Consistency Relations of an Extension Polycyclic Free Abelian Lattice Group by Quaternion Point Group

To cite this article: Siti Afiqah Mohammad et al 2021 J. Phys.: Conf. Ser. 1988012071

View the article online for updates and enhancements.

240th ECS Meeting
Oct 10-14, 2021, Orlando, Florida
Register early and save up to $\mathbf{2 0 \%}$ on registration costs

Early registration deadline Sep 13

Consistency Relations of an Extension Polycyclic Free Abelian Lattice Group by Quaternion Point Group

Siti Afiqah Mohammad ${ }^{a}$, Nor Haniza Sarmin ${ }^{b}$ and Hazzirah Izzati Mat Hassim ${ }^{b}$
${ }^{a}$ Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Cawangan Johor, Kampus Segamat, Jalan Universiti Off Km. 12, Jalan Muar, 85000 Segamat, Johor, Malaysia.
${ }^{b}$ Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
E-mail: sitiafiqah@uitm.edu.my, nhs@utm.my, hazzirah@utm.my

Abstract

An extension of a free abelian lattice group by finite group is a torsion free crystallographic group. It expounds its symmetrical properties or known as homological invariants. One of the methods to compute its homological invariants is by determining the polycyclic presentation of the group. These polycyclic presentations are first shown to satisfy its consistency relations. Therefore, our focus is to show that this extension polycyclic free abelian lattice group by quaternion point group satisfy its consistency relations.

1. Introduction

The computation of the homological invariants of a group has been started long time ago [1]. However, researches on the computation of the homological invariants for an extension polycyclic of a free abelian lattice group by finite group are only carried out starting in 2009 [2]. The research focused on the computations of the nonabelian tensor squares for polycyclic groups with cyclic point group of order two, C_{2} and elementary abelian 2-group point group, $C_{2} \times C_{2}$ as the abelian extension. Later in 2014, Mat Hassim et al. [3], extended the research by finding the other homological invariant of a group which is the exterior square. In the same year, Mat Hassim et al. [4] computed the abelianizations of all extension of polycyclic group with cyclic point group of order three, C_{3} in order to find its homological invariants. Later, Mat Hassim [5] also computed the other homological invariants for groups extended with cyclic point group of order two, three and five. Abdul Ladi et al. [6, 7] and Masri et al. [8], continue to compute the other homological invariants for the extended polycyclic group with point group, $C_{2} \times C_{2}$.

In 2011 the nonabelian extension has been taken into consideration. Mohd Idrus [9] started to work on the dihedral point group of order eight, D_{4}, followed by Wan Mohd Fauzi et al. [10] in 2015 who worked on the same extension but with different dimension of the group. A year later, Tan et al. [11] used the symmetric group of order six, S_{3} as the extension. All of these groups are isomorphic to one of the groups that were designed by Opgenorth et al. [12] to enable the user to construct and recognize space groups. Eick and Nickel [13] showed that the nonabelian tensor square of a polycyclic group given by a polycyclic presentation can be computed. Therefore, the
technique on computing the nonabelian tensor squares of polycyclic groups developed by Blyth and Morse [14] is used throughout this research. All of these groups have been transformed into polycyclic presentations and proved to satisfy its consistency relations.

Based on [12], there are four groups of extension of a free abelian lattice group by quaternion point group of order eight, Q_{8} found and all of them are of dimension six. In 2015, Mohammad et al.[15] computed the polycyclic presentation of the fourth extension of a free abelian lattice group with point group Q_{8}. However, there are some problems on the calculations of its homological invariants by using this polycyclic presentation. The new generator c was developed among the relationship between generators in G_{4} but the generator c is not well defined in here. The polycylic presentation is stated as in the following:

$$
\begin{aligned}
Q_{4}(6)= & \left\langle a, b, c, l_{1}, l_{2}, l_{3}, l_{4}, l_{5}, l_{6}\right| a^{2}=c l_{6}, b^{2}=c l_{5} l_{6}^{-1}, b^{a}=b c l_{5}^{-2} l_{6}^{2}, c^{2}=l_{5} l_{6}^{-1}, c^{a}=c l_{5}^{-1} l_{6}, c^{b}=c \\
& l_{1}^{a}=l_{4}^{-1}, l_{1}^{b}=l_{3}^{-1}, l_{1}^{c}=l_{1}^{-1}, l_{2}^{a}=l_{3}, l_{2}^{b}=l_{4}^{-1}, l_{2}^{c}=l_{2}^{-1}, l_{3}^{a}=l_{2}^{-1}, l_{3}^{b}=l_{1}, l_{3}^{c}=l_{3}^{-1}, l_{4}^{a}=l_{1} \\
& l_{4}^{b}=l_{2}, l_{4}^{c}=l_{4}^{-1}, l_{5}^{a}=l_{6}, l_{5}^{b}=l_{5}, l_{5}^{c}=l_{5}, l_{6}^{a}=l_{5}, l_{6}^{b}=l_{6}, l_{6}^{c}=l_{6}, l_{j}^{l_{i}}=l_{j}, l_{j}^{-1}=l_{j} \\
& \text { for } j>i, 1 \leqslant i, j \leqslant 6\rangle .
\end{aligned}
$$

This presentation cannot be used in computing the homological invariants. Problem arise as the calculations taking over. Therefore, at the end of the calculations, the polycylic presentation is concluded to be not consistent. Hence, the main motivation of this research is to show the new polycyclic presentation that satisfy its consistency relations for the fourth extension of a free abelian lattice group with point group Q_{8}. Let G_{4} be the fourth extension of a free abelian lattice group with point group Q_{8}, then

$$
\begin{align*}
& G_{4}=\left\langle a_{0}, a_{1}, l_{1}, l_{2}, l_{3}, l_{4}, l_{5}, l_{6}\right\rangle, \text { where } \tag{1}\\
& a_{0}=\left[\begin{array}{ccccccc}
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & -\frac{1}{4} \\
0 & 0 & 0 & 0 & 0 & 1 & \frac{1}{4} \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], \quad a_{1}=\left[\begin{array}{ccccccc}
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -\frac{1}{2} \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], \\
& l_{1}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], \quad l_{2}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], \\
& l_{3}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], \quad l_{4}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], \\
& l_{5}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], \operatorname{and} l_{6}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
\end{align*}
$$

This group will later be shown to be isomorphic to the new $Q_{4}(6)=\left\langle a, b, c, l_{1}, l_{2}, l_{3}, l_{4}, l_{5}, l_{6}\right\rangle$ with the new generator c where Q is the group (with point group Q_{8}) while 4 indicates the number $4^{t h}$ group and (6) here indicates the dimension of the group.

