

the language of DNA molecules resulting from the respective DNA splicing systems.
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1 Introduction

Deoxyribonucleic acid (DNA) splicing system, also known as Head’s splicing model, was
modelled by Head [1] in 1987 based on a study relating informational macromolecules and
formal language theory. In the splicing system, DNA molecules are cut and reassociated by
restriction enzymes and a ligase to produce new molecules [1]. The splicing system is analyzed
via formal language theory where the resulting molecules from the splicing process generate a
language known as splicing language [1].
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In formal language theory, a language is a set of strings of symbols where each string
is called a word [2]. The operations on formal languages are applied in this research such us
concatenation, union and star-closure [2]. Formal languages are generated by grammars to study
languages mathematically and provide mechanisms for natural languages and programming
languages.The theory of grammar is first introduced by Chomsky in [3] where grammar is used
to generate strings of a language. The grammar contains the set of rules to transform a string
to another string in the formation of language [2].

By using formal language theory, the molecules from splicing system act as strings which
come from some portions in gene. The strings consist of double stranded DNA (dsDNA)
symbols structured from two base pairings where adenine (A) forms with thymine (T), while
cytosine (C) forms with guanine (G) [4]. The restriction enzyme acts as the rule in splicing
system where the rule is formed as a triple: left context, crossing and right context [5].

Motivated by the concept from the process of recombinant DNA in Head’s splicing model,
variants of splicing models had been studied. For instance, Paun [6], Pixton [7], Goode-
Pixton [8] and Yusof-Goode [9] splicing systems had been introduced with different notations of
rule. There are different types of splicing languages such as simple [10], limit [8], second order,
single and two stage splicing language which can be generated by different splicing models. In
DNA splicing systems, splicing languages resulting from the splicing systems can be generalized
based on palindromic and non-palindromic rules.

Palindrome is a string that reads the same forwards and backwards [11]. Research on the
generalisations of splicing languages resulting from DNA splicing systems involving palindromic
and non-palindromic rules has been done previously [12]. The name and sequence for all
palindromic and non-palindromic rules used in this research are taken from [13].

In this research, the concepts of automata are applied in DNA splicing systems. In automata
theory, finite state machine is a type of automata. Finite state machine is designed with a set
of states, where every state accepts or rejects the input which produces output while moving
to another state [14]. Various kinds of finite state machines had been designed such as Mealy
machine and Moore machine. Mealy machine is a finite-state machine with output, where
the output is determined by the current state and input [15],while Moore machine gives no
output, has a set of final states and recognizes language from the inputs accepted from every
path moving through the states.[16]. The finite state machine without output is also known as
finite state automaton [14]. This research uses the concept of finite state automaton since the
language generated by the automaton depicts the splicing language from the splicing system.
The relation between splicing systems, maximal firm sub-words and automata is studied by Fong
et al. [17]. In 2013, splicing languages from splicing systems are investigated using automata
and grammars [18]. The automata diagrams for the general splicing language and the second
order limit language are also presented in [19].

In this paper, the generalizations of splicing languages from DNA splicing system with
palindromic and non-palindromic rules for the same and different crossings are given as
deterministic finite automata diagrams using grammars, where the dsDNA strings are visualised
as the inputs to depict the language generated by the grammars.
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2 Preliminaries

In this research, the generalizations of splicing languages are generated from Head’s splicing
model. The splicing language is a language resulting from process of recombinant DNA in the
splicing system in which both definitions are given in the following.

Definition 1 [1] Splicing System and Splicing Language
A splicing system S = (A, I,B,C) consists of a finite alphabet A, a finite set I of initial strings
in A∗, and finite sets B and C of triples (c,x, d) with c, x and d in A∗. Each such triple in
B or C is called a pattern. For each such triple, the string cxd is called a site and the string
x is called a crossing. Patterns in B are called left patterns and patterns in C are called right
patterns. The language L = L (S)generated by S consists of the strings in I and all strings
that can be obtained by adjoining to ucxfq and pexdv whenever ucxdv and pexfq are in L and
(c,x, d) and (e,x, f ) are patterns of the same hand. A language, L, is a splicing language if
there exists a splicing system S for which L = L (S).

The sequences of enzymes can be analyzed as palindromic or non-palindromic rules. Next,
the definition of a palindromic string is presented.

