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Abstract. The independence polynomial and the clique polynomial are the graph poly-

nomials that are used to describe the combinatorial information of graphs, including

the graphs related to group theory. An independence polynomial of a graph is the

polynomial in which its coefficients are the number of independent sets in the graph.

The independent set of a graph is a set of vertices that are not adjacent. A clique poly-

nomial of a graph is the polynomial containing coefficients that represent the number

of cliques in the graph. The clique of a graph is a set of vertices that are adjacent

to each other in the graph. Meanwhile, the center graph of a group G is a graph in

which the vertices are all the elements of G and two distinct vertices a, b are adjacent

if an only if ab is in the center of G. In this research, the independence polynomial

and the clique polynomial are established for the center graphs of three finite non-

abelian groups, namely the dihedral group, the generalized quarternion group and the

quasidihedral group.
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1. Introduction

A simple graph, Γ = (V,E) consists of a set of vertices, V and a set of edges,
E. For vertices u, v ∈ V , u and v are adjacent if they are connected by an
edge, e = (u, v) ∈ E. A complete graph, Kn, is a common type of graph in
which it contains n vertices and each pair of distinct vertices is connected by an
edge [14]. Meanwhile, a compete bipartite graph, Km,n is a graph that has its
vertex set partitioned into two subsets ofm and n vertices, respectively, in which
there is an edge between two vertices if and only if the first vertex is in the first
subset and the second vertex is in the second subset [14]. Let Γ1 = (V1, E1) and
Γ2 = (V2, E2), then the union of Γ1 and Γ2, denoted by Γ1 ∪ Γ2, is the graph
Γ = (V,E), where V = V1 ∪ V2 and E = E1 ∪ E2 [2].

Graph polynomials, such as the independence polynomials and the clique
polynomials of graphs have been studied by many researchers to analyze the
properties of graphs. An independence polynomial of a graph is a polynomial
containing coefficients that represent the number of independent sets in the
graph [9]. Meanwhile, a clique polynomial of a graph is a polynomial containing
coefficients that represent the number of cliques in the graph [9].

Many researches have been extensively done to associate the graphs in graph
theory to the groups in group theory. Some examples of the graphs associated
to groups include the conjugate graph [5], the commuting graph [13] and the
noncommuting graph [1]. Another type of graph associated to group is the
center graph that is being considered in this research. A center graph of a group
G, Γz

G is defined as the graph whose vertex set, V (Γz
G) contains all elements of

G, that is |V (Γz
G)| = |G| in which two distinct vertices a and b are adjacent if

and only if ab is in Z(G) [3]. In group theory, Z(G) is the center of a group G,
in which it is the subset of the elements of G that commute with every element
in G and can be denoted as {a ∈ G|ag = ga for all g ∈ G} [8].

Graph polynomials are commonly found for the graphs in graph theory, such
as the cycle graph, the complete graph and the complete bipartite graph. In
this research, we focus in establishing two types of graph polynomials for the
graph of groups. The independence polynomial and the clique polynomial are
determined for the center graphs of three types of finite nonabelian groups. The
groups involved are the dihedral group of order 2n, the generalized quaternion
group of order 4n and the quasidiheral group of order 2n, that can be expressed,
respectively, in the group presentations as follows:

(i) D2n = 〈a, b : an = b2 = 1, bab = a−1〉, n ≥ 3, n ∈ N [15].

(ii) Q4n = 〈a, b : a2n = b4 = 1, an = b2, b−1ab = a−1〉, n ≥ 2, n ∈ N [10].