2. Preliminary

As mentioned in Section 1, the technique developed by Blyth and Morse [14] will be used throughout this research. The polycyclic presentation of this extension of a free abelian lattice group by finite group is shown to be consistent. The following definitions are used throughout this research.

Definition 1. [13] Let F_{n} be a free group on generators g_{i}, \ldots, g_{n} and R be a set of relations of group F_{n}. The relations of a polycyclic presentation have the form:

$$
\begin{aligned}
g_{i}^{e_{i}} & =g_{i+1}^{x_{i, i+1}} \ldots g_{n}^{x_{i, n}} & & \text { for } i \in I, \\
g_{j}^{-1} g_{i} g_{j} & =g_{j+1}^{y_{i, j, j+1}} \ldots g_{n}^{y_{i, j, n}} & & \text { for } j<i, \\
g_{j} g_{i} g_{j}^{-1} & =g_{j+1}^{z_{i, j, j+1}} \ldots g_{n}^{z_{i, j, n}} & & \text { for } j<i \text { and } j \notin I
\end{aligned}
$$

for some $I \subseteq\{1, \ldots n\}$, certain exponents $e_{i} \in \mathbb{N}$ for $i \in I$ and $x_{i, j}, y_{i, j, k}, z_{i, j, k} \in \mathbb{Z}$ for all i, j and k.

Blyth and Morse [14] proved that if G is polycyclic, then $G \otimes G$ is polycyclic. Hence, $G \otimes G$ has a consistent polycyclic presentation. By using the above definition, the presentation is then checked to satisfy all the consistency relations. It is crucial to check the polycyclic presentation is consistent in order to compute its homological invariants later.
Definition 2. [13] Let G be a group generated by g_{1}, \ldots, g_{n} and the consistency relations in G can be evaluated in the polycyclic presentation of G using the collection from the left as in the following:

$$
\begin{aligned}
g_{k}\left(g_{j} g_{i}\right) & =\left(g_{k} g_{j}\right) g_{i} & & \text { for } k>j>i \\
\left(g_{j}^{e_{j}}\right) g_{i} & =g_{j}^{e_{j}-1}\left(g_{j} g_{i}\right) & & \text { for } j>i, j \in I \\
g_{j}\left(g_{i}^{e_{i}}\right) & =\left(g_{j} g_{i}\right) g_{i}^{e_{i}-1} & & \text { for } j>i, i \in I \\
\left(g_{i}^{e_{i}}\right) g_{i} & =g_{i}\left(g_{i}^{e_{i}}\right) & & \text { for } i \in I, \\
g_{j} & =\left(g_{j} g_{i}^{-1}\right) g_{i} & & \text { for } j>i, i \notin I
\end{aligned}
$$

for some $I \subseteq\{1, \ldots, n\}$, $e^{i} \in \mathbb{N}$. Then, G is said to be given by a consistent polycyclic presentation.

3. Results and Discussion

In this section, the transformation of a group in (1) into a polycyclic group is shown. By using matrix form in (1), $G_{4}=\left\langle a_{0}, a_{1}, l_{1}, l_{2}, l_{3}, l_{4}, l_{5}, l_{6}\right\rangle$ where $l_{1}, l_{2}, l_{3}, l_{4}, l_{5}$ and l_{6} are its lattices in which its basis matrix is the identity matrix, this group is shown to be isomorphic to a new group which is polycyclic, namely $Q_{4}(6)$. By taking the same generators of $l_{1}, l_{2}, l_{3}, l_{4}, l_{5}$ and l_{6} in G_{4}, whereas a_{0} is written as a and a_{1} is as b, meanwhile a new generator c is developed based on the relationship among the generators in the group G_{4} therefore, $G_{4}=\left\langle a_{0}, a_{1}, l_{1}, l_{2}, l_{3}, l_{4}, l_{5}, l_{6}\right\rangle$ now is transformed into $Q_{4}(6)=\left\langle a, b, c, l_{1}, l_{2}, l_{3}, l_{4}, l_{5}, l_{6}\right\rangle$. The polycyclic presentation can now vary depending on what generator c is. This is to make sure that the new group $Q_{4}(6)$ satisfies its consistency relations aligning with Definition 2 later. By Definition 1, the polycyclic presentation of $Q_{4}(6)$ is presented as in the following.

Take $\gamma: G_{4} \rightarrow Q_{4}(6)$ such that $\gamma\left(a_{0}\right)=a, \gamma\left(a_{1}\right)=b$. Let $c=a_{0}^{2} l_{6}^{-1}$. The mapping γ, is well defined since γ maps the generators of G_{4} to generators of $Q_{4}(6)$. Now, under this mapping γ, all relations hold in $Q_{4}(6)$ are constructed.

