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Abstract. In this paper, the non-normal subgroup graphs of some generalised quater-

nion groups are constructed. The non-normal subgroups of the generalised quaternion

groups are determined and furthermore the graph is constructed. The subgroup graph

of a group G is defined as a directed simple graph with a vertex set G and two distinct

elements x and y are adjacent if xy ∈ H .
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1. Introduction

The algebraic graph theory has become an interesting and active research area
in describing the properties of groups. A group can be represented in a graph by
its subgroup structure. In group theory, a subgroup H of a group G is a subset
of G, where H itself is a group under the same operation as in G. A subgroup
H is said to be a normal subgroup if its left and right cosets coincide. The
non-normal subgroups can be determined once the normal subgroups of a group
G are identified. There were some researches on the graph of a group using its
subgroup structure and the graphs obtained were undirected and directed.

The undirected graph of a group that are related to a subgroup were cyclic
subgroup graph defined by Devi and Singh [3], a stable subgroup graph defined
by Tolue [6] and a normal subgroup-based power graph of a finite group defined
by Bhuniya and Bera [2]. Meanwhile, a directed graph related to subgroup was
firstly introduced by Anderson [1] and then formally defined by Kakeri and Erfa-
nian [4]. Anderson [1] introduced the subgroup graph as a simple directed graph
and the structure of the connected components of this graph were investigated
when |H | is either two or three, H is normal subgroup of G and G/H is a finite
abelian group. Kakeri and Erfanian [4] defined the subgroup graph formally,
studied the complement of subgroup graph and discussed some properties of the
graph. Let G be a group and H be a subgroup of a group G. Then the subgroup
graph ΓH(G) is defined as a directed simple graph with vertex set G and two
distinct elements x and y are adjacent if and only if xy ∈ H . In this paper,
the non-normal subgroup graphs are obtained for some generalised quaternion
group Q4n of order 4n. This group can be expressed in a group representation
as follows:

Q4n = 〈a, b|a2n = b4 = 1, an = b2, b−1ab = a−1〉, n ≥ 2, n ∈ N.

In the following section, the main results are presented on the non-normal
subgroup graph of generalised quaternion group.

2. Results and Discussions

In this section, the non-normal subgroup graph are constructed for some gen-
eralised quaternion group. The definition of the non-normal subgroup graph is
given as follows.

Definition 2.1. [5] Let G be a group and H be a non-normal subgroup of G. The

subgroup graph ΓNN

H
(G) is a directed graph with vertex set G such that x is the

initial vertex and y is the terminal vertex of an edge if and only if x 6= y and

xy ∈ H.

This definition is used to determine the non-normal subgroup graph of certain
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order in generalised quaternion groups. The results of the graph are shown in the
form of propositions. Based on Definition 2.1, the non-normal subgroup graphs
are determined for generalised quaternion group of order twelve and sixteen.
They are stated in the following propositions.

Proposition 2.2. Let G be the generalised quaternion group of order twelve, Q12

and H be a non-normal subgroup of G. The elements of Q12 are {1, a, a2, a3,
a4, a5, b, ab, a2b, a3b, a4b, a5b}. Then the non-normal subgroup graphs for Hi

where 1 ≤ i ≤ 3 are given as follows:

ΓNN

H
(G) =







ΓH1
(Q12) ∪K4 ; H1 = {1, a3, b, a3b}

ΓH2
(Q12) ∪K4 ; H2 = {1, a3, ab, a4b}

ΓH3
(Q12) ∪K4 ; H3 = {1, a3, a2b, a5b}

where ΓHi
(Q12) are illustrated in Figure 1.

Figure 1: ΓH1
(Q12), ΓH2

(Q12) and ΓH3
(Q12)

Proof. The generalised quaternion group of order twelve, Q12 has 12 elements.
The non-normal subgroups of Q12 are H1 = {1, a3, b, a3b}, H2 = {1, a3, ab, a4b}
and H3 = {1, a3, a2b, a5b}. By Definition 2.1, the set of vertices for the non-
normal subgroup graph is the set of elements of Q12 where two vertices are
adjacent if and only if x 6= y and xy ∈ H . The initial vertex and terminal vertex
of an edge are x and y, respectively. For example, let x = 1 and y = a3. Since
xy = 1·a3 ∈ H , there is a direction from x = 1 to y = a3. Hence, the non-normal
subgroup graph of H1 = {1, a3, b, a3b} is a directed graph as illustrated in the
Figure 2.