Definition 2 [20] Palindromic String
A string I of a dsDNA is said to be palindromic if the sequence from the left to the right side
of the upper single strand is equal to the sequence from the right to the left side of the lower
single strand.

For instance, the enzyme CviAII
5′−CATG−3′

3′−GTAC−5′
is a palindromic rule since the upper single

strand of enzyme CviAII is exactly the same with the lower single strand when reading 5′ to 3′

direction. Similarly, the enzyme BseY I
5′−CCCAGC−3′

3′−GGGTCG−5′
is not palindrome since the upper

single strand of enzyme BseY I, 5′−CCCAGC−3′, does not match with the lower single strand
3′ − GGGTCG − 5′when reading the same direction.

In automata theory, finite state automata can be deterministic since there is a unique move
in each transition. This research applies concepts of deterministic finite automaton in the
splicing systems. The definition of deterministic finite automaton is presented next.

Definition 3 [2] Deterministic Finite Automaton
A deterministic finite automaton M is a 5-tuple, (Q,Σ, δ, q0, F )consisting of a finite set of states
Q, a finite set of input symbols called the alphabet Σ, a transition function (δ : Q× Σ → Q),
an initial state q0 ∈ Q and a set of final states F ⊆ Q.

The concepts of automata and grammars are used in this research to visualise the splicing
language as automata diagrams using grammars. The definition of a grammar is shown next.

Definition 4 [2] Grammar
A grammar G is defined as a quadruple G = (V , T , S, P ), where V is a finite set of objects
called variables, T is a finite set of objects called terminal symbols, S ∈ V is a special symbol
called the start variable and P is a finite set of productions.

The set L (G) =
{

w ∈ T ∗ : S
∗

⇒w
}

is the language generated by G, where
∗

⇒ denotes zero

or more steps of sequence of productions.
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Figure 1 shows an example of a deterministic finite automaton that accepts the language
L = a · ((b + c) a)∗ · c generated by the grammar with P consisting of the productions

S0 → aS1

S1 → bS0|cS2

S2 → aS1|λ

where Q = {S0, S1, S2}, Σ = {a, b, c}, S0 is the initial state, F = {S2} and δ is given by

δ(S0, a) = S1,

δ(S1, b) = S0,

δ(S1, c) = S2,

δ(S2, a) = S1.

From the current state, the automaton makes a move to another state according to the transition
function and accepts the input symbols. In the automaton, each state, final state, transitions,
and input symbols (transition labels) are represented in single circle, double circle, arrows and
arrow labels respectively.

Figure 1: A Deterministic Finite Automaton

3 Research Methodology

The generalizations of splicing languages from DNA splicing systems with one cutting site each
of palindromic and non-palindromic rules for the same and different crossings are used in this
research for constructing the automata diagrams. The generalization of splicing languages from
DNA splicing system with one cutting site each of palindromic and non-palindromic rules and
the same crossing is presented in Theorem 1.

Theorem 1 [12] Let S = (A, I, B, C) be a DNA splicing system in which

A =

{

A
T

,
C
G

,
G
C

,
T
A

}

is the set of dsDNA symbols,

I =

{

N1N1...N1

N ′

1N
′

1...N
′

1

X1

X ′

1

Y
Y ′

X2

X ′

2

M M ...M
M ′M ′....M ′

W1

W ′

1

Y
Y ′

W2

W ′

2

N2N2...N2

N ′

2N
′

2...N
′

2

}
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is the set consisting of an initial string with one cutting site each of palindromic and non-
palindromic rules

X1

X ′

1

Y
Y ′

X2

X ′

2

and
W1

W ′

1

Y
Y ′

W2

W ′

2

where
N1

N ′

1

,
X1

X ′

1

,
Y
Y ′

,
X2

X ′

2

,
M
M ′

,
W1

W ′

1

,
W2

W ′

2

and
N2

N ′

2

are variables used to denote any arbitrary dsDNA and N ′

1, X
′

1, Y
′, X ′

2, M
′, W ′

1, W
′

2 and N ′

2 are
complementaries for N1, X1, Y, X2, M, W1, W2 and N2, respectively, set

B =

{(

X1

X ′

1

,
Y
Y ′

,
X2

X ′

2

)(

W1

W ′

1

,
Y
Y ′

,
W2

W ′

2

)}

is the set of rules where
Y
Y ′

is the crossing and set C is the empty set. The resulting splicing

language consists of strings of the form

(

N1N1...N1

N ′

1N
′

1...N
′

1

+
N ′

2N
′

2...N
′

2

N2N2...N2

W ′

2

W2

Y
Y ′

W ′

1

W1

M ′M ′....M ′

M M ...M

)