Now, $c=a_{0}^{2} l_{6}^{-1}$ implies,

$$
\begin{aligned}
& c=\left[\begin{array}{ccccccc}
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & -\frac{1}{4} \\
0 & 0 & 0 & 0 & 0 & 1 & \frac{1}{4} \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccccccc}
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & -\frac{1}{4} \\
0 & 0 & 0 & 0 & 0 & 1 & \frac{1}{4} \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccccccc}
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & -\frac{1}{4} \\
0 & 0 & 0 & 0 & 0 & 1 & \frac{1}{4} \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]^{2}\left[\begin{array}{llllllc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccccccc}
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & -\frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 1 & -\frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

Thus, by mapping $\gamma\left(a_{0}\right)=a, c=a_{0}^{2} l_{6}^{-1}=a^{2} l_{6}^{-1}$.
Next, a_{0}^{2} can be shown to be equal to $c l_{6}$.

$$
\begin{aligned}
& a_{0}^{2}=\left[\begin{array}{ccccccc}
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & -\frac{1}{4} \\
0 & 0 & 0 & 0 & 0 & 1 & \frac{1}{4} \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccccccc}
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & -\frac{1}{4} \\
0 & 0 & 0 & 0 & 0 & 1 & \frac{1}{4} \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccccccc}
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & -\frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 1 & \frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] . \\
& c l_{6}=\left[\begin{array}{ccccccc}
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & -\frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 1 & -\frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccccccc}
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & -\frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 1 & \frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

Thus, by mapping $\gamma\left(a_{0}\right)=a, a_{0}^{2}=a^{2}=c l_{6}$.

Next, a_{1}^{2} gives,

$$
\begin{aligned}
a_{1}^{2} & =\left[\begin{array}{ccccccc}
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -\frac{1}{2} \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccccccc}
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -\frac{1}{2} \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cccccc}
-1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & -\frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 0 \\
0
\end{array}\right] \\
& =c .
\end{aligned}
$$

Thus, by mapping $\gamma\left(a_{1}\right)=b, a_{1}^{2}=b^{2}=c$.
Furthermore, c^{2} can be written as $l_{5}^{-1} l_{6}^{-1}$.

$$
\begin{aligned}
& c^{2}=\left[\begin{array}{ccccccc}
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & -\frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 1 & -\frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccccccc}
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & -\frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 1 & -\frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] . \\
& l_{5}^{-1} l_{6}^{-1}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]^{-1}\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]^{-1} \\
& =\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

Thus, $c^{2}=l_{5}^{-1} l_{6}^{-1}$.

For the conjugation action of each generator, the first relation is shown below:

$$
\begin{aligned}
& a_{1}^{a_{0}}=a_{0}^{-1} a_{1} a_{0} \\
& =\left[\begin{array}{ccccccc}
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & -\frac{1}{4} \\
0 & 0 & 0 & 0 & 0 & 1 & \frac{1}{4} \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]^{-1}\left[\begin{array}{ccccccc}
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -\frac{1}{2} \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccccccc}
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & -\frac{1}{4} \\
0 & 0 & 0 & 0 & 0 & 1 & \frac{1}{4} \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccccccc}
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & -\frac{1}{4} \\
0 & 0 & 0 & 0 & 0 & 1 & \frac{1}{4} \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]^{-1}\left[\begin{array}{ccccccc}
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -\frac{1}{4} \\
0 & 0 & 0 & 0 & 1 & 0 & -\frac{1}{4} \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccccccc}
0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & -\frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

Meanwhile, $a_{1} c^{-1} l_{5}^{-1}$

$$
\begin{aligned}
& =\left[\begin{array}{ccccccc}
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -\frac{1}{2} \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccccccc}
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & -\frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 1 & -\frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]^{-1}\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccccccc}
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -\frac{1}{2} \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccccc}
-1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & -\frac{1}{2} \\
0 & 0 & 0 & 0 & 0 \\
1 & \frac{1}{2} \\
0 & 0 & 0 & 0 & 0 \\
0 & 1
\end{array}\right]^{-1} \\
& =\left[\begin{array}{cccccc}
0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 \\
0 & -1 & 0 & 0 & 0 & 0
\end{array}\right] \\
& 1
\end{aligned} 0
$$

This shows that, $a_{1}^{a_{0}}=a_{1} c^{-1} l_{5}^{-1}$. By mapping $\gamma\left(a_{0}\right)=a, \gamma\left(a_{1}\right)=b, b^{a}=b c^{-1} l_{5}^{-1}$.

Next, to show $c^{a_{0}}=c$,

$$
\begin{aligned}
& c^{a_{0}}=a_{0}^{-1} c a_{0}
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{ccccccc}
0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & \frac{1}{4} \\
0 & 0 & 0 & 0 & 0 & 1 & -\frac{1}{4} \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccccccc}
0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & -\frac{3}{4} \\
0 & 0 & 0 & 0 & 0 & 1 & -\frac{1}{4} \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccccccc}
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & -\frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 1 & -\frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \\
& =c \text {. }
\end{aligned}
$$

Hence, $c^{a_{0}}=a_{0}^{-1} c a_{0}=c$. By mapping $\gamma\left(a_{0}\right)=a, c^{a_{0}}=c^{a}=c$.
The next calculation shows that $c^{a_{1}}=c$.

$$
\begin{aligned}
& c^{a_{1}}=a_{1}^{-1} c a_{1} \\
& =\left[\begin{array}{ccccccc}
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -\frac{1}{2} \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]-1\left[\begin{array}{ccccccc}
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & -\frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 1 & -\frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccccccccccccccccccccc}
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -\frac{1}{2} \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccccccc}
0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & \frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccccccc}
0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 1 & 0 & -\frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccccccc}
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & -\frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 1 & -\frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \\
& =c \text {. }
\end{aligned}
$$

