Applications of Group Theory in Probability and Graph Theory

By:

Prof. Ahmad Erfanian

Department of Pure Mathematics,

Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.

Part 1 :	Some Probabilities in Group Theory	
Monday	18 January, 2021	3.30 p.m 5.00 p.m.
Wednesday	20 January, 2021	3.00 p.m 5.00 p.m.
Part 2 :	Some Graphs Associated to Groups	

Monday	25 January, 2021	2.00 p.m 4.00 p.m.
Wednesday	27 January, 2021	3.00 p.m 5.00 p.m.

Mathematical Sciences pure Math. Applied Math. statistics Numerical Analysis Algebra Control and optimazation Analysis Diff. Equ. Dynamic systems Geometry operation Research Graph Theory & Discrete Moths. Group Theory probability Graph Theory Algebraic Graphs> probability group Theory

Application of Group Theory in Probability Theory What is the definition of probability?

Definition

probability of an event = #. I ways it can be happen / total number of outcomes

A=event # I ways A Can happen Total number I aut comes p(A) =

Example Dice

-0

A = Having number 1 B = Having numbers 2 or 5 c = Having an odd number $P(A) = \frac{1}{6}; P(B) = \frac{2}{6}; P(C) = \frac{3}{6}$

Some probabilities in Group Theory 1) Commutativity Degree Définition Let G be a finite group. Then the commutativity degree of G is the probability of two random elements n and y commute. In ather words, the commutativity degree of G, -- (V denoted by d(G) is the following ratio: -- $d(G) = \frac{|\{(n,y) \in G \times G \mid ny = yny\}|}{|G|^2}$ --Definition A group G is called abelian --ar commutative, if all elements of G commute --In other words, for every two arbitrary elements -n and yowe have ny=yx. = = = Note $d(G) = 1 \iff G$ is abelian = = IF G is abelian, then abricusly dist=1. -conversely, if d(a)=1, then we have 1 Scanned by CamScanner

G1=1{(n,y) EGXG [ny=yn]]. So, We have ny=yn for all n,yeG. Hence G is abelian (commutative). Example Let S3 be symmetric group on 3 Symboles. So, S3= {e, (12), (13), (23), (123), (132) 7 and we have : e commute with all six elements. e : (e,e), (e,(12)), (e,(13)), (e,(23)), (e,(123)), (e, (132)) we have 6 pairs (12): (12) commutes with only & and (12). (112),e), ((12),(12)) (13) Commutes with only e and (13) (13) 3 ((13),e), ((13), (13)) (23) commutes with only e and (23). (23) : (123), e), ((23), (23))(123) Gmmutes with e, (123), (132). (123)? ((123), e), ((123), (123)), ((123), (132)) BI

1 1 al

4 1 P

1P 1P

-

-

10 11

ll de de

1 1

10

1

=

1

(132) Commutes with e, (132), (123). $(132)_{1}$ ((132), e), ((132), (132), ((132), (123)) Hence, we have: $d(S_3) = \frac{|[(n,y) \in S_3 \times S_3 | ny = yn]}{|S_3|^2}$ (e,e),(e,(121)),(e,(13)),(e,(231)),(e,(123))),(e,(132)))62 (CI2), e), (12), (12)), (13), (13), (13)), ((23), (12), (23)), ((12), (23), e), ((123), (123)), ((123), (132)), ((132), ((132)), ((132)), ((132)), ((123)) $=\frac{18}{36}=\frac{1}{2}=2$ $\Rightarrow d(S_3)=\frac{1}{2}$ Example Let Do be dihedral group of order 8. Then $D_8 = \langle a, b | a^4 = b^2 = e, \ bab = a^2 \rangle$ = [e, a, a^2, a^3, b, ab, a^2 b, a^3 b^3]

