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Authors' Preface

This is a group theory course for master’s level students. The lecture notes are
written according to Universiti Teknologi Malaysia’s curriculum. It is anticipated that the
students have taken an undergraduate modern algebra or abstract algebra course.
However, for those who haven’t, these lecture notes also contain basic concepts of modern
algebra.

This lecture notes consist of two parts. The first part includes introduction to
groups, types of groups, isomorphisms between groups, automorphisms; composition of
groups to form a direct product, and types of subgroups including normal subgroups and
factor groups. Furthermore, some advanced topics in group theory are included including
series of groups, nilpotent and solvable groups; rings, and integral domains. The second
part is a selected topic of Sylow Theorems and their applications, topics on generators and
relations, and group presentations.

As the reader will soon see, many examples are given in each chapter. In addition
to that, exercises are given after each chapter. The purpose of these problems is to allow
students to test their assimilation of the material, to challenge their mathematical integrity,
and to be a means of developing mathematical insight, intuition, and techniques.

However, the author feels that having these lecture notes only are not enough.
Every student should have or should refer to at least one text book of Graduate Text in
Group Theory.

Finally, the author wishes all readers a joyful voyage on the mathematical journey
they are about to embark into a beautiful realm of group theory.

Nor Haniza Sarmin
Hidayat Ullah Khan
October 2020
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CHAPTER 1
GROUPS
1.1 Introduction
Definition 1.1 (Binary Operation)

Let G be a set. A binary operation on G is a function that

assigns each ordered pair of elements of G an element of G.

A binary operation on a set G is simply a method (or formula)
by which two members of G is combined to yield a new member
of G. The most familiar binary operations are ordinary addition,
subtraction, and multiplication of integers. Division of integers
IS not a binary operation on the integers. This is because an

integer divided by an integer might not be an integer.

Definition 1.2 (Group)

Let G be a nonempty set with a binary operation that assigns to
each ordered pair (a,b) of elements of G an element ab in G.

We say G is a group under this operation if the following three

properties are satisfied:

* Group Theory 1 *
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1.  Associativity
The operation is associative, that is
(ab)c=a(bc) forall a,b,ceG.
2. ldentity
There is an element e (called the identity) in G, such
that ea=ae=a forall acG.
3. Inverse
For each element a € G, there is an element a™" in

G suchthat aa*=a’a=e.

If all elements in a group G is commutative, then we call the

group G to be an Abelian Group.

Definition 1.3 (Abelian Group)
A group G is abelian if its binary operation * is commutative

(ab=ba Va,beG).

Example 1.1
1. The set of integers Z, the set of rational numbers Q@ and
the set of real numbers R are all groups under ordinary
addition. In each case the identity is 0 and the inverse of a

IS—a. o

* Group Theory 1 *
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2. The set of integers under multiplication is not a group.
Property (3) fails. For example, there is no integer b such
that 5b =1 where 1 is identity.o

3. The set Q" of positive rational numbers is a group under

. e . : .1
ordinary multiplication. The inverse of any a is —.o
a

4. The subset {1,—1,i,—i} of the complex numbers is a group

under complex multiplication. Note that —1 is its own

inverse, while the inverse of i IS —i. ©

5. The set Z,={0,1,2, ...,n—=1} for n>1 is a group under
addition modulo n forany i in Z , the inverse of i is n-i.

This group is usually referred to as the group of integers

modulo n. o

a
6. The determinant of a 2x 2 matrix (

b
jis the number
c d

ad —bc. The set

GL(Z,R):{: Cﬂ

a,b,c,d eR,ad —bc;tO}, of 2x2

* Group Theory 1 *
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matrices with real entries and nonzero determinant is a
non-Abelian group under the operation

{ai bl}{az bz}_{alaﬁblcz a1b2+b1d2}

c dlc, d, ca,+dc, cb,+dd,

Associativity can be verified by direct (but cumbersome)

1 0
calculations. The identity is {0 J; the inverse of
[ d —b
a b i< | ad—bc ad —bc
c d —C a ’

L ad —bc ad —bc

(explaining the requirement that ad —bc = 0). This very

important group is called the general linear group of 2x 2

matrices over R. O

7. The set of all 2x2 matrices with determinant 1 with

entries from Q,R,C or Z ; (p a prime) is a non-Abelian

group under matrix multiplication. This group is called the

special linear group of 2x 2 matrices over Q,R,C or Z

respectively. If the entries are from F, where F is any of

the above, we denote this group by SL(2,F). o

* Group Theory 1 *
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8. The set {1,2, ey - 1} Is a group under multiplication

modulo n if and only if n is prime. o

9. Foreach n>1, we define U (n) to be the set of all positive
integers less than n and relatively prime to n. Then U (n)

Is a group under multiplication modulo n. For n=10, we

have U(10)={137,9}. For n=7, we have
U(7)={12,34,5,6}.

10. The set {£1,#i,+j,£k } is a quaternion group

where i*= j°=k*=-1, and i- j=k, j-k =i,
i
N\

kK-i=], j-i==k, i-k=—j,k- j=-lI.
Figure 2.1 is a nice way to visualize the

multiplication of those elements. k

11. Consider a regular n-sided polygon centered at the
origin. The symmetries of this polygon (i.e., length- and
angle-preserving transformations of the plane that map
this polygon onto itself) are rotations about the origin

through an integer multiple of ZT” radians, and reflections

in the n axes of symmetry of the polygon. The

symmetries of the polygon constitute a group of order

* Group Theory 1 *
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2n. This group is referred to as the dihedral group of order
2Nn.