(iii) QD2n = 〈a, b : a2
(n−1)

= b2 = 1, bab−1 = a2
(n−2)−1〉, n ≥ 4, n ∈ N [4].
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2. Preliminaries

This section presents some preliminaries that are used throughout this research.
First, some basic concepts related to the independence polynomial are given. An
independent set of a graph Γ is the set of vertices in Γ such that no two distinct
vertices are adjacent. The independence number of a graph Γ, denoted by α(Γ) is
the maximum number of vertices in an independent set of the graph [14]. Hoedi
and Li [9] have defined that the independence polynomial of a graph Γ is the
polynomial whose coefficient on xk is given by the number of independent sets

of size k in Γ. This is denoted by I(Γ;x) =
∑α(Γ)

k=0 akx
k, where ak is the number

of independent sets of size k in Γ and α(Γ) is the independence number of Γ.
Previous researchers have obtained some properties related to the independence
polynomial such as stated in the following propositions.

Proposition 2.1. [9] Let Γ1 and Γ2 be two vertex-disjoint graphs. Then,

I(Γ1 ∪ Γ2;x) = I(Γ1;x) · I(Γ2;x).

Proposition 2.2. [6] The independence polynomial of the union of m complete

graphs each of ni vertices is I

(

m
⋃

i=1

Kni
;x

)

=
m
∏

i=1

(1 + nix).

Proposition 2.3. [6] The independence polynomial of a complete bipartite graph

of n1 + n2 vertices is I (Kn1,n2 ;x) = (1 + x)
n1 + (1 + x)

n2 − 1.

Next, some basic concepts related to the clique polynomials are stated. A
clique of a graph Γ is the set of vertices in which every vertex is adjacent to
every other vertices [2]. Pardalos and Xue [12] have stated that S is a clique of
a graph if and only if S is an independent set of the complement of the graph.
The clique of the graph is called a maximal clique if it is not a subset of a larger
clique in the graph [2, 12]. Eventhough there are some researchers referred the
maximal clique as clique, however, in this research, clique is defined only as
the complete subgraph. Furthermore, the maximal clique is different from the
maximum clique of a graph, that is the clique with the biggest cardinality in the
graph [12]. The clique number of a graph Γ, denoted by ω(Γ) is the size of the
maximum clique [2].

The clique polynomial of a graph Γ has been defined by Hoede and Li [9] in
1994 in which it is the polynomial whose coefficient on xk is given by the number

of cliques of size k in Γ. This is denoted by C(Γ;x) =
∑ω(Γ)

k=0 ckx
k, where ck is

the number of cliques of size k in Γ and ω(Γ) is the clique number of Γ. Some
properties of the clique polynomials are given in the following propositions.

Proposition 2.4. [9] Let Γ1 and Γ2 be two vertex-disjoint graphs. Then,

C(Γ1 ∪ Γ2;x) = C(Γ1;x) + C(Γ2;x)− 1.



806 N. Najmuddin et al.

Proposition 2.5. [7] The clique polynomial of the union of m complete graphs

each of n vertices is C

(

m
⋃

i

Kn;x

)

= m(1 + x)n − (m− 1).

Proposition 2.6. [7] The clique polynomial of a complete bipartite graph of n1+n2

vertices is C (Kn1,n2 ;x) = (1 + n1x) (1 + n2x).

Finally, the following concepts on the center graph of groups are stated. The
element a in a group G can be of two types, either a2 ∈ Z(G) or a2 6∈ Z(G).
Therefore, G = X ∪ Y in which X = {g ∈ G : g2 ∈ Z(G)} and Y = {g ∈ G :
g2 6∈ Z(G)} [3]. Balakrishnan et al. [3] have obtained the center graph of the
nonabelian groups as stated in the following proposition.

Proposition 2.7. [3] Let G be a nonabelian group. Then the center graph of G is

Γz
G =

|X|
|Z(G)|
⋃

i=1

K|Z(G)| ∪

|Y |
2|Z(G)|
⋃

i=1

K|Z(G)|,|Z(G)|.

For the generalized quaternion group and the quasidihedral group, the gen-
eral form of the center graphs are not yet constructed by other researchers and
therefore will be presented in the next section. However, Karimi et al. have
established the general form of the center graph for the dihedral group as stated
in the following lemma.