one can easily by a simple computation see that $d(D_8) = \frac{40}{64} = \frac{5}{8}$ Definition Let G be a group. Then the Centralizer of element x in G, denoted by CG(n) is defined as fillows: Centralizer $f x = C(x) = \{y \in G \mid xy = yx\}$. Moreover, the centre of G, denoted by Z(G) is: $Z(G) = \{ n \in G \mid ng = gn \forall g \in G \}$ Note 1 $Z(G) = G \iff G$ is abelian Note 2 $Z(G) = \bigcap_{\substack{n \in G \\ n \in G}} C(n)$ Note 3 If $n \in Z(G)$, then C(n) = G. If $x \notin Z(G)$, then $C(x) \lneq G$. Thus $|C(n)| \leq \frac{|G|}{2}$. 5

-

-9

-

is not abelian, then Note 4 IF G $\frac{|G|}{|Z(G)|} \ge 4.$ Lemma d(G) = $\frac{1}{|G|^2} \frac{\sum |C(\alpha)|}{n \in G}$ prof It is clear that if $G = \{n_1, n_2, \dots, n_n\}$, then $|\{(n,y) \in G \times G \mid ny = yn^{2}\}| = |\{(n_{1},y)\}| yx_{1} = n_{1}y^{2}| +$ $\left[\left(\frac{n_2}{y} \right) \right] \frac{n_2 y}{y_{EG}} = \frac{y_{N_2}}{y_{EG}} \left[\frac{1}{y} - \frac{1}{y} + \frac{1}{y} \left[\frac{n_N y}{y_{EG}} \right] \frac{n_N y}{y_{EG}} \right] \frac{1}{y_{EG}} + \frac{1}{y} \left[\frac{n_N y}{y_{EG}} \right] \frac{1}{y_{EG}} \frac{1}$ $= |C(n_{4})| + |C(n_{e})| + - - + |C(n_{n})| = \sum_{m \in n} |C(n_{e})| + |C(n_{e})| + - - + |C(n_{n})| = \sum_{m \in n} |C(n_{e})| + |C(n_{e})| + - - + |C(n_{n})| = \sum_{m \in n} |C(n_{e})| + |C(n_{e})| + - - + |C(n_{n})| = \sum_{m \in n} |C(n_{e})| + |C(n_{e})| + - - + |C(n_{n})| = \sum_{m \in n} |C(n_{e})| + |C(n_{e})| + - - + |C(n_{n})| = \sum_{m \in n} |C(n_{e})| + |C(n_{e})| + |C(n_{e})| + - + |C(n_{e})| = \sum_{m \in n} |C(n_{e})| + |C(n_{e}$ and the proof fillows Lemma Let G be a finite non-abelian group. Then $d(G) \leq \frac{5}{8}$. Prof we have by the above lemma, $d(G) = \int_{G} \frac{\sum |C(n)|}{neg} = \int_{G} \frac{\sum |C(n)|}{|G|^2} + \frac{\sum |C(n)|}{net(G)} + \frac{\sum |C(n)|}{net(G)}$ $\leq \frac{1}{|G|^{2}} \left(\frac{|ZG|^{2}|G| + (|G| - |ZG|^{2})}{|G|^{2}} \right) = \frac{1}{|G|^{2}} \left(\frac{|G|^{2}}{2} + \frac{|G|^{2}}{|G|^{2}} \right)$ $\frac{|Z(a)||G|}{2} = \frac{1}{2} + \frac{1}{2} \frac{|Z(a)|}{|G|} \leq \frac{1}{2} + \frac{1}{2} \frac{|G|}{|G|} < \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \frac{|G|}{|G|} < \frac{1}{2} + \frac{1}{2} + \frac{1}{2} +$ 6