X1

X ′

1

Y
Y ′

(

X2

X ′

2

M M ...M
M ′M ′....M ′

W1

W ′

1

Y
Y ′

)n−1

(

W2

W ′

2

N2N2...N2

N ′

2N
′

2...N
′

2

+
X2

X ′

2

N ′

1N
′

1...N
′

1

N1N1...N1

)

where n ∈ Z+ represents multiple copies of strings and
{

X1

X ′

1

Y
Y ′

X2

X ′

2

,
W1

W ′

1

Y
Y ′

W2

W ′

2

,
W ′

1

W1

Y ′

Y
W ′

2

W2

}

/∈

{

N1N1...N1

N ′

1N
′

1...N
′

1

,
M M ...M
M ′M ′....M ′

,
N2N2...N2

N ′

2N
′

2...N
′

2

}

which indicates no other cutting site is present in strings

N1N1...N1

N ′

1N
′

1...N
′

1

,
M M ...M
M ′M ′....M ′

and
N2N2...N2

N ′

2N
′

2...N
′

2 .

The generalization of splicing languages from DNA splicing system with one cutting site
each of palindromic and non-palindromic rules and different crossings is presented in Theorem 2.

Theorem 2 [12] Let S = (A, I, B, C) be a DNA splicing system in which

A =

{

A
T

,
C
G

,
G
C

,
T
A

}

is the set of dsDNA symbols,

I =

{

N1N1...N1

N ′

1N
′

1...N
′

1

X1

X ′

1

Y
Y ′

X2

X ′

2

M M ...M
M ′M ′....M ′

W1

W ′

1

Z
Z ′

W2

W ′

2

N2N2...N2

N ′

2N
′

2...N
′

2

}

is the set consisting of an initial string with one cutting site each of palindromic and non-
palindromic rules

X1

X ′

1

Y
Y ′

X2

X ′

2
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and
W1

W ′

1

Z
Z ′

W2

W ′

2

where
N1

N ′

1

,
X1

X ′

1

,
Y
Y ′

,
X2

X ′

2

,
M
M ′

,
W1

W ′

1

,
Z
Z ′

,
W2

W ′

2

and
N2

N ′

2

are variables used to denote any arbitrary dsDNA and N ′

1, X
′

1, Y
′, X ′

2, M
′, W ′

1, Z
′, W ′

2 and N ′

2

are complementaries for N1, X1, Y, X2, M, W1, Z, W2 and N2, respectively, set

B =

{(

X1

X ′

1

,
Y
Y ′

,
X2

X ′

2

)(

W1

W ′

1

,
Z
Z ′

,
W2

W ′

2

)}

is the set of rules where
Y
Y ′

and
Z
Z ′

are the different crossings and set Cis the empty set.

The resulting splicing language consists of strings of the form

(

N1N1...N1

N ′

1N
′

1...N
′

1

+
N ′

2N
′

2...N
′

2

N2N2...N2

W ′

2

W2

Y
Y ′

W ′

1

W1

M ′M ′....M ′

M M ...M

)

X1

X ′

1

Y
Y ′

X2

X ′

2

(

M M ...M
M ′M ′....M ′

W1

W ′

1

Z
Z ′

W2

W ′

2

N2N2...N2

N ′

2N
′

2...N
′

2

+
N ′

1N
′

1...N
′

1

N1N1...N1

)

where
{

X1

X ′

1

Y
Y ′

X2

X ′

2

,
W1

W ′

1

Z
Z ′

W2

W ′

2

,
W ′

1

W1

Z ′

Z
W ′

2

W2

}

/∈

{

N1N1...N1

N ′

1N
′

1...N
′

1

,
M M ...M
M ′M ′....M ′

,
N2N2...N2

N ′

2N
′

2...N
′

2

}

which indicates no other cutting site is present in strings

N1N1...N1

N ′

1N
′

1...N
′

1

,
M M ...M
M ′M ′....M ′

and
N2N2...N2

N ′

2N
′

2...N
′

2 .