Thus, $c^{a_{1}}=a_{1}^{-1} c a_{1}=c$. By mapping $\gamma\left(a_{1}\right)=b, c^{a_{1}}=c^{b}=c$.
Therefore, all possible relations which are formed by conjugation between each generator and power of certain exponent have been constructed. Thus, $G_{4}=\left\langle a_{0}, a_{1}, l_{1}, l_{2}, l_{3}, l_{4}, l_{5}, l_{6}\right\rangle$ has been shown to be isomorphic to the new $Q_{4}(6)=\left\langle a, b, c, l_{1}, l_{2}, l_{3}, l_{4}, l_{5}, l_{6}\right\rangle$ with $c=a_{0}^{2} l_{6}^{-1}$. Hence, by collecting all possible relations that have been constructed, the new polycyclic presentation of
$Q_{4}(6)$ is established as:

$$
\begin{align*}
Q_{4}(6)= & \left\langle a, b, c, l_{1}, l_{2}, l_{3}, l_{4}, l_{5}, l_{6}\right| a^{2}=c l_{6}, b^{2}=c, c^{2}=l_{5}^{-1} l_{6}^{-1}, b^{a}=b c^{-1} l_{5}^{-1}, c^{a}=c, c^{b}=c, l_{1}^{a}=l_{3}, \\
& l_{1}^{b}=l_{4}, l_{1}^{c}=l_{1}^{-1}, l_{2}^{a}=l_{4}, l_{2}^{b}=l_{3}^{-1}, l_{2}^{c}=l_{2}^{-1}, l_{3}^{a}=l_{1}^{-1}, l_{3}^{b}=l_{2}, l_{3}^{c}=l_{3}^{-1}, l_{4}^{a}=l_{2}^{-1}, l_{4}^{b}=l_{1}^{-1} \\
& l_{4}^{c}=l_{4}^{-1}, l_{5}^{a}=l_{5}, l_{5}^{b}=l_{6}, l_{5}^{c}=l_{5}, l_{6}^{a}=l_{6}, l_{6}^{b}=l_{5}, l_{6}^{c}=l_{6}, l_{2}^{l_{1}}=l_{2}, l_{3}^{l_{1}}=l_{3}, l_{4}^{l_{1}}=l_{4}, l_{5}^{l_{1}}=l_{5}, \\
& l_{6}^{l_{1}}=l_{6}, l_{3}^{l_{2}}=l_{3}, l_{4}^{l_{2}}=l_{4}, l_{5}^{l_{2}}=l_{5}, l_{6}^{l_{2}}=l_{6}, l_{4}^{l_{3}}=l_{4}, l_{5}^{l_{3}}=l_{5}, l_{6}^{l_{3}}=l_{6}, l_{5}^{l_{4}}=l_{5}, l_{6}^{l_{4}}=l_{6} \\
& l_{6}^{l_{5}}=l_{6}, l_{2}^{l_{1}^{-1}}=l_{2}, l_{3}^{l_{1}^{-1}}=l_{3}, l_{4}^{l_{1}^{-1}}=l_{4}, l_{5}^{l_{1}^{-1}}=l_{5}, l_{6}^{l_{1}^{-1}}=l_{6}, l_{3}^{l_{2}^{-1}}=l_{3}, l_{4}^{l_{2}^{-1}}=l_{4}, l_{5}^{l_{2}^{-1}}=l_{5} \\
& \left.l_{6}^{l_{2}^{-1}}=l_{6}, l_{4}^{l_{3}^{-1}}=l_{4}, l_{5}^{l_{3}^{-1}}=l_{5}, l_{6}^{l_{3}^{-1}}=l_{6}, l_{5}^{l_{4}^{-1}}=l_{5}, l_{6}^{l_{4}^{-1}}=l_{6}, l_{6}^{l_{5}^{-1}}=l_{6}\right\rangle . \tag{2}
\end{align*}
$$

To show that the group is polycyclic, the polycyclic presentation has to be consistent. In this section, all relations as given in (2) are shown to satisfy the five consistency relations as given in Definition 2. Hence, some calculations on checking of the consistency polycyclic presentation of the group, are presented in the following theorem.

Theorem 1. Let $Q_{4}(6)$ be an extension of a free abelian lattice group of dimension six with point group Q_{8} and has presentation as in (2), its polycyclic presentation is found to be

$$
\begin{aligned}
Q_{4}(6)= & \left\langle a, b, c, l_{1}, l_{2}, l_{3}, l_{4}, l_{5}, l_{6}\right| a^{2}=c l_{6}, b^{2}=c, c^{2}=l_{5}^{-1} l_{6}^{-1}, \\
& b^{a}=b c^{-1} l_{5}^{-1}, c^{a}=c, c^{b}=c, \\
& l_{1}^{a}=l_{3}, l_{1}^{b}=l_{4}, l_{1}^{c}=l_{1}^{-1}, \\
& l_{2}^{a}=l_{4}, l_{2}^{b}=l_{3}^{-1}, l_{2}^{c}=l_{2}^{-1}, \\
& l_{3}^{a}=l_{1}^{-1}, l_{3}^{b}=l_{2}, l_{3}^{c}=l_{3}^{-1}, \\
& l_{4}^{a}=l_{2}^{-1}, l_{4}^{b}=l_{1}-1, l_{4}^{c}=l_{4}^{-1}, \\
& l_{5}^{a}=l_{5}, l_{5}^{b}=l_{6}, l_{5}^{c}=l_{5}, \\
& l_{6}^{a}=l_{6}, l_{6}^{b}=l_{5}, l_{6}^{c}=l_{6}, \\
& \left.l_{j}^{l_{i}}=l_{j}, l_{j}^{l_{i}^{-1}}=l_{j} \text { for } j>i, 1 \leqslant i, j \leqslant 6\right\rangle .
\end{aligned}
$$

