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Abstract. Let G be a finite group and S be a subset of G where S does not include the

identity of G and is inverse closed. A Cayley graph of a finite group G with respect

to the subset S is a graph where the vertices are the elements of G and two vertices

a and b in G are adjacent if ab−1 are in the set S. For a simple graph, the energy

of a graph can be determined by its eigenvalues. Let Γ be a simple graph. Then by

the summation of the absolute values of the eigenvalues of the adjacency matrix of

the graph, its energy can be determined. This paper presents the Cayley graphs of

alternating groups with respect to the subset S of valency 1 and 2. From the Cayley

graphs, the eigenvalues are computed by using some properties of special graphs and

then used to compute their energy.
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1. Introduction

The study on the energy of general simple graphs was first defined by Gutman
[11] in 1978 inspired from the Huckel Molecular Orbital (HMO) theory proposed
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in 1930s. The Huckel Molecular Orbital theory has been used by chemists in
approximating the energies related with π-electron orbitals in conjugated hy-
drocarbon. In 1956, the facts that the Huckel method is using the first degree
polynomial of the adjacency matrix of a certain graph was realized by Gunthard
and Primas [14].

After several years, Gutman has generalized the definition of the energy for
all finite simple graphs which is the summation of the positive values of the
eigenvalues of the adjacency matrix of the graphs. An adjacency matrix of
a graph denoted as A(Γ) is a square matrix where the rows and columns are
indexed by the vertices of the graph Γ. The (i, j)-entry of the matrix is entered
as 0 if two distinct vertices are not adjacent to each other and is entered as 1 if
the vertices are adjacent to each other [4]. In 2004, Bapat and Pati [5] proved
that the energy of a graph is never an odd integer while the properties that the
energy of a graph is never the square root of an odd integer has been proven by
Pirzada and Gutman [17] in 2008. The studies on the properties of the energy
of graphs have also been studied by many researchers through the years (see
[12, 13]).

Meanwhile, a Cayley graph of a finite group G with respect to a subset S
of G, denoted as Cay(G,S) is a graph where the vertices are the elements of G
and two distinct vertices x and y are joined by an edge if x = sy for s in S. The
subset S is referred to as the inverse-closed set with no identity element of G
[6]. The study on Cayley graphs was initiated by A. Cayley in 1878 to explain
the idea of abstract groups described by a set of generators. The theory has
advanced into a significant branch in algebraic graph theory and there are many
problems regarding Cayley graphs that have been studied by graph theorists.

In addition, the theory of Cayley graphs relates with many problems in alge-
bra such as the classification, the isomorphism and the enumeration of Cayley
graphs [16]. In 1993, Lakshmivarahan et al. [15] have analyzed the symme-
tries in the interconnection networks of a variety of Cayley graphs of permu-
tation groups. The types of symmetry analyzed consist of vertex and edge
transitivity, distance regularity and distance transitivity. Meanwhile in 2000,
Friedman [8] has shown in his study that among all sets of n − 1 transposi-
tions which generate the symmetric groups, the Cayley graph associated to set
S = {(1, n), (2, n), ..., (n− 1, n)} has the highest eigenvalues.

Meanwhile, Konstantinova [18] in 2008, has surveyed the historical changes
of some problems on Cayley graphs such as the Hamiltonicity and diameter
problems. The author also included various uses of Cayley graphs in solving
combinatorial, graph theoretical and applied problems. Further in 2012, Adiga
and Ariamanesh [2] have determined the number of undirected Cayley graphs of
symmetric group and alternating groups up to isomorphism.

Another interesting study on graphs is on the spectrum of the graphs. The
first mathematician who considered the spectrum of Cayley graphs was Babai
[3] in 1979 by using algebraic graph theory techniques. This exciting topic has
been receiving increased number of attention from many researchers. In 1981,
Diaconis et al. [7] have introduced the computations of the spectrum of Cayley
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graphs via the character table of the related groups. Following that, in 2012,
Krakovski and Mohar [19] have presented their findings on the spectrum of
Cayley graphs on the symmetric group generated by the set of transpositions
where the spectrum contains all integers from −(n − 1) to n − 1 (except 0 if
n = 2 or n = 3).

