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Abstract. Let R be a finite ring. In this study, the probability that two random elements

chosen from a finite ring have product zero is determined for some finite ring of matrices

over Zn. Then, the results are used to construct the zero divisor graph which is defined

as a graph whose vertices are the nonzero zero divisors of R and two distinct vertices

x and y are adjacent if and only if xy = 0.
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1. Introduction

A ring is an algebraic structure in which addition and multiplication operations
are defined. The study of finite rings has been an interest of various researchers

∗The authors would like to acknowledge Universiti Teknologi Malaysia (UTM) and the
Ministry of Education Malaysia (MoE) for the financial funding through the UTM Zamalah
scholarship.
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in the field of pure mathematics, especially in algebra. Meanwhile, also in the
field of algebra, probability theory has been widely applied, especially in finite
groups. This paper focuses on the usage of probability theory in finite rings.

Furthermore, graph is a mathematical structure which contains vertices and
edges. In both groups and rings, graph is often used to visualize the features
of the group or ring itself. For example, a commuting graph of a group shows
the commuting relations between the elements of a group. With all non-central
elements of a group as its vertices, two vertices are connected if the elements
commute [8]. In this paper, the zero divisor graph of finite rings is also studied.

2. Probabilistic Characterizations of Finite Rings

In this section, past researches and recent updates on the applications of prob-
ability theory in rings are provided. One of the initial ideas of studies in prob-
ability of groups is given by Erdos and Turan [5] in 1968. In the study, the
authors who are mainly interested in symmetric groups, Sn found some statis-
tical relations of the groups that involve its order. This idea has then inspired
Gustafson [7] in 1973 to introduce one type of probability in groups, which is
the probability that two group elements commute or it is usually known as the
commutativity degree of a group. The definition is given in the following:

Definition 2.1. Let G be a group of finite order n. The commutativity degree or
the probability, Pr(G) that two elements selected at random (with replacement)

from G are commutative is |C|
n2 where C = {(x, y) ∈ G×G|xy = yx}.

In the study, Gustafson [7] has shown that the commutativity degree can

also be calculated as k(G)
|G| , where k(G) is the number of conjugacy classes in G.

This concept of commutativity in groups has led to many extensions, such as
the relative commutativity degree [6] and the conjugation degree [14].

In rings, the study on commutativity degree is started by MacHale [11] in
1976. The author has studied the probability that a pair of elements in a finite

ring R commute. The probability is written as P (R) =

∑

r∈R

|CR(r)|

|R|2 , where

CR(r) is the subring {x ∈ R|xr = rx}. Besides that, MacHale has also studied
the probability in subrings of finite rings and found that P (R) ≤ P (S) whenever
S is a subring of R. This idea has welcomed a number of researches on the
commutativity in rings.

Recently in 2014, Buckley and MacHale [3] have defined the commuting prob-
ability in R as in the following mathematical formula.
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Definition 2.2. The commuting probability is defined as

Pr(R) =
|{(x, y) ∈ R×R|xy = yx}|

|R|2
,

where R is a finite ring, and |R| denotes cardinality of a set R.

In 2016, Buckley and MacHale [3] have studied the results in [11] and later
found that P (R) = P (S) if and only if the commutator, [x, S] = [x,R] for all
x ∈ R. The authors then have continued the study on the commuting probability
in finite rings and determined that if A and B are finite subsets of a possibly
nonassociative ring R, then its commuting probability is defined by

PrR(A,B) =
|{(x, y) ∈ A×B|xy = yx}|

|A| · |B|
.

Another recent study in commuting probability in rings has been done by
Dutta et al. [4]. In the study, P (R) is generalized as the relative commuting
probability of the subring S in a finite ring R and the mathematical formula is
given as:

Pr(S,R) =
|{(s, r) ∈ S ×R|sr = rs}|

|S ×R|
.

Moving on to another type of probability that involves rings, which is the
probability that two elements of a finite ring have product zero, which has been
introduced by Khasraw [9] in 2018. This idea is inspired by the zero divisor
graph, which will be discussed in the next section. Khasraw [9] has defined this
probability as in the following:

Definition 2.3. The probability P (R) that two elements chosen at random (with
replacement) from a ring R have product zero is

P (R) =
|Ann|

|R×R|
,

in which Ann = {Ann(x)|x ∈ R}, where Ann(x) = {y ∈ R|xy = 0}.