Then, $Q_{4}(6)$ is consistent.
Proof. $Q_{4}(6)$ is generated by $a, b, c, l_{1}, l_{2}, l_{3}, l_{4}, l_{5}$ and l_{6}. Referring to Definition 2 , let $g_{1}=a$, $g_{2}=b, g_{3}=c, g_{4}=l_{1}, g_{5}=l_{2}, g_{6}=l_{3}, g_{7}=l_{4}, g_{8}=l_{5}$ and $g_{9}=l_{6}$. For the first consistency relation, i.e. $g_{k}\left(g_{j} g_{i}\right)=\left(g_{k} g_{j}\right) g_{i}$ for $k>j>i$, the following relations hold:
(i) $c(b a)=(c b) a$,
(xi) $l_{3}\left(l_{2} l_{1}\right)=\left(l_{3} l_{2}\right) l_{1}$,
$(\mathrm{xxi}) l_{4}\left(l_{3} l_{2}\right)=\left(l_{4} l_{3}\right) l_{2}$,
(ii) $l_{1}(c b)=\left(l_{1} c\right) b$,
(xii) $l_{3}\left(l_{2} c\right)=\left(l_{3} l_{2}\right) c$,
(xxii) $l_{4}\left(l_{3} l_{1}\right)=\left(l_{4} l_{3}\right) l_{1}$,
(iii) $l_{1}(c a)=\left(l_{1} c\right) a$,
(xiii) $l_{3}\left(l_{2} b\right)=\left(l_{3} l_{2}\right) b$,
(xxiii) $l_{4}\left(l_{3} c\right)=\left(l_{4} l_{3}\right) c$,
(iv) $l_{1}(b a)=\left(l_{1} b\right) a$,
(xiv) $l_{3}\left(l_{2} a\right)=\left(l_{3} l_{2}\right) a$,
$\left(\right.$ xxiv) $l_{4}\left(l_{3} b\right)=\left(l_{4} l_{3}\right) b$,
(v) $l_{2}\left(l_{1} c\right)=\left(l_{2} l_{1}\right) c$,
(xv) $l_{3}\left(l_{1} c\right)=\left(l_{3} l_{1}\right) c$,
$(\mathrm{xxv}) l_{4}\left(l_{3} a\right)=\left(l_{4} l_{3}\right) a$,
(vi) $l_{2}\left(l_{1} b\right)=\left(l_{2} l_{1}\right) b$,
$\left(\right.$ xvi) $l_{3}\left(l_{1} b\right)=\left(l_{3} l_{1}\right) b$,
$($ xxvi $) l_{4}\left(l_{2} l_{1}\right)=\left(l_{4} l_{2}\right) l_{1}$,
(vii) $l_{2}\left(l_{1} a\right)=\left(l_{2} l_{1}\right) a$,
(xvii) $l_{3}\left(l_{1} a\right)=\left(l_{3} l_{1}\right) a$,
$($ xxvii $) l_{4}\left(l_{2} c\right)=\left(l_{4} l_{2}\right) c$,
(viii) $l_{2}(c b)=\left(l_{2} c\right) b$,
$\left(\right.$ xviii) $l_{3}(c b)=\left(l_{3} c\right) b$,
$\left(\right.$ xxviii) $l_{4}\left(l_{2} b\right)=\left(l_{4} l_{2}\right) b$,
(ix) $l_{2}(c a)=\left(l_{2} c\right) a$,
(xix) $l_{3}(c a)=\left(l_{3} c\right) a$,
$\left(\right.$ xxix) $l_{4}\left(l_{2} a\right)=\left(l_{4} l_{2}\right) a$,
(x) $l_{2}(b a)=\left(l_{2} b\right) a$,
$(\mathrm{xx}) l_{3}(b a)=\left(l_{3} b\right) a$,
$(\mathrm{xxx}) l_{4}\left(l_{1} c\right)=\left(l_{4} l_{1}\right) c$,