Recently in 2016, Abdollahi et al. [1] have presented on the groups of whose
undirected Cayley graphs are determined by their spectrum. Latest in 2018,
Ghorbani and Nowroozi in their papers [9, 10] have presented their studies on
the spectrum of Cayley graphs related to groups of order pqr, 2pq and 3pq where
p > q > r > 2 are prime numbers in terms of their character tables.

Therefore, this paper intends to reveal the energy of the Cayley graphs for
alternating groups, An with respect to the subset S of valency 1 and 2. The
methodology consists of constructing the Cayley graphs with respect to the sub-
sets, finding their eigenvalues and finally computing the energy of the respected
Cayley graphs.

This paper is structured as follows: in Section 1, some introductions and
previous studies on the topics are explained. In Section 2, the results on the
Cayley graphs of the alternating groups are presented in term of theorems and
the energy of the Cayley graphs are presented in several theorems in Section 3.

2. The Cayley Graphs of Alternating Groups

In this section, we present our results, namely the Cayley graphs of the alter-
nating groups An with respect to the subsets S of valency one and two. The
Cayley graphs are presented in the following theorems.

Theorem 2.1. Let An be the alternating group on n symbols where n ≥ 3. Then
the Cayley graph of An with respect to a subset S, denoted as Cay(An, S), where
S ⊂ An, e /∈ S, S−1 = S and |S| = 1 is (n!4 )K2.

Proof. Assume that S = {a}, where a ∈ An. Then we have a−1 = a or equiv-
alently a2 = e. If g ∈ An is an arbitrary vertex, then we can see that g is
adjacent to ag, because g(ag)−1 = gg−1a−1 = a−1 = a ∈ S. Since Cay(An, S)
is 1−regular, g is adjacent to only ag and therefore all elements of An will split
into two disjoint subsets {g1, g1, . . . , gk} and {ag1, ag2, . . . , agk}, where k = n!

4

and gi is adjacent to agi for i = 1, 2, . . . , k. Hence, Cay(An, S) = (n!4 )K2.

Theorem 2.2. Let An be the alternating group and n ≥ 4. Let S ⊂ An, such that
|S| = 2, S = {a, a−1} where o(a) = m and m 6= 2. Then the Cayley graph of An

with respect to a subset S, denoted as Cay(An, S) is ( n!
2m )Cm.

Proof. Suppose that S = {a, a−1} and o(a) = m where m 6= 2. Thus a = a−1

and elements e, a, a2, . . . , am−1 are all distinct. It is easy to see that we have the
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following cycle of length m:

e←→ a←→ a2 ←→ a3 ←→ · · · ←→ am−2 ←→ am−1 ←→ e.

Note that ae−1 = a ∈ S, ai+1(ai)−1 = ai+1a−i = a ∈ S and am−1e−1 =
am−1 = a−1 ∈ S. Now, for any element g ∈ An and g 6= e, a, a2, . . . , am−1, we
have the following cycle of length m:

g ←→ ag ←→ a2g ←→ a3g ←→ · · · ←→ am−2g ←→ am−1g ←→ g.

Since (ai+1g)(aig)−1 = ai+1gg−1a−i = a ∈ S for i = 0, 1, 2, . . . ,m−1. Moreover,
(am−1g)g−1 = am−1 = a−1 ∈ S. Since Cay(An, S) is 2−regular, we should have
Cay(An, S) = ( n!

2m )Cm, where m > 2 and n ≥ 4.

Note that choosing the cycles Cm can be found as the following:

Suppose that S = {a, a−1} and o(a) = m 6= 2. Then we have a subgroup

H =< a >= {e, a, a2, . . . , am−1}. Since [An, H ] = |An|
|H| =

n!