Some bounds of the probability have been obtained in the study, including

P (R) ≥
2l+ |Z(R)| − 1

l2
,

where |Ann(0)| = l = |R| and Z(R) is the set of zero divisors of R. In this
paper, the probability that two elements of a finite ring have product zero is
determined for some ring of matrices.
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3. Zero Divisor Graph of Finite Rings

In this section, some basic concepts on the zero divisor graph of finite rings are
discussed. The idea on the zero divisor graph has been introduced by Beck [2] in
1988. Mainly focusing on the coloring of commutative rings, Beck has considered
a simple graph whose vertices are the elements of a finite commutative ring R,
such that two different elements x and y are adjacent if xy = 0.

Later in 1999, Anderson and Livingston [1] have formally introduced the zero
divisor graph of a finite commutative ring R. The definition is given as in the
following:

Definition 3.1. Let R be a commutative ring (with 1) and let Z(R) be its set of
zero divisors. Then, the zero divisor graph, Γ(R) is a simple graph of R with
vertices Z(R)∗ = Z(R) − {0}, the set of nonzero zero divisors of R, and for
distinct x, y ∈ Z(R)∗, the vertices x and y are adjacent if and only if xy = 0.

In 2002, Redmond [13] extended the definition of the zero divisor graph,
where a study has been done on finite non-commutative rings. Redmond has
defined that the zero divisor graph, Γ(R) of a finite non-commutative ring is a di-
rected graph. In the paper, Redmond has shown that in finite non-commutative
rings, Γ(R) need not to be a connected graph.

The study on zero divisor graph has also been extended to some other graphs,
including the ideal based zero divisor graph [12] and the compressed zero divisor
graph [10]. In this paper, the main focus is to obtain the zero divisor graph of
some finite ring of matrices.

4. Results and Discussions

In this section, the results of this study are given in the form of propositions. The
results are divided into two parts, which are the probability that two elements
of a finite ring have product zero and the zero divisor graph. The finite ring
that is considered in this study is the ring of 2× 2 matrices over set of integers
modulo two, M2(Z2).

Definitions 2.3 and 3.1 are mainly used in proving the propositions. Besides
that, two new definitions are introduced in this section, which are stated as
follows.

Definition 4.1. The probability
∼

P (R) that two elements chosen at random (with
replacement) from a ring R have product zero is

∼

P (R) =
{(x, y) ∈ R×R|xy = yx = 0}

|R×R|
.
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Definition 4.2. The zero divisor graph,
∼

Γ(R) is a simple graph of R with vertices
Z(R), the set of nonzero zero divisors of R, and for distinct x, y ∈ Z(R), the
vertices x and y are adjacent if and only if xy = yx = 0.

Proposition 4.3. Let R =

{[

a b

c d

]∣

∣

∣

∣

a, b, c, d ∈ Z2

}

. Then, the probability that

two elements of R have product zero, P (R) = 29
128 and

∼

P (R) = 11
128 .

Proof. Let R =

{[

a b

c d

]∣

∣

∣

∣

a, b, c, d ∈ Z2

}

, where its elements are:

R =

{(

0 0
0 0

)

,

(

1 0
0 0

)

,

(

0 1
0 0

)

,

(

0 0
1 0

)

,

(

0 0
0 1

)

,

(

1 0
1 0

)

,

(

1 0
0 1

)

,

(

1 1
0 0

)

,

(

0 1
1 0

)

,

(

0 1
0 1

)

,

(

0 0
1 1

)

,

(

1 0
1 1

)

,

(

1 1
0 1

)

,

(

0 1
1 1

)

,

(

1 1
1 0

)

,

(

1 1
1 1

)}

.

Therefore, it is clear that |R| = 16. Recall from Definition 2.3, Ann(x) = {y ∈

R|xy = 0}. For example,

((

1 0
0 0

)

,

(

0 0
1 1

))

is in Ann

((

1 0
0 0

))

because the

product of these elements is zero. After some calculations, it is found that the
size of Ann, |Ann| = 58. Hence, by definition, the probability that two elements
of R have product zero is P (R) = 58

256 = 29
128 .

Now, considering the second case where the annihilator is defined as

Ann(x) = {y ∈ R|xy = yx = 0}. For example,

((

1 0
0 0

)

,

(

0 0
0 1

))

is in

Ann

((

1 0
0 0

))

because

(

1 0
0 0

)(

0 0
0 1

)

=

(

0 0
0 1

)(

1 0
0 0

)

=

(

0 0
0 0

)

. It is

found that in this case, the size of Ann, |Ann| = 22. Hence, by definition,

the probability that two elements of R have product zero is
∼

P (R) = 22
256 = 11

128 .