The graph in Figure 2 can be concluded as ΓH1
(Q12)∪K4 whereK4 is a complete

digraph with four vertices.

The non-normal subgroup graph of H2 = {1, a3, ab, a4b} is shown as in Figure 3
and it can be concluded as ΓH2

(Q12) ∪K4.

Next, the non-normal subgroup graph of H3 = {1, a3, a2b, a5b} is shown as
in Figure 4 and the graph can be concluded as ΓH3

(Q12) ∪K4.

Therefore, for each non-normal subgroup of Q12, the non-normal subgroup
graph is a union of a complete graph with four vertices and a directed graph as
shown in Figure 1.
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Figure 2: ΓNN

H1
(Q12)

Figure 3: ΓNN

H2
(Q12)

Figure 4: ΓNN

H3
(Q12)

Proposition 2.3. Let G be the generalised quaternion group of order sixteen,

Q16 and H be a non-normal subgroup of G. The elements of Q16 are {1, a, a2,
a3, a4, a5, a6, a7, b, ab, a2b, a3b, a4b, a5b, a6b, a7b}. Then the non-normal subgroup

graphs for Hi where 1 ≤ i ≤ 4 are given as follows:

ΓNN

H (G) =















ΓH1
(Q16) ∪K4 ∪K4 ; H1 = {1, a4, b, a4b}

ΓH2
(Q16) ∪K4 ∪K4 ; H2 = {1, a4, ab, a5b}

ΓH3
(Q16) ∪K4 ∪K4 ; H3 = {1, a4, a2b, a6b}

ΓH4
(Q16) ∪K4 ∪K4 ; H4 = {1, a4, a3b, a7b}

where ΓHi
(Q16) are illustrated in Figure 5 and Figure 6.

Proof. The generalised quaternion group of order sixteen, Q16 has 16 elements.
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Figure 5: ΓH1
(Q16), ΓH2

(Q16) and ΓH3
(Q16)

Figure 6: ΓH4
(Q16)

The non-normal subgroups of Q16 are H1 = {1, a4, b, a4b}, H2 = {1, a4, ab, a5b},
H3 = {1, a4, a2b, a6b} and H4 = {1, a4, a3b, a7b}. By Definition 2.1, the set of
vertices for the non-normal subgroup graph is the set of elements of Q16 where
two vertices are adjacent if and only if x 6= y and xy ∈ H . The initial vertex and
the terminal vertex of an edge are x and y. For example, let x = 1 and y = a4.
Since xy = 1 ·a4 ∈ H1, there is a direction from x = 1 to y = a4. Hence, the non-
normal subgroup graph of H1 = {1, a4, b, a4b} is a directed graph as illustrated
in the Figure 7. The graph in Figure 7 can be concluded as ΓH1

(Q16)∪K4∪K4.

Figure 7: ΓNN

H1
(Q16)
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The non-normal subgroup graph of H2 = {1, a4, ab, a5b} is shown as in Fig. 8
and can be concluded as ΓH2

(Q16) ∪K4 ∪K4.

Figure 8: ΓNN

H2
(Q16)

Next, the non-normal subgroup graph of H3 = {1, a4, a2b, a6b} is constructed
as in Figure 9. This graph can be concluded as ΓH3

(Q16) ∪K4 ∪K4.

Figure 9: ΓNN

H3
(Q16)

Furthermore, the non-normal subgroup graph of H4 = {1, a4, a3b, a7b} is
shown as in Figure 10.

The graph in Figure 10 can be concluded as ΓH4
(Q16) ∪K4 ∪K4. Thus, for

each non-normal subgroup of Q16, the non-normal subgroup graph is a union of
two complete graphs with four vertices and a directed graph as shown in Figs. 5
and 6, respectively.
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Figure 10: ΓNN

H4
(Q16)

3. Conclusion

In this paper, the non-normal subgroup graphs for generalised quaternion of
order twelve and sixteen are obtained. It can be seen that the graphs are union
of complete graph and directed graph with a similar pattern. The complete
graph in the non-normal subgroup graph is directly proportional to the order of
the generalised quaternion group. When the order of the group increases, the
non-normal subgroup graph will have more complete graph.
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