2

m = n!
2m , there are

distinct elements e = g1, g2, . . . , gt such that An =
⋃t

i=1 Hgi, where giH ’s are
all disjoint and for i 6= 1, gi /∈ H . Now, we can see that we have t cycles of
length m as the following:

g1 = e : e←→ a←→ a2 ←→ · · · ←→ am−2 ←→ am−1 ←→ e

g2 : g2 ←→ ag2 ←→ a2g2 ←→ · · · ←→ am−2g2 ←→ am−1g2 ←→ g2

g3 : g3 ←→ ag3 ←→ a2g3 ←→ · · · ←→ am−2g3 ←→ am−1g3 ←→ g3

gt : gt ←→ agt ←→ a2gt ←→ · · · ←→ am−2gt ←→ am−1gt ←→ gt

Note that Hgi = {gi, agi, a
2gi, . . . , a

m−1gi}, i = 0, 1, 2, · · · t. Hence,
Cay(An, S) = tCm = ( n!

2m )Cm.

Theorem 2.3. Let An be the alternating group and n ≥ 4. Let S = {a, b} ⊂ An,
such that a 6= b, o(a) = o(b) = 2. Then Cay(An, S) is ( n!

4m )C2m, where m =
o(ab).

Proof. Assume that o(ab) = m. Then we will have the following cycle of length
2m:

e←→ b←→ ab←→ b(ab)←→ (ab)2 ←→ b(ab)2 ←→ (ab)3 ←→ b(ab)3 ←→ · · ·

· · · ←→ (ab)m−2 ←→ b(ab)m−2 ←→ (ab)m−1 ←→ b(ab)m−1 ←→ (ab)m = e

Put H = {e, b, ab, b(ab), (ab)2, b(ab)2, . . . , b(ab)m−1}. Then one can prove
that H is a subgroup of An of order 2m (Hint: Prove that H =< b, (ab) >).

Since [An : H ] = |An|
|H| = n!/2

2m = n!
4m = t, we have An =

⋃t
i=1 Hgi, where

Hgi = He = Hg1 = · · · = Hgt are distinct right cosets of H in An. Thus,
gi /∈ H , for i = 2, 3, . . . , t. Now we can see that the following is a cycle of length
2m for all i = 0, 1, 2, . . . , t:

gi ←→ bgi ←→ (ab)gi ←→ b(ab)gi ←→ (ab)2gi ←→ · · ·

· · · ←→ b(ab)m−2gi ←→ (ab)m−1gi ←→ b(ab)m−1gi ←→ (ab)mgi = gi
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Hence, Cay(An, S) = tCm = ( n!
4m )C2m.

3. The Energy of the Cayley Graphs of Alternating Groups

In this section, we present our main results, namely the energy of the Cayley
graphs of the alternating groups An with respect to the subsets S of valency
one and two. The energy of the Cayley graphs are presented in the following
theorems.

Theorem 3.1. Let An be the alternating group on n symbols where n ≥ 3 and
Cay(An, S) be the Cayley graph of An with respect to a subset S, where S ⊂ An,
e /∈ S, S−1 = S and |S| = 1, Then the energy of the Cayley graph, denoted as
ε(Cay(An, S)) is

n!
2 .

Proof. Consider the alternating group of order n!
2 , An. By Theorem 2.1,

Cay(An, S) = (n!4 )K2 where |S| = 1. Since the adjacency spectrum of a com-

plete graph, Kn is {(n − 1)1, (−1)n−1}. Then the eigenvalues of (n!4 )K2 are

λi = n!
4 {(1)

1, (−1)1} which also can be written as λ = ±1 with multiplicity
n!
4 . Therefore, the energy of the Cayley graph, denoted as ε(Cay(A4, S)) =
n!
4 (1) +

n!
4 (| − 1|) = 2(n!4 ) =

n!
2 .