Proposition 4.4. Let R =

{[

a b

c d

]∣

∣

∣

∣

a, b, c, d ∈ Z2

}

. Then, the zero divisor graph

of R, Γ(R) is a directed graph of nine vertices and 24 arcs and
∼

Γ(R) is a directed
graph of nine vertices and six arcs.

Proof. Let R =

{[

a b

c d

]∣

∣

∣

∣

a, b, c, d ∈ Z2

}

. From the elements of R that have been

obtained in Proposition 4.3, it is found that R has nine nonzero zero divisors
which are stated in the following:

Z(R) =

{(

0 0
1 0

)

,

(

0 0
0 1

)

,

(

0 1
0 0

)

,

(

1 0
0 0

)

,

(

1 1
0 0

)

,

(

0 0
1 1

)

,

(

0 1
0 1

)

,
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(

1 0
1 0

)

,

(

1 1
1 1

)}

.

Hence, the zero divisor graph of R, Γ(R) has nine vertices. Since two vertices
are adjacent when the product is zero, Γ(R) has 24 arcs. The graph is shown as
follows.

Figure 1: The zero divisor graph of R, Γ(R)

Now, considering the case where two vertices, say A and B are adjacent if

and only if AB = BA = 0, it is found that
∼

Γ(R) has nine vertices and six arcs.
The graph is shown below.

Figure 2: The zero divisor graph of R,
∼

Γ(R)

The results from Propositions 4.3 and 4.4 lead to the following two proposi-
tions that show the relations between the probability and arcs of the zero divisor
graph.

Proposition 4.5. Let R =

{[

a b

c d

]
∣

∣

∣

∣

a, b, c, d ∈ Z2

}

and |R| = 16. Then,

P (R) =
|A(Γ(R))| + 2(|R| − 1) + c

|R|2
,



Probabilistic Characterizations of Some Finite Rings 865

where |A(Γ(R))| is the number of arcs in Γ(R) and c = |{(x, x) ∈ R×R|xx = 0}|.

Proof. Let R =

{[

a b

c d

]
∣

∣

∣

∣

a, b, c, d ∈ Z2

}

. Clearly, |Ann(0)| = |R| = 16. Since

the vertices of Γ(R) are nonzero elements of R, there is 2 · |R| as all elements
in R have product zero when multiplied with zero itself. From Prop. 4.4, the
arcs of the zero divisor graph, A(Γ(R)) represents Ann(x). Hence, |A(Γ(R))| =
|Ann(x)|. In addition, since Γ(R) is a simple graph, the elements of R that
multiply itself to zero is not shown as arcs in Γ(R). Thus,

|Ann| = |A(Γ)|+ 2(|R| − 1) + c,

where c = |{(x, x) ∈ R×R|xx = 0}|. Therefore,

P (R) =
|A(Γ(R))| + 2(|R| − 1) + c

|R|2
.

Using similar method as in Proposition 4.5, the following proposition is ob-

tained for
∼

P (R).

Proposition 4.6. Let R =

{[

a b

c d

]∣

∣

∣

∣

a, b, c, d ∈ Z2

}

and |R| = 16. Then,

∼

P (R) =
|A(

∼

Γ(R))|+ |R|+ c− 2

|R|2
,

where |A(
∼

Γ(R))| is the number of arcs in
∼

Γ(R) and c = |{(x, x) ∈ R×R|xx = 0}|.

5. Conclusions

In this study, a type of probabilistic characterizations of finite ring, namely the
probability that two elements of a finite ring have product zero is determined
for the ring of 2 × 2 matrices over integers modulo two. It is found that the

probability, P (R) = 29
128 and

∼

P (R) = 11
128 .

Next, the zero divisor graphs of the same ring are constructed and the graphs
are presented in the form of directed graphs. The zero divisor graph, Γ(R) is a

graph with nine vertices and 24 arcs, while
∼

Γ(R) has nine vertices and six arcs.

Lastly, it is also found that there is a relation between the arcs of Γ(R) and
∼

Γ(R) with the probabilities P (R) and
∼

P (R), where the number of arcs represents
the number of annihilators of x in R, Ann(x).
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