Theorem Let G be a finite non-abelian group. Then $d(G) = \frac{5}{8} \iff \frac{G}{Z(G)} \neq Z_2 \times Z_2$ Theorem Let G be a finite non-abelian group and p be the smallest prime number dividing IGI-o², p_1 and p be $\frac{p^2 + p - 1}{p^3}$. Then $d(G) \leq \frac{p^2 + p - 1}{p^3}$. Finite Theorem Let G be a group and It be a subgroup of G. Then $\frac{1}{\left[G_{2}H\right]^{2}}d(H) \leq d(G) \leq d(H)$ Theorem Let G be a finite group and N be a normal subgroup of G. Then $d(G) \leq d(N)d(\frac{G}{N})$ Theorem Let P be the smallest prime number dividing 161. If d(G1>f, then G is a nilpotent group of class at mat 2. 7

-

መጠ

10 10

UP OF OP

うう

AD AD AD AD AD

きょうううう

つううう

ララ

ううう

マション

2) Relative Commutativity Degree Définition Let G be a finite group and H be a subgroup of G. The relative Commutativity degree of H in G, denoted by d(H,G) is defined as the fillening ratio; $d(H,G) = \frac{|\{(n,y) \in H \times G \mid \forall y = y \times Y|}{|H||G|}$ Note If H=G, then d(G,G)=d(G). Example Let $G = S_3 = \{e, (12), (13), (23), (123), (132)\}$ and H= {e, cizi}. Then we have $\mathcal{J}(H_1, S_3) = \frac{|\{(e, e), (e, (12)), (e, (13)), (e, (23)), (e, (123)), (e, (132)), (ie), e\}, (ie), (ie)$ $\frac{((12), (12))^{2}}{2x6} = \frac{8}{12} = \frac{2}{3}$ Similarly, if $H = \{e_{1}(23), (132)\}$, then $d(K, S_3) = \frac{12}{3\times 6} = \frac{12}{18} = \frac{2}{3}$

-3

1) (h) (h)

all all all all all all

An an An

-

0

-

19 11

1

1

Example Let D8 be drhedral group forder 8. Then we have $D_8 = \langle a_1b \mid a^4 = b^2 = e, \ bab = a^2 \rangle$ $= [e, a, a^2, a^3, b, ab, a^2b, a^3b^3, z(D_8) = [e, a^2]$ It is clear that $A(Z(D_8), D_8) = 1 \cdot Now$ for subgroups H=Se, b] and K=Se, a, a, a', a' We can see that $H: \begin{cases} e \longrightarrow Commutes with all 8 elements \\ b \longrightarrow Commutes with elements e, b, a^2, a^2b \end{cases}$ $\frac{8+4}{|H| NP_8|} = \frac{12}{2\times8} = \frac{3}{4}$ Thus d(H, D8)= $\begin{cases} e \longrightarrow c_{mmutes} with 8 elements \\ a \longrightarrow c_{mmutes} with e, a, a^{2}, a^{3} \\ a^{2} \longrightarrow c_{mmutes} with 8 elements \\ a^{3} \longrightarrow$ a -> commutes with e, a, a², a³ Thus $\frac{8+4+8+4}{32} = \frac{24}{32} = \frac{3}{4}$ $|\kappa| |D_8|$ $\mathcal{A}(K,D_{\mathcal{B}}) =$

Lemma Let G be a finite group and H be a subgroup of G. Then we Know that the centralizer of element & EG in H is $C(n) = \{h \in H \mid hn = nh^{2}\}$ ($x \in G$) $d(H,G) = \frac{1}{|H||G|} \sum_{n \in G} |C_H(n)|$ Then $= \frac{1}{1H11G1} \sum_{k \in H} \left| \sum_{k \in H} \mathcal{L}_{g}(k) \right|$ Proof It follows from the point that $\left| \left\{ (h, \alpha) \in H \times G \mid h n = nh \right\} \right| = \sum_{n \in G} |C(n)|$ = Z | C(R)|heH Theorem Let It be a subgroup JG. $d(G) \leq d(H,G) \leq d(H)$ Then 10