4 Results and Discussion

In this paper, the generalized splicing languages from DNA splicing systems with one cutting
site each of palindromic and non-palindromic rules are given as automata diagrams. In order
to construct the automata diagrams, the generalized splicing languages from the corresponding
DNA splicing systems are deduced from grammars and the automata diagrams are presented
as theorems.

The automaton for DNA splicing system with one cutting site each of palindromic and
non-palindromic rules and the same crossing is presented in Theorem 3.

Theorem 3 Given

S =

{{

A
T

,
C
G

,
G
C

,
T
A

}

,
N1N1...N1

N ′

1N
′

1...N
′

1

X1

X1

Y
Y ′

X2

X ′

2

M M ...M
M ′M ′....M ′

W1

W ′

1

Y
Y ′

W2

W ′

2

N2N2...N2

N ′

2N
′

2...N
′

2

,
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{(

X1

X ′

1

,
Y
Y ′

,
X2

X ′

2

)(

W1

W ′

1

,
Y
Y ′

,
W2

W ′

2

)}

, ∅

}

is a splicing system involving one cutting site each of palindromic and non-palindromic rules

X1

X ′

1

Y
Y ′

X2

X ′

2

and
W1

W ′

1

Y
Y ′

W2

W ′

2

with the same crossing

Y
Y ′

where
N1

N ′

1

,
X1

X ′

1

,
Y
Y ′

,
X2

X ′

2

,
M
M ′

,
W1

W ′

1

,
W2

W ′

2

and
N2

N ′

2

are variables used to denote any arbitrary dsDNA and N ′

1, X
′

1, Y
′, X ′

2, M
′, W ′

1, W
′

2 and N2 ’ are
complementaries for N1, X1, Y, X2, M, W1, W and N2, respectively, M1 = (Q, Σ, δ, q0, F )is a
deterministic finite automaton for the DNA splicing system that accepts the language L (S)
in which Q = {q0, q1, q2, q3, q4, q5} is the set of states where q0is the initial state and
F = {q4, q5} is the set of final states,

Σ =

{

N1N1...N1

N ′

1N
′

1...N
′

1

X1

X ′

1

,
N ′

2N
′

2...N
′

2

N2N2...N2

W ′

2

W2

Y
Y ′

W ′

1

W1

M ′M ′....M ′

M M ...M
X1

X ′

1

,

Y
Y ′

,
X2

X ′

2

M M ...M
M ′M ′....M ′

W1

W ′

1

,
W2

W ′

2

N2N2...N2

N ′

2N
′

2...N
′

2

,
X2

X ′

2

N ′

1N
′

1...N
′

1

N1N1...N1

}

is the set of inputs and δ is given by

δ

(

q0,
N1N1...N1

N ′

1N
′

1...N
′

1

X1

X ′

1

)

= q1,

δ

(

q0,
N ′

2N
′

2...N
′

2

N2N2...N2

W ′

2

W2

Y
Y ′

W ′

1

W1

M ′M ′....M ′

M M ...M
X1

X ′

1

)

= q2,

δ

(

q1,
Y
Y ′

)

= q3, δ

(

q2,
Y
Y ′

)

= q3,

δ

(

q3,
X2

X ′

2

M M ...M
M ′M ′....M ′

W1

W ′

1

)

= q1, δ

(

q3,
W2

W ′

2

N2N2...N2

N ′

2N
′

2...N
′

2

)

= q4

and

δ

(

q3,
X2

X ′

2

N ′

1N
′

1...N
′

1

N1N1...N1

)

= q5.

The automaton diagram for M1 is shown in Figure 2.

Proof
In this proof, S0, S1, S2, S3, S4 and S5represent states q0, q1, q2, q3, q4 and q5, respectively,
where q4 and q5 are the final states. The splicing language L(S) from the splicing system can
be written as a language generated by a grammar G1 where