Theorem 3.2. Let An be the alternating group and n ≥ 4. Let S ⊂ An, such
that |S| = 2, S = {a, a−1} where o(a) = m and m 6= 2. Then the energy of
the Cayley graph of An with respect to a subset S, denoted as ε(Cay(An, S)) is
∑m−1

j=0
n!
m

∣

∣cos
(

2jπ
m

)
∣

∣.

Proof. Consider the alternating group of order n!
2 , An. By Theorem 2.2,

Cay(An, S) = ( n!
2m )Cm where S = {a, a−1} such that o(a) = m and

m 6= 2. Since the adjacency spectrum of a cycle graph, Cn is {2cos(2πjn )}

for j = {0, 1, . . . , n − 1}. Then the eigenvalues of ( n!
2m )Cm are λi =

n!
2m{2cos(

2πj
m )} for j = {0, 1, . . . ,m − 1} which also can be written as

{2, 2cos(2πm ), 2cos(4πm ), · · · , 2cos(2(m−1)π
m )} with multiplicity n!

2m . Therefore, the

energy of the Cayley graph, denoted as ε(Cay(An, S)) =
∑m−1

j=0
n!
m

∣

∣cos
(

2jπ
m

)∣

∣.

Theorem 3.3. Let An be the alternating group and n ≥ 4. Let S = {a, b} ⊂ An,
such that a 6= b, o(a) = o(b) = 2. Then the energy of the Cayley graph of An

with respect to a subset S, denoted as Cay(An, S) is
∑2m−1

j=0
n!
2m

∣

∣cos
(

jπ
m

)
∣

∣.

Proof. Consider the alternating group of order n!
2 , An. By Theorem 2.3,

Cay(An, S) = ( n!
4m )C2m where S = {a, b} ⊂ An, such that a 6= b,

o(a) = o(b) = 2. Since the adjacency spectrum of a cycle graph, Cn is
{2cos(2πjn )} for j = {0, 1, . . . , n − 1}. Then the eigenvalues of ( n!

4m )C2m
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are λi = n!
4m{2cos(

2πj
2m )} for j = {0, 1, . . . , 2m − 1} which also can be writ-

ten as {2, 2cos( π
m ), 2cos(2πm ), 2cos(3πm ), · · · , 2cos( (2m−1)π

m )} with multiplicity n!
4m .

Therefore, the energy of the Cayley graph, denoted as ε(Cay(An, S)) =
∑2m−1

j=0
n!
2m

∣

∣cos
(

jπ
m

)∣

∣.

4. Conclusion

In this paper, the energy of the Cayley graphs with respect to subsets S of valency
one and two of alternating groups are found. The results of the respected Cayley
graphs are as presented in the following main theorems.

Theorem 4.1. Let An be the alternating group and S be a subset An, such that
e /∈ S and S−1 = S. Then

(i) if n ≥ 3 and |S| = 1, then Cay(An, S) = (n!4 )K2.

(ii) if n ≥ 4, and |S| = 2, where S = {a, b},

(a) if b = a−1, then Cay(An, S) = ( n!
2m )Cm, for which o(a) = m 6= 2.

(b) if b 6= a−1 and o(a)=o(b)=2, then Cay(An, S) = ( n!
4m )C2m, where

m = o(ab).

Theorem 4.2. Let An be the alternating group and S be a subset An, such that
e /∈ S and S−1 = S. Then

(i) if n ≥ 3 and |S| = 1, then ε(Cay(An, S)) =
n!
2 .

(ii) if n ≥ 4, and |S| = 2, where S = {a, b},

(a) if b = a−1, then ε(Cay(An, S)) =
∑m−1

j=0
n!
m

∣

∣cos
(

2jπ
m

)
∣

∣, for which
o(a) = m 6= 2.

(b) if b 6= a−1 and o(a)=o(b)=2, then ε(Cay(An, S)) =
∑2m−1

j=0
n!
2m

∣

∣cos
(

jπ
m

)
∣

∣, where m = o(ab).
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