(xxxi) $l_{4}\left(l_{1} b\right)=\left(l_{4} l_{1}\right) b$,	(xlix) $l_{5}\left(l_{2} b\right)=\left(l_{5} l_{2}\right) b$,	(1xvii) $l_{6}\left(l_{4} c\right)=\left(l_{6} l_{4}\right) c$,
(xxxii) $l_{4}\left(l_{1} a\right)=\left(l_{4} l_{1}\right) a$,	(1) $l_{5}\left(l_{2} a\right)=\left(l_{5} l_{2}\right) a$,	(lxviii) $l_{6}\left(l_{4} b\right)=\left(l_{6} l_{4}\right) b$,
(xxxiii) $l_{4}(c b)=\left(l_{4} c\right) b$,	(li) $l_{5}\left(l_{1} c\right)=\left(l_{5} l_{1}\right) c$,	(1xix) $l_{6}\left(l_{4} a\right)=\left(l_{6} l_{4}\right) a$,
(xxxiv) $l_{4}(c a)=\left(l_{4} c\right) a$,	(iii) $l_{5}\left(l_{1} b\right)=\left(l_{5} l_{1}\right) b$,	(lxx) $l_{6}\left(l_{3} l_{2}\right)=\left(l_{6} l_{3}\right) l_{2}$,
$(\mathrm{xxxv}) l_{4}(b a)=\left(l_{4} b\right) a$,	(liii) $l_{5}\left(l_{1} a\right)=\left(l_{5} l_{1}\right) a$,	(lxxi) $l_{6}\left(l_{3} l_{1}\right)=\left(l_{6} l_{3}\right) l_{1}$,
(xxxvi) $l_{5}\left(l_{4} l_{3}\right)=\left(l_{5} l_{4}\right) l_{3}$,	(liv) $l_{5}(c b)=\left(l_{5} c\right) b$,	(lxxii) $l_{6}\left(l_{3} c\right)=\left(l_{6} l_{3}\right) c$,
(xxxvii) $l_{5}\left(l_{4} l_{2}\right)=\left(l_{5} l_{4}\right) l_{2}$,	(lv) $l_{5}(c a)=\left(l_{5} c\right) a$,	(lxxiii) $l_{6}\left(l_{3} b\right)=\left(l_{6} l_{3}\right) b$,
(xxxviii) $l_{5}\left(l_{4} l_{1}\right)=\left(l_{5} l_{4}\right) l_{1}$,	(lvi) $l_{5}(b a)=\left(l_{5} b\right) a$,	(lxxiv) $l_{6}\left(l_{3} a\right)=\left(l_{6} l_{3}\right) a$,
(xxxix) $l_{5}\left(l_{4} c\right)=\left(l_{5} l_{4}\right) c$,	(lvii) $l_{6}\left(l_{5} l_{4}\right)=\left(l_{6} l_{5}\right) l_{4}$,	(lxxv) $l_{6}\left(l_{2} l_{1}\right)=\left(l_{6} l_{2}\right) l_{1}$,
(xl) $l_{5}\left(l_{4} b\right)=\left(l_{5} l_{4}\right) b$,	(lviii) $l_{6}\left(l_{5} l_{3}\right)=\left(l_{6} l_{5}\right) l_{3}$,	(lxxvi) $l_{6}\left(l_{2} c\right)=\left(l_{6} l_{2}\right) c$,
(xli) $l_{5}\left(l_{4} a\right)=\left(l_{5} l_{4}\right) a$,	(lix) $l_{6}\left(l_{5} l_{2}\right)=\left(l_{6} l_{5}\right) l_{2}$,	(lxxvii) $l_{6}\left(l_{2} b\right)=\left(l_{6} l_{2}\right) b$,
(xlii) $l_{5}\left(l_{3} l_{2}\right)=\left(l_{5} l_{3}\right) l_{2}$,	(1x) $l_{6}\left(l_{5} l_{1}\right)=\left(l_{6} l_{5}\right) l_{1}$,	(lxxviii) $l_{6}\left(l_{2} a\right)=\left(l_{6} l_{2}\right) a$,
(xliii) $l_{5}\left(l_{3} l_{1}\right)=\left(l_{5} l_{3}\right) l_{1}$,	(lxi) $l_{6}\left(l_{5} c\right)=\left(l_{6} l_{5}\right) c$,	(lxxix) $l_{6}\left(l_{1} c\right)=\left(l_{6} l_{1}\right) c$,
(xliv) $l_{5}\left(l_{3} c\right)=\left(l_{5} l_{3}\right) c$,	(lxii) $l_{6}\left(l_{5} b\right)=\left(l_{6} l_{5}\right) b$,	$(\mathrm{lxxx}) l_{6}\left(l_{1} b\right)=\left(l_{6} l_{1}\right) b$,
(xlv) $l_{5}\left(l_{3} b\right)=\left(l_{5} l_{3}\right) b$,	(lxiii) $l_{6}\left(l_{5} a\right)=\left(l_{6} l_{5}\right) a$,	(lxxxi) $l_{6}\left(l_{1} a\right)=\left(l_{6} l_{1}\right) a$,
(xlvi) $l_{5}\left(l_{3} a\right)=\left(l_{5} l_{3}\right) a$,	(lxiv) $l_{6}\left(l_{4} l_{3}\right)=\left(l_{6} l_{4}\right) l_{3}$,	(lxxxii) $l_{6}(c b)=\left(l_{6} c\right) b$,
(xlvii) $l_{5}\left(l_{2} l_{1}\right)=\left(l_{5} l_{2}\right) l_{1}$,	(lxv) $l_{6}\left(l_{4} l_{2}\right)=\left(l_{6} l_{4}\right) l_{2}$,	(lxxxiii) $l_{6}(c a)=\left(l_{6} c\right) a$,
(xlviii) $l_{5}\left(l_{2} c\right)=\left(l_{5} l_{2}\right) c$,	(lxvi) $l_{6}\left(l_{4} l_{1}\right)=\left(l_{6} l_{4}\right) l_{1}$,	$(\mathrm{lxxxiv}) l_{6}(b a)=\left(l_{6} b\right) a$.

Hence, by the relations of $Q_{4}(6)$;
For (i);

$$
\begin{aligned}
& c(b a)=c a b c^{-1} l_{5}^{-1}=a c b c^{-1} l_{5}^{-1}=a b c c^{-1} l_{5}^{-1}=a b l_{5}^{-1} . \\
& (c b) a=b c a=b a c=a b c^{-1} l_{5}^{-1} c=a b l_{5}^{-1} c^{-1} c=a b l_{5}^{-1} .
\end{aligned}
$$

For the second consistency relation, i.e. $\left(g_{j}^{e_{j}}\right) g_{i}=g_{j}^{e_{j}-1}\left(g_{j} g_{i}\right)$ for $j>i, j \in I$, the following relations hold:
(i) $b^{2} a=b(b a)$,
(ii) $c^{2} a=c(c a) b$,
(iii) $c^{2} b=c(c b)$.

By the relations of $Q_{4}(6)$;
For (i);

$$
\begin{aligned}
b^{2} a & =c a=a c . \\
b(b a) & =b a b c^{-1} l_{5}^{-1}=a b c^{-1} l_{5}^{-1} b c^{-1} l_{5}^{-1}=a b c^{-1} b l_{6}^{-1} c^{-1} l_{5}^{-1}=a b b c^{-1} l_{6}^{-1} c^{-1} l_{5}^{-1} \\
& =a b^{2} c^{-1} c^{-1} l_{6}^{-1} l_{5}^{-1}=a b^{2} c^{-2} l_{6}^{-1} l_{5}^{-1}=a c c^{-2} l_{6}^{-1} l_{5}^{-1}=a c^{-1} l_{6}^{-1} l_{5}^{-1} \\
& =a c^{-1} l_{5}^{-1} l_{6}^{-1}=a c^{-1} c^{2}=a c .
\end{aligned}
$$