G1 =

(

{S0, S1, S2, S3, S4, S5} ,

{

N1

N ′

1

,
X1

X ′

1

,
Y
Y ′

,
X2

X ′

2

,
M
M ′

,
W1

W ′

1

,
W2

W ′

2

,
N2

N ′

2

}

, S0P1

)
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Figure 2: An Automaton Diagram for M1

with P1 consisting of the productions,

S0 →
N1N1...N1

N ′

1N
′

1...N
′

1

X1

X ′

1

S1|
N ′

2N
′

2...N
′

2

N2N2...N2

W ′

2

W2

Y
Y ′

W ′

1

W1

M ′M ′....M ′

M M ...M
X1

X ′

1

S2

S1 →
Y
Y ′

S3

S2 →
Y
Y ′

S3

S3 →
X2

X ′

2

M M ...M
M ′M ′....M ′

W1

W ′

1

S1|
W2

W ′

2

N2N2...N2

N ′

2N
′

2...N
′

2

S4|
X2

X ′

2

N ′

1N
′

1...N
′

1

N1N1...N1

S5

S4 → λ and S5 → λ. Then, a sequence for the language generated by the grammar G1, L (G1) is

S0 ⇒

(

N1N1...N1

N ′

1N
′

1...N
′

1

X1

X ′

1

S1 +
N ′

2N
′

2...N
′

2

N2N2...N2

W ′

2

W2

Y
Y ′

W ′

1

W1

M ′M ′....M ′

M M ...M
X1

X ′

1

S2

)

⇒

(

N1N1...N1

N ′

1N
′

1...N
′

1

X1

X ′

1

+
N ′

2N
′

2...N
′

2

N2N2...N2

W ′

2

W2

Y
Y ′

W ′

1

W1

M ′M ′....M ′

M M ...M
X1

X ′

1

)

Y
Y ′

S3

⇒

(

N1N1...N1

N ′

1N
′

1...N
′

1

X1

X ′

1

+
N ′

2N
′

2...N
′

2

N2N2...N2

W ′

2

W2

Y
Y ′

W ′

1

W1

M ′M ′....M ′

M M ...M
X1

X ′

1

)

Y
Y ′

(

X2

X ′

2

M M ...M
M ′M ′....M ′

W1

W ′

1

S1

)(

W2

W ′

2

N2N2...N2

N ′

2N
′

2...N
′

2

S4 +
X2

X ′

2

N ′

1N
′

1...N
′

1

N1N1...N1

S5

)

⇒

(

N1N1...N1

N ′

1N
′

1...N
′

1

X1

X ′

1

+
N ′

2N
′

2...N
′

2

N2N2...N2

W ′

2

W2

Y
Y ′

W ′

1

W1

M ′M ′....M ′

M M ...M
X1

X ′

1

)

Y
Y ′

(

X2

X ′

2

M M ...M
M ′M ′....M ′

W1

W ′

1

Y
Y ′

)

∗
(

W2

W ′

2

N2N2...N2

N ′

2N
′

2...N
′

2

+
X2

X ′

2

N ′

1N
′

1...N
′

1

N1N1...N1

)

which depicts the splicing language L (S) from Theorem 1.
Based on G1, the automaton for the splicing system is constructed using productions in G1.

The relation between productions in G1 and transition functions, δfor M1are given in Table 1.
Thus, Theorem 3 is proved. 2
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Table 1: Productions in G1 and Transition Functions for M1

Production in G1 Transition Function, δ

S0 →
N1N1...N1

N ′

1N
′

1...N
′

1

X1

X′

1

S1 δ

(

q0,
N1N1...N1

N ′

1N
′

1...N
′

1

X1

X′

1

)

= q1

S0 →
N ′

2N
′

2...N
′

2

N2N2...N2

W ′

2

W2

Y

Y ′

W ′

1

W1

M ′M ′....M ′

M M ...M

X1

X′

1

S2 δ

(

q0,
N ′

2N
′

2...N
′

2

N2N2...N2

W ′

2

W2

Y

Y ′

W ′

1

W1

M ′M ′....M ′

M M ...M

X1

X′

1

)

= q2

S1 →
Y

Y ′
S3 δ

(

q1,
Y

Y ′

)

= q3

S2 →
Y

Y ′
S3 δ

(

q2,
Y

Y ′

)

= q3

S3 →
X2

X′

2

M M ...M

M ′M ′....M ′

W1

W ′

1

S1 δ

(

q3,
X2

X′

2

M M ...M

M ′M ′....M ′

W1

W ′

1

)

= q1

S3 →
W2

W ′

2

N2N2...N2

N ′

2
N ′

2
...N ′

2

S4 δ

(

q3,
W2

W ′

2

N2N2...N2

N ′

2
N ′

2
...N ′

2

)

= q4

S3 →
X2

X′

2

N ′

1
N ′

1
...N ′

1

N1N1...N1

S5 δ

(

q3,
X2

X′

2

N ′

1
N ′

1
...N ′

1

N1N1...N1

)

= q5
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The automaton for DNA splicing system with one cutting site each of palindromic and
non-palindromic rules and different crossings is presented in Theorem 4.