Lemma 2.8. [11] Let D2n be a dihedral group of order 2n, where n ≥ 3, n ∈ N.

The center graph of D2n is

Γz
D2n

=















































(

n+1
⋃

i=1

K1

)

∪

(

n−1
2
⋃

i=1

K1,1

)

if n is odd,

(

n

2 +2
⋃

i=1

K2

)

∪

(

n

4 −1
⋃

i=1

K2,2

)

if n
2 is even,

(

n

2 +1
⋃

i=1

K2

)

∪

(

n−2
4
⋃

i=1

K2,2

)

if n
2 is odd.

3. Main Results

This section contains the results of this research. The general form of the cen-
ter graphs are first being determined for generalized quaternion and quasidi-
hedral groups. Then, the independence polynomial and the clique polynomial
are established for the dihedral group, the generalized quaternion group and the
quasidihedral group.
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Lemma 3.1. Let Q4n be the generalized quaternion group of order 4n, n ≥ 2,
n ∈ N. The center graph of Q4n can be presented as follows:

Γz
Q4n

=























(

n+1
⋃

i=1

K2

)

∪

(

n−1
2
⋃

i=1

K2,2

)

if n is odd,

(

n+2
⋃

i=1

K2

)

∪

(

n−2
2
⋃

i=1

K2,2

)

if n is even.

Proof. Suppose that Q4n is a generalized quaternion group of order 4n, n ≥ 2,
n ∈ N, with Γz

Q4n
as its center graph. The center of Q4n is Z(Q4n) = {1, an}.

When n is odd, set X of Q4n can be expressed asX = {1, an, aib}, 0 ≤ i ≤ 2n−1.
It follows that |X | = 2 + 2n. Since |Q4n| = 4n and Y = G \ X , therefore
|Y | = |G| − |X | = 4n− (2 + 2n) = 2n− 2. And by Proposition 2.8,

Γz
Q4n

=

2+2n
2
⋃

i=1

K2 ∪

2n−2
2(2)
⋃

i=1

K2,2 =
n+1
⋃

i=1

K2 ∪

n−1
2
⋃

i=1

K2,2.

Next, when n is even, set X of Q4n can be expressed as X =
{1, a

n

2 , an, a
3n
2 , aib}, 0 ≤ i ≤ 2n − 1. It follows that |X | = 4 + 2n. Since

|Q4n| = 4n and Y = G \X , therefore |Y | = |G| − |X | = 4n− (4 + 2n) = 2n− 4.
And by Proposition 2.8,

Γz
Q4n

=

4+2n
2
⋃

i=1

K2 ∪

2n−4
2(2)
⋃

i=1

K2,2 =
n+2
⋃

i=1

K2 ∪

n−2
2
⋃

i=1

K2,2.

Lemma 3.2. Let QD2n be the quasidihedral group of order 2n, n ≥ 4, n ∈ N.

The center graph of QD2n can be presented as follows:

Γz
QD2n

=

(

2(n−2)+2
⋃

i=1

K2

)

∪

(

2(n−3)−1
⋃

i=1

K2,2

)

.

Proof. Suppose that QD2n is a quasidihedral group of order 2n, n ≥ 4, n ∈ N,

with center Z(QD2n) = {1, a2
(n−2)

} and Γz
QD2n

as its center graph. The set

X of QD2n is X = {1, a2
(n−3)

, a2
(n−2)

, a−2(n−3)

, aib}, 0 ≤ i ≤ 2(n−1) − 1. It
follows that |X | = 4 + 2(n−1). Since |QD2n | = 2n and Y = G \ X , therefore
|Y | = |G| − |X | = 2n − (4 + 2(n−1)) = 2(n−1) − 4. And by Proposition 2.8,

Γz
QD2n

=

4+2(n−1)

2
⋃

i=1

K2 ∪

2(n−1)−4
2(2)
⋃

i=1

K2,2 =
2(n−2)+2
⋃

i=1

K2 ∪
2(n−3)−1
⋃

i=1

K2,2.