The third consistency relation i.e. $g_{j}\left(g_{i}^{e_{i}}\right)=\left(g_{j} g_{i}\right) g_{i}^{e_{i}-1}$ for $j>i, i \in I$, is satisfied given that the following relations hold:
(i) $b a^{2}=(b a) a$,
(iv) $l_{2} a^{2}=\left(l_{2} a\right) a$,
(vii) $l_{5} a^{2}=\left(l_{5} a\right) a$,
(ii) $c a^{2}=(c a) a$,
(v) $l_{3} a^{2}=\left(l_{3} a\right) a$,
(viii) $l_{6} a^{2}=\left(l_{6} a\right) a$,
(iii) $l_{1} a^{2}=\left(l_{1} a\right) a$,
(vi) $l_{4} a^{2}=\left(l_{4} a\right) a$,
(ix) $c b^{2}=(c b) b$,
(x) $l_{1} b^{2}=\left(l_{1} b\right) b$,
(xiv) $l_{5} b^{2}=\left(l_{5} b\right) b$,
(xviii) $l_{3} c^{2}=\left(l_{3} c\right) c$,
(xi) $l_{2} b^{2}=\left(l_{2} b\right) b$,
(xv) $l_{6} b^{2}=\left(l_{6} b\right) b$,
(xix) $l_{4} c^{2}=\left(l_{4} c\right) c$,
(xii) $l_{3} b^{2}=\left(l_{3} b\right) b$,
(xvi) $l_{1} c^{2}=\left(l_{1} c\right) c$,
(xx) $l_{5} c^{2}=\left(l_{5} c\right) c$,
(xiii) $l_{4} b^{2}=\left(l_{4} b\right) b$,
(xvii) $l_{2} c^{2}=\left(l_{2} c\right) c$,
(xxi) $l_{6} c^{2}=\left(l_{6} c\right) c$.

Based on the relations of $Q_{4}(6)$;
For (i);

$$
\begin{aligned}
b a^{2} & =b c l_{6} . \\
(b a) a & =a b c^{-1} l_{5}^{-1} a=a b c^{-1} a l_{5}^{-1}=a b a c^{-1} l_{5}^{-1}=a b a c^{-1} l_{5}^{-1}=a a b c^{-1} l_{5}^{-1} c^{-1} l_{5}^{-1} \\
& =a^{2} b c^{-2} l_{5}^{-1} l_{5}^{-1}=a^{2} b l_{6} l_{5} l_{5}^{-1} l_{5}^{-1}=a^{2} b l_{6} l_{5}^{-1}=c l_{6} b l_{6} l_{5}^{-1}=c b l_{5} l_{6} l_{5}^{-1} \\
& =c b l_{6}=b c l_{6} .
\end{aligned}
$$

Next, the relations of $Q_{4}(6)$ are shown to satisfy the fourth consistency relation by proving that $\left(g_{i}^{e_{i}}\right) g_{i}=g_{i}\left(g_{i}^{e_{i}}\right)$ for $i \in I$. Therefore,
(i) $\left(a^{2}\right) a=a a^{2}$,
(ii) $\left(b^{2}\right) b=b b^{2}$,
(iii) $\left(c^{2}\right) c=c c^{2}$.

By the relations of $Q_{4}(6)$,
For (i);

$$
\begin{aligned}
\left(a^{2}\right) a & =c l_{6} a=c a l_{6}=a c l_{6} . \\
a a^{2} & =a c l_{6} .
\end{aligned}
$$

For (ii);

$$
\begin{aligned}
\left(b^{2}\right) b & =c b=b c . \\
b b^{2} & =b c .
\end{aligned}
$$

For (iii);

$$
\begin{aligned}
\left(c^{2}\right) c & =l_{5}^{-1} l_{6}^{-1} c=l_{5}^{-1} c l_{6}^{-1}=c l_{5}^{-1} l_{6}^{-1} . \\
c c^{2} & =c l_{5}^{-1} l_{6}^{-1} .
\end{aligned}
$$

Finally, for the fifth consistency relations i.e. $g_{j}=\left(g_{j} g_{i}^{-1}\right) g_{i}$ for $j>i, i \notin I$, the following relations are shown to be true.
(i) $l_{2}=\left(l_{2} l_{1}^{-1}\right) l_{1}$,
(vi) $l_{3}=\left(l_{3} l_{2}^{-1}\right) l_{2}$,
(xi) $l_{5}=\left(l_{5} l_{3}^{-1}\right) l_{3}$,
(ii) $l_{3}=\left(l_{3} l_{1}^{-1}\right) l_{1}$,
(vii) $l_{4}=\left(l_{4} l_{2}^{-1}\right) l_{2}$,
(xii) $l_{6}=\left(l_{6} l_{3}^{-1}\right) l_{3}$,
(iii) $l_{4}=\left(l_{4} l_{1}^{-1}\right) l_{1}$,
(viii) $l_{5}=\left(l_{5} l_{2}^{-1}\right) l_{2}$,
(xiii) $l_{5}=\left(l_{5} l_{4}^{-1}\right) l_{4}$,
(iv) $l_{5}=\left(l_{6} l_{1}^{-1}\right) l_{1}$,
(ix) $l_{6}=\left(l_{6} l_{2}^{-1}\right) l_{2}$,
(xiv) $l_{6}=\left(l_{6} l_{4}^{-1}\right) l_{4}$,
(v) $l_{6}=\left(l_{6} l_{1}^{-1}\right) l_{1}$,
(x) $l_{4}=\left(l_{4} l_{3}^{-1}\right) l_{3}$,
(xv) $l_{6}=\left(l_{6} l_{5}^{-1}\right) l_{5}$.

By applying the relations of $Q_{4}(6)$, it is found that:
(i) $\left(l_{2} l_{1}^{-1}\right) l_{1}=l_{1}^{-1} l_{2} l_{1}=l_{2}$.
(vi) $\left(l_{3} l_{2}^{-1}\right) l_{2}=l_{2}^{-1} l_{3} l_{2}=l_{3}$.
(xi) $\left(l_{5} l_{3}^{-1}\right) l_{3}=l_{3}^{-1} l_{5} l_{3}=l_{5}$.
(ii) $\left(l_{3} l_{1}^{-1}\right) l_{1}=l_{1}^{-1} l_{3} l_{1}=l_{3}$.
(vii) $\left(l_{4} l_{2}^{-1}\right) l_{2}=l_{2}^{-1} l_{4} l_{2}=l_{4}$.
(xii) $\left(l_{6} l_{3}^{-1}\right) l_{3}=l_{3}^{-1} l_{6} l_{3}=l_{6}$.
(iii) $\left(l_{4} l_{1}^{-1}\right) l_{1}=l_{1}^{-1} l_{4} l_{1}=l_{4}$.
(viii) $\left(l_{5} l_{2}^{-1}\right) l_{2}=l_{2}^{-1} l_{5} l_{2}=l_{5}$.
(xiii) $\left(l_{5} l_{4}^{-1}\right) l_{4}=l_{4}^{-1} l_{5} l_{4}=l_{5}$.
(iv) $\left(l_{5} l_{1}^{-1}\right) l_{1}=l_{1}^{-1} l_{5} l_{1}=l_{5}$.
(ix) $\left(l_{6} l_{2}^{-1}\right) l_{2}=l_{2}^{-1} l_{6} l_{2}=l_{6}$.
(xiv) $\left(l_{6} l_{4}^{-1}\right) l_{4}=l_{6}^{-1} l_{5} l_{4}=l_{6}$.
(v) $\left(l_{6} l_{1}^{-1}\right) l_{1}=l_{1}^{-1} l_{6} l_{1}=l_{6}$.
(x) $\left(l_{4} l_{3}^{-1}\right) l_{3}=l_{3}^{-1} l_{4} l_{3}=l_{4}$.
(xv) $\left(l_{6} l_{5}^{-1}\right) l_{5}=l_{5}^{-1} l_{6} l_{5}=l_{6}$.

Since the presentation of $Q_{4}(6)$ satisfies the consistency relations given in Definition 2, therefore $Q_{4}(6)$ has a consistent polycyclic presentation.

4. Conclusion

In this research, the new polycyclic presentation that satisfy its consistency relations for one of the four groups of extension of a free abelian lattice group by quaternion point group is shown. This polycyclic presentation which is consistent is later will be used in finding the homological invariants of the group.

References

[1] Whitehead, J. H. C. 1950 A Certain Exact Sequence. Annals of Mathematics 52(1) pp 51-110
[2] Masri, R. 2009 The Nonabelian Tensor Squares of Certain Bieberbach Groups with Cyclic Point Group of Order Two (Ph.D. Thesis. Universiti Teknologi Malaysia)
[3] Mat Hassim, H. I., Sarmin, N. H., Mohd Ali, N. M., Masri, R. and Mohd Idrus, N. 2014 The Homological Functor of a Bieberbach Group with a Cyclic Point Group of Order Two Proceedings of $21^{\text {st }}$ National Symposium on Mathematical Sciences(SKSM 21) AIP Conference Proceedings 1605 pp 672-677
[4] Mat Hassim, H. I., Sarmin, N. H., Mohammad, S. A. 2014 The Abelianisation of Bieberbach Groups with Cyclic Point Group of Order Three Proceedings of $2^{\text {nd }}$ International Science Postgraduate Conference 2014(ISPC 2014) AIP Conference Proceedings pp 907-919
[5] Mat Hassim, H. I. 2014 The Homological Functors of Bieberbach Groups with Cyclic Point Groups of Order Two, Three and Five (Ph.D. Thesis. Universiti Teknologi Malaysia)
[6] Abdul Ladi, N. F., Masri, R., Mohd Idrus, N., Sarmin, N. H. and Tan, Y. T. 2017 The Central Subgroups of the Nonabelian Tensor Squares of Some Bieberbach Group with Elementary Abelian 2-group Point Group Jurnal Teknologi 79(7) pp 115-121
[7] Abdul Ladi, N. F., Masri, R., Mohd Idrus, N., Tan, Y. T. and Sarmin, N. H. 2017 The Nonabelian Tensor Square of a Bieberbach Group with Elementary Abelian 2-group Point Group Journal of Fundamental and Applied Sciences $\mathbf{9 (7 5)}$ pp 111-123
[8] Masri, R., Abdul Ladi, N. F., Mohd Idrus, N., Tan, Y. T. and Sarmin, N. H. 2017 The Central Subgroup of the Nonabelian Tensor Square of Bieberbach Group with Point Group $C_{2} \times C_{2}$ Journal of Fundamental and Applied Sciences $\mathbf{9 (7 5)}$ pp 98-110
[9] Mohd Idrus, N. 2011 Bieberbach Groups with Finite Point Groups (Ph.D. Thesis. Universiti Teknologi Malaysia)
[10] Wan Mohd Fauzi, W. N. F., Mohd Idrus, N., Masri, R., Tan, Y. T., Sarmin, N. H. and Mat Hassim, H. I. 2015 A Homological Functor of the Second Bieberbach Group with Dihedral Point Group International Journal of Applied Mathematics and Statistics 53(5) pp 73-76
[11] Tan, Y. T., Mohd Idrus, N., Masri, R., Wan Mohd Fauzi, W. N. F., Sarmin, N. H. and Mat Hassim, H. I. 2016 The Nonabelian Tensor Square of a Bieberbach Group with Symmetric Point Group of Order Six Jurnal Teknologi 78(1) pp 189-193
[12] Opgenorth, J., Plesken, W. and Schulz, T. 1998 Crystallographic Algorithms and Tables Acta Cryst. pp 517-531
[13] Eick, B. and Nickel, W. 2008 Computing the Schur Multiplicator and the Nonabelian Tensor Square of a Polycyclic Group Journal of Algebra 320 pp 927-944
[14] Blyth, R. D. and Morse, R. F. 2009 Computing the Nonabelian Tensor Square of Polycyclic Groups Journal of Algebra 321 pp 2139-2148
[15] Mohammad, S. A., Sarmin, N. H. and Mat Hassim, H. I. 2015 Polycyclic Presentations of the Torsion Free Space Groups with Quaternion Point Group of Order Eight Jurnal Teknologi 77(33) pp 151-156