Theorem 4 Given

S =

{{

A
T

,
C
G

,
G
C

,
T
A

}

,

N1N1...N1

N ′

1N
′

1...N
′

1

X1

X ′

1

Y
Y ′

X2

X ′

2

M M ...M
M ′M ′....M ′

W1

W ′

1

Z
Z ′

W2

W ′

2

N2N2...N2

N ′

2N
′

2...N
′

2

,

{(

X1

X ′

1

,
Y
Y ′

,
X2

X ′

2

)(

W1

W ′

1

,
Z
Z ′

,
W2

W ′

2

)}

, ∅

}

is a splicing system involving one cutting site each of palindromic and non-palindromic rules

X1

X ′

1

Y
Y ′

X2

X ′

2

and
W1

W ′

1

Z
Z ′

W2

W ′

2

with different crossings Y
Y ′

and
Z
Z ′

where
N1

N ′

1

,
X1

X ′

1

,
Y
Y ′

,
X2

X ′

2

,
M
M ′

,
W1

W ′

1

,
Z
Z ′

,
W2

W ′

2

and
N2

N ′

2

are variables used to denote any arbitrary dsDNA and N ′

1, X
′

1, Y
′, X ′

2, M
′, W ′

1, Z
′, W ′

2

and N ′

2 are complementaries for N1, X1, Y, X2, M, W1, Z, W2 and N2 respectively, M2 =
(Q, Σ, δ, q0, F )is a deterministic finite automaton for the DNA splicing system that accepts
the language L (S) in which Q = {q0, q1, q2, q3, q4, q5} is the set of states where q is the initial
state and F = {q4, q5} is the set of final states,

Σ =

{

N1N1...N1

N ′

1N
′

1...N
′

1

,
N ′

2N
′

2...N
′

2

N2N2...N2

W ′

2

W2

Y
Y ′

W ′

1

W1

M ′M ′....M ′

M M ...M
,

X1

X ′

1

Y
Y ′

X2

X ′

2

,
M M ...M
M ′M ′....M ′

W1

W ′

1

Z
Z ′

W2

W ′

2

N2N2...N2

N ′

2N
′

2...N
′

2

,
N ′

1N
′

1...N
′

1

N1N1...N1

}

is the set of inputs and δ is given by

δ

(

q0,
N1N1...N1

N ′

1N
′

1...N
′

1

)

= q1,

δ

(

q0,
N ′

2N
′

2...N
′

2

N2N2...N2

W ′

2

W2

Y
Y ′

W ′

1

W1

M ′M ′....M ′

M M ...M

)

= q2,

δ

(

q1,
X1

X ′

1

Y
Y ′

X2

X ′

2

)

= q3, δ

(

q2,
X1

X ′

1

Y
Y ′

X2

X ′

2

)

= q3,

δ

(

q3,
M M ...M
M ′M ′....M ′

W1

W ′

1

Z
Z ′

W2

W ′

2

N2N2...N2

N ′

2N
′

2...N
′

2

)

= q4 and δ

(

q3,
N ′

1N
′

1...N
′

1

N1N1...N1

)

= q5.

The automaton diagram for M2 is shown in Figure 3.
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Figure 3: An Automaton Diagram for M2

Proof
In this proof, S0, S1, S2, S3, S4 and S5 represent states q0, q1, q2, q3, q4 and q5,respectively,
where q4 and q5 are the final states. The splicing language L(S) from the splicing system can
be written as a language generated by a grammar G2 where

G2 =

(

{S0, S1, S2, S3, S4, S5} ,

{

N1

N ′

1

,
X1

X ′

1

,
Y
Y ′

,
X2

X ′

2

,
M
M ′

,
W1

W ′

1

,
Z
Z ′

,
W2

W ′

2

,
N2

N ′

2

}

, S0P2

)

with P2 consisting of the productions,

S0 →
N1N1...N1

N ′

1N
′

1...N
′

1

S1|
N ′

2N
′

2...N
′

2

N2N2...N2

W ′

2

W2

Y
Y ′

W ′

1

W1

M ′M ′....M ′

M M ...M
S2,

S1 →
X1

X ′

1

Y
Y ′

X2

X ′

2

S3,

S2 →
X1

X ′

1

Y
Y ′

X2

X ′

2

S3,

S3 →
M M ...M
M ′M ′....M ′

W1

W ′

1

Z
Z ′

W2

W ′

2

N2N2...N2

N ′

2N
′

2...N
′

2

S4|
N ′

1N
′

1...N
′

1

N1N1...N1

S5,

S4 → λ and S5 → λ.