Next, the general forms for the independence polynomial and the clique poly-
nomial of the center graph for the dihedral group are stated in the following
theorems.
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Theorem 3.3. Let D2n be a dihedral group of order 2n, where n ≥ 3, n ∈ N. The

independence polynomial of the center graph of D2n is

I(Γz
D2n

;x) =















(1 + x)n+1(1 + 2x)
n−1
2 if n is odd,

(1 + 2x)
n

2 +2(1 + 4x+ 2x2)
n

4 −1 if n
2 is even,

(1 + 2x)
n

2 +1(1 + 4x+ 2x2)
n−2
4 if n

2 is odd.

Proof. Suppose that D2n is the dihedral group of order 2n, where n ≥ 3,
n ∈ N, and Γz

D2n
is its center graph. When n is odd, from Lemma 2.9,

Γz
D2n

=
(

⋃n+1
i=1 K1

)

∪
(

⋃

n−1
2

i=1 K1,1

)

. Using Propositions 2.1, 2.2 and 2.3, the

independence polynomial of Γz
D2n

is computed:

I(Γz
D2n

;x) = (1 + x)n+1
[

2(1 + x)− 1
]

n−1
2 = (1 + x)n+1(1 + 2x)

n−1
2 .

When n
2 is even, Γz

D2n
=
(

⋃

n

2 +2
i=1 K2

)

∪
(

⋃

n

4 −1
i=1 K2,2

)

. Using Props. 2.1, 2.2

and 2.3, the independence polynomial of Γz
D2n

is computed as follows:

I(Γz
D2n

;x) = (1 + 2x)
n

2 +2
[

2(1 + x)2 − 1
]

n

4 −1

= (1 + 2x)
n

2 +2
[

2(1 + 2x+ x2)− 1
]

n

4 −1

= (1 + 2x)
n

2 +2
(

1 + 4x+ x2
]

)
n

4 −1

When n
2 is odd, Γz

D2n
=
(

⋃

n

2 +1
i=1 K2

)

∪
(

⋃

n−2
4

i=1 K2,2

)

.Using Propositions 2.1,

2.2 and 2.3, the independence polynomial of Γz
D2n

is computed as follows:

I(Γz
D2n

;x) = (1 + 2x)
n

2 +1
[

2(1 + x)2 − 1
]

n−2
4

= (1 + 2x)
n

2 +1
[

2(1 + 2x+ x2)− 1
]

n−2
4

= (1 + 2x)
n

2 +1
(

1 + 4x+ x2
]

)
n−2
4 .

Theorem 3.4. Let D2n be a dihedral group of order 2n, where n ≥ 3, n ∈ N. The

clique polynomial of the center graph of D2n is

C(Γz
D2n

;x) =















1 + 2nx+
(

n−1
2

)

x2 if n is odd,

1 + 2nx+
(

3n
2 − 2

)

x2 if n
2 is even,

1 + 2nx+
(

3n−2
2

)

x2 if n
2 is odd.

Proof. Suppose that D2n is the dihedral group of order 2n, where n ≥ 3, n ∈
N, and Γz

D2n
is its center graph. When n is odd, from Lemma 2.9, Γz

D2n
=

(

⋃n+1
i=1 K1

)

∪
(

⋃

n−1
2

i=1 K1,1

)

. Using Props. 2.4, 2.5 and 2.6, the clique polynomial

of Γz
D2n

is computed as follows:
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C(Γz
D2n

;x) = (n+ 1) + (n+ 1)x+
(

n−1
2

)

+ (n− 1)x+
(

n−1
2

)

x2 − 3n−1
2

=
(

n+ 1 + n−1
2 − 3n−1

2

)

+
(

(n+ 1) + (n− 1)
)

x+
(

n−1
2

)

x2

= 2n+2+n−1−3n+1
2 + 2nx+

(

n−1
2

)

x2

= 1 + 2nx+
(

n−1
2

)

x2.