prof $d(H_1G) = \frac{1}{|H||G|} \sum_{n \in G} \frac{1}{|G|} \sum_{n \in G} \frac{1}{|H|} \sum_{n \in G} \frac{1}{|G|} \sum$ $= \frac{1}{161} \sum_{n \in G} \frac{|C(n)|}{|H|} \ge \frac{1}{161} \sum_{n \in G} \frac{|C(n)|}{|G|}$ $= \frac{1}{|G|^2} \sum_{n \in G} \left| \binom{n}{G} \right| = d(G)$ Similarly, d(HIG) = IHIIGI Reit $= \frac{1}{1+1} \sum_{k \in U} \frac{|C_{k}(k)|}{|G|} \leq \frac{1}{1+1} \sum_{k \in H} \frac{|C_{H}(k)|}{|U|}$ $= \frac{1}{1H^2} \sum_{k \in H} \frac{C(k)}{H}$ $\left(Note: [H: C_{H}(n)] \leq [G: C_{G}(n)] \forall n \in G\right)$ Example G = Sy , H = A4 $d(H) = \frac{1}{3}$ $\frac{5}{24} < \frac{1}{4} < \frac{1}{3}$ $d(H,G) = \frac{1}{4}$ $d(G) = \frac{5}{24}$

->

P P P

3

Some Results

Theorem Let G be a group and H, N be subgroups fG such that NSG, N ≤ H. Then $d(H_{i}G) \leq d(\frac{H}{N}, \frac{G}{N}) d(N)$ Theorem Let G1 and G2 be two groups and H1, H2 be subgroups f G1 and G2, respectively. Then (i) $d(G_1 \times G_2) = d(G_1) d(G_2)$ $(ii) d(H_1 \times H_2) = d(H_1) d(H_2)$ $(iii) d(H_1 X H_2, G_1 X G_2) = d(H_1, G_1) d(H_2, G_2)$ Theorem Let G be non abelian group and p be the smallest prime number dividing 161. Then (i) If $H \subseteq Z(G)$, then d(H,G) = 1. (ii) If H&Z(G) and Habelian, then $d(H,G) \leq \frac{2p-1}{p^2}$ 12

(iii) If H\$Z(G) and H non-abelian, then $d(H,G) \leq \frac{P^2 + P - I}{p^3}$ Theorem Let G be a group and H be a subgroup of G. If p is the smallest prime number divide 1G1. Then (i) $\frac{|Z(G) \cap H|}{|H|} + \frac{P(|H| - |Z(G) \cap H|)}{|H||G|} \leq d(H,G)$ $\leq \frac{(P-1)|Z(G)\cap H| + |H|}{P|H|}$ (ii) $d(H_{1G}) \leq \frac{1}{p} (1 + (p-1) \frac{12(G)U(Z(H))}{161})$ Theorem Let G be a group and U be a subgroup of G. Then H (i) If $d(H,G) = \frac{3}{4}$, then $\frac{H}{Z(G)} \stackrel{\neq}{=} Z_2$ (ii) If $d(H,G) = \frac{5}{8}$ and H non-obelian then $\frac{H}{Z(G) \Lambda H} \stackrel{H}{=} Z_2 \times Z_2$ 131

-

 $\mathbb{P} \oplus \mathbb{P} \oplus \mathbb{P}$

7

ラヨヨヨ

Exercises

1

1. Let G be a finite group and H be a subgroup f G. If G = HC(n) for all MEG, then prove that d(G)=d(H,G). 2. Let D_{2n} be dihedral group of order 2n. Then find $d(D_{2n})$? 3. Let G be a finite group and HI, Hz are be subgroups of G such that HI SHZ Then prove that $\mathcal{J}(\mathcal{H}_{2},G) \leq \mathcal{J}(\mathcal{H}_{1},G) \leq \mathcal{J}(\mathcal{H}_{1},\mathcal{H}_{2})$ 4. Let G be a finite group and K(G) be the number of conjugacy classes f G. Then prove that $d(G) = \frac{K(G)}{|G|}$.