12. The symmetries of a rectangle that is not a square

constitute a group of order 4 . This group consists of the
identity transformation, reflection in the axis of symmetry
joining the midpoints of the two shorter sides, reflection
in the axis of symmetry joining the two longer sides, and

rotation though an angle of 7 radians ( 180° ). If |
denotes the identity transformation, A and B denote
the reflections in the two axes of symmetry, and C
denotes the rotation through V4 radians then
A>=B?=C?=1, AB=BA=C, AC=CA=B and
BC =CB = A . This group is Abelian: it is often referred
to as the Klein 4—group (or, in German, Kleinsche
Viergruppe).

Definition 1.4 (Power of an Element in G)

The power of an element in G, g", is defined as

g-g-...- g, n>0
g" = , and g°=e.

\ (g‘l)n, n<0

Forany geG and m,neZ, we have g"g"=g™" and
(gm)n =g™, but for a,beG, (ab)" #a"b". On the other

hand, if G is Abelian, (ab)" =a"b".

* Group Theory 1 *
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Note:

If the operation in G is addition, then g" =ng and g™ =—g.

Definition 1.5 (Cyclic Group)
Let acG. Then

(a)={a"Inez|={.,a%a'ea:a’a’..}.

If G =(a), then we define G as a cyclic group generated by a.

Note:

All cyclic groups are Abelian groups since

aal=a"'=al""=ala'.

For example, Z = (1) =(-1) is a cyclic group under addition.

Example 1.2

The following are not examples of groups.

1.

The set of integers, Z under ordinary multiplication is
not a group. Property (3) fails. For examples, there is
no integer b such that 5b =1.

The set of integers, Z under ordinary subtraction is
not a group. This is because the operation is not

associative. For example, (4-3)-2=4—(3-2).

* Group Theory 1 *
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3.  The set S of positive irrationals numbers is not a

group under ordinary multiplication since the product

of two irrationals can be rational (ﬁﬁ = 2), thus

multiplication does not define a function from SxS

into S. Also, there is no identity element in S.

4. The set H={0123} is not a group under

multiplication modulo 4, since 0 and 2 do not have an
inverse.
Groups have certain elementary properties and we state them

in the following section.
1.2 Elementary Properties of Groups

Theorem 1.1  Uniqueness of the Identity
In a group G, there is only one identity element.

Lemma

A group G has exactly one identity element e satisfying
ex=x=xe forall xeG .

Proof

Let ae G with the property that ax=x forall xeG, in
particular a=ae =e. Similarly one can show that e is the only
element of G satisfying xe = x forall xeG.

* Group Theory 1 *
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Theorem 1.2  Cancellation Law
In a group G, the right and left cancellation law hold; that is,

ba=ca implies b=c and ab=ac implies b=c.

Theorem 1.3 Uniqueness of Inverse
For each element a in a group G, there is a unique element b in
G such that ab=ba =e.

Lemma

An element x of agroup G has exactly one inverse x .

Proof

We know that the group G contains at least one elementx ™

which satisfies xx > =e and x *x=e. If ze G which satisfies
xz =e then,
1

Z=ez= (x‘lx)z = x‘l(xz) =xte=x71.
Similarly, if weG which satisfies wx=e then w=x"2. In

particular we conclude that the inverse x™! of x is uniquely
determined, as required.

Lemma

Let x and y be elements of a group G. Then (xy) ™ =y *x .

Proof

It follows from the group axioms that

* Group Theory 1 *
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Y XD =x(y(y X)) = x((yy Ix D =xex ) =x =e

Similarly, (y™*x™)(xy) = e, and thus yx 7 is the inverse of
Xy, as required.

Remark:
Note in particular that (x %)™ = x for all elements x of a

group G, since x has the properties that characterize the

1

inverse of the inverse x— of x.

1.3 Multiplication Table
Let n be the order of a group. Then, we can list nxn

multiplication in a multiplication table.

Example 1.3
1.  Consider the set S ={a,b,c,d,e} together with the

following Cayley table:

a | bjc | d]|e
a | a|b|c|d|e
b | b|a|d| e | c
C c |le|a|b|d
d d | c| e a|b
e e | d|b|c | a

* Group Theory 1 *
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First, note that the Cayley table does define a binary operation
on S since every entry in the table belongs to S. Clearly, a is the
identity element, since the first row and first column match the
corresponding row and column labels. Every element has an
inverse, since the identity appears in each row. The only
troublesome axiom is the associative law and this is always the

case when one is dealing with an operation defined by a table.

2. Consider Z, ={0,1,2,3}. The Cayley table for Z, is

given as follows:

+ | 0| 1] 2|3
o0} 21|23
1112 3]0
2 | 2|30 1
3 /3|01 2

From the Cayley table, we can conclude that;

1)  Z,is closed; since all elements in the table are in Z,,.

i) the set is associative.

1ii)  there exists an identity; which is 0.

* Group Theory 1 *
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IvV) inverse; a unique inverse means that only an element