When n
2 is even, Γz

D2n
=
(

⋃
n

2 +2
i=1 K2

)

∪
(

⋃
n

4 −1
i=1 K2,2

)

. Using Props. 2.4, 2.5

and 2.6, the clique polynomial of Γz
D2n

is computed as follows:

C(Γz
D2n

;x) =
[

(

n
2 + 2

)

(1 + x)2 − n
2 − 1

]

+
[

(

n
4 − 1

)

(1 + 2x)2 − n
4 + 2

]

− 1

=
(

n
2 + n

4 − 3n
4 + 1

)

+
(

2n
2 + 4n

4

)

x+
(

n
2 + 4n

4 − 2
)

x2

= 1 + 2nx+
(

3n
2 − 2

)

x2.

When n
2 is odd, Γz

D2n
=
(

⋃
n

2 +1
i=1 K2

)

∪
(

⋃

n−2
4

i=1 K2,2

)

. Thus, the clique

polynomial of Γz
D2n

is computed as follows:

C(Γz
D2n

;x) =
[

(

n
2 + 1

)

(1 + x)2 − n
2

]

+
[

(

n−2
4

)

(1 + 2x)2 − n−2
4 + 1

]

− 1

=
(

n
2 + 1 + n−2

4 − 3n−2
4

)

+ (n+ 2 + n− 2)x+
(

n
2 + 1 + n− 2

)

x2

= 1 + 2nx+
(

3n−2
2

)

x2.

The following theorems present the general forms for the independence poly-
nomial and the clique polynomial of the center graph for the generalized quater-
nion group.

Theorem 3.5. Let Q4n be a generalized quaternion group of order 4n, where

n ≥ 2, n ∈ N. The independence polynomial of the center graph of Q4n is

I(Γz
Q4n

;x) =

{

(1 + 2x)n+1(1 + 4x+ 2x2)
n−1
2 if n is odd

(1 + 2x)n+2(1 + 4x+ 2x2)
n−2
2 if n is even.

Proof. Suppose that Q4n is the generalized quaternion group of order 4n, where

n ≥ 2, n ∈ N, and Γz
Q4n

is its center graph. When n is odd, Γz
Q4n

=
(

⋃n+1
i=1 K2

)

∪
(

⋃

n−1
2

i=1 K2,2

)

. Using Propositions 2.1, 2.2 and 2.3, the independence polynomial

of Γz
Q4n

is computed:

I(Γz
Q4n

;x) = (1 + 2x)n+1
[

(1 + x)2 + (1 + x)2 − 1
]

n−1
2

= (1 + 2x)n+1
(

1 + 2x+ x2 + 1 + 2x+ x2 − 1
)

n−1
2

= (1 + 2x)n+1
(

1 + 4x+ 2x2
)

n−1
2 .
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When n is even, Γz
Q4n

=
(

⋃n+2
i=1 K2

)

∪
(

⋃

n−2
2

i=1 K2,2

)

. The independence

polynomial of Γz
Q4n

is computed as follows:

I(Γz
Q4n

;x) = (1 + 2x)n+2
[

2(1 + x)2 − 1
]

n−2
2

= (1 + 2x)n+2
[

2(1 + 2x+ x2)− 1
]

n−2
2

= (1 + 2x)n+2
(

1 + 4x+ x2
)

n−2
2 .

Theorem 3.6. Let Q4n be a generalized quaternion group of order 4n, where

n ≥ 2, n ∈ N. The clique polynomial of the center graph of Q4n is

C(Γz
Q4n

;x) =

{

1 + 4nx+ (3n− 1)x2 if n is odd,

1 + 4nx+ (3n− 2)x2 if n is even.