Then, a sequence for the language generated by the grammar G2, L (G2) is

S0 ⇒

(

N1N1...N1

N ′

1N
′

1...N
′

1

S1 +
N ′

2N
′

2...N
′

2

N2N2...N2

W ′

2

W2

Y
Y ′

W ′

1

W1

M ′M ′....M ′

M M ...M S2

)

⇒

(

N1N1...N1

N ′

1N
′

1...N
′

1

+
N ′

2N
′

2...N
′

2

N2N2...N2

W ′

2

W2

Y
Y ′

W ′

1

W1

M ′M ′....M ′

M M ...M

)

X1

X ′

1

Y
Y ′

X2

X ′

2

S3

⇒

(

N1N1...N1

N ′

1N
′

1...N
′

1

+
N ′

2N
′

2...N
′

2

N2N2...N2

W ′

2

W2

Y
Y ′

W ′

1

W1

M ′M ′....M ′

M M ...M

)

X1

X ′

1

Y
Y ′

X2

X ′

2
(

M M ...M
M ′M ′....M ′

W1

W ′

1

Z
Z ′

W2

W ′

2

N2N2...N2

N ′

2N
′

2...N
′

2

S4 +
N ′

1N
′

1...N
′

1

N1N1...N1

S5

)

,

which depicts the splicing language L (S) from Theorem 2.
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Based on G2, the automaton for the splicing system is constructed using productions in G2.
The relation between productions in G2 and transition functions, δ for M2 are given in Table
2. Thus, Theorem 4 is proved. 2

Table 2: Productions in G2 and transition functions for M2

Production in G2 Transition Function, δ

S0 →
N1N1...N1

N ′

1N
′

1...N
′

1

S1 δ

(

q0,
N1N1...N1

N ′

1N
′

1...N
′

1

)

= q1

S0 →
N ′

2N
′

2...N
′

2

N2N2...N2

W ′

2

W2

Y

Y ′

W ′

1

W1

M ′M ′....M ′

M M ...M
S2 δ

(

q0,
N ′

2N
′

2...N
′

2

N2N2...N2

W ′

2

W2

Y

Y ′

W ′

1

W1

M ′M ′....M ′

M M ...M

)

= q2

S1 →
X1

X′

1

Y

Y ′

X2

X′

2

S3 δ

(

q1,
X1

X′

1

Y

Y ′

X2

X′

2

)

= q3

S2 →
X1

X′

1

Y

Y ′

X2

X′

2

S3 δ

(

q2,
X1

X′

1

Y

Y ′

X2

X′

2

)

= q3

S3 →
M M ...M

M ′M ′....M ′

W1

W ′

1

Z

Z′

W2

W ′

2

N2N2...N2

N ′

2N
′

2...N
′

2

S4 δ

(

q3,
M M ...M

M ′M ′....M ′

W1

W ′

1

Z

Z′

W2

W ′

2

N2N2...N2

N ′

2N
′

2...N
′

2

)

= q4

S3 →
N ′

1N
′

1...N
′

1

N1N1...N1

S5 δ

(

q3,
N ′

1N
′

1...N
′

1

N1N1...N1

)

= q5

Therefore, automata diagrams can be used to visualize the generalized splicing languages
from DNA splicing systems with palindromic and non-palindromic rules using the grammars.

5 Conclusion

In this research, the concepts in automata theory and grammar are applied in DNA splicing
systems with one cutting site each of palindromic and non-palindromic rules for the same and
different crossings using deterministic finite automata. The automata diagrams for the DNA
splicing systems are given as Theorems 3 and 4 and constructed using the grammars for the
generalizations of splicing languages from the corresponding DNA splicing systems, which are
given in Theorems 1 and 2. The languages generated by the grammars depict the generalized
splicing languages consisting of the dsDNA strings.
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