Proof. Suppose that Q4n is the generalized quaternion group of order 4n, where

n ≥ 2, n ∈ N, and Γz
Q4n

is its center graph. When n is odd, Γz
Q4n

=
(

⋃n+1
i=1 K2

)

∪
(

⋃

n−1
2

i=1 K2,2

)

. Using Propositions 2.4, 2.5 and 2.6, the clique polynomial of Γz
Q4n

is computed as follows:

C(Γz
Q4n

;x) =
[

(n+ 1)(1 + x)2 − n
]

+
[

(

n−1
2

)

(1 + 2x)2 − n−1
2 + 1

]

− 1

= (n+ 1)(1 + 2x+ x2) +
(

n−1
2

)(

1 + 4x+ 4x2
)

− n− n−1
2

=
(

n+ 1 + n−1
2 − 3n−1

2

)

+ (2n+ 2n)x+ (n+ 2n− 1)x2

= 1 + 4nx+ (3n− 1)x2.

When n is even, Γz
Q4n

=
(

⋃n+2
i=1 K2

)

∪
(

⋃

n−2
2

i=1 K2,2

)

. Thus, the clique poly-

nomial of Γz
Q4n

is computed as follows:

C(Γz
Q4n

;x) =
[

(n+ 2)(1 + x)2 − (n+ 1)
]

+
[

(

n−2
2

)

(1 + 2x)2 −
(

n−2
2

)

]

= (n+ 2)(1 + 2x+ x2) +
(

n−2
2

)

(1 + 4x+ 4x2)− 3n
2

=
(

n+ 2 + n−2
2 − 3n

2

)

+ (2n+ 4 + 2n− 4)x+ (n+ 2 + 2n− 4)x2

= 1 + 4nx+ (3n− 2)x2.

Lastly, the independence polynomial and the clique polynomial of the center
graph for the quasidihedral group are presented.

Theorem 3.7. Let QD2n be a quasidihedral group of order 2n, where n ≥ 4,
n ∈ N. The independence polynomial of the center graph of QD2n is:

I(Γz
QD2n

;x) = (1 + 2x)2
(n−2)+2(1 + 4x+ 2x2)2

(n−3)−1.
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Proof. Suppose that QD2n is the quasidihedral group of order 2n, where n ≥ 4,
n ∈ N, and Γz

QD2n
is its center graph. By using Lemma 3.2 and Props. 2.1, 2.2

and 2.3, the independence polynomial of Γz
QD2n

is computed as follows:

I(Γz
QD2n

;x) = (1 + 2x)2
(n−2)+2

[

(1 + x)2 + (1 + x)2 − 1
]2(n−3)−1

= (1 + 2x)2
(n−2)+2

(

1 + 4x+ 2x2
)2(n−3)−1

.

Theorem 3.8. Let QD2n be a quasidihedral group of order 2n, where n ≥ 4,
n ∈ N. The clique polynomial of the center graph of QD2n can be expressed as

follows:

C(Γz
QD2n

;x) = 1 + 2nx+
(

3(2(n−2))− 2
)

x2.

Proof. Suppose that QD2n is the quasidihedral group of order 2n, where n ≥ 4,
n ∈ N, and Γz

QD2n
is its center graph. By using Lemma 3.2 and Props. 2.4, 2.5

and 2.6, the clique polynomial of Γz
QD2n

is computed as follows:

C(Γz
QD2n

;x) =
[(

2(n−2) + 2
)

(1 + x)2 − 2(n−2) − 1
]

+
[(

2(n−3) − 1
)

(1 + 2x)2 − 2(n−3) + 2
]

− 1

= 1 +
[

(

2n(2)
)

+
(

2n−3(4)
)

]

x+
[

(

2n−2
)

+
(

2n−3(4)
)

− 2
]

x2

= 1 + 2nx+
(

3(2n−2 − 2)
)

x2.

4. Conclusion

In this paper, the independence polynomial and the clique polynomial are es-
tablished for the center graphs associated to the dihedral group, the generalized
quaternion group and the quasidihedral group. The independence polynomi-
als obtained for all the three groups have degrees depending on the order of the
group. Meanwhile, the clique polynomials that are obtained for the three groups
are all of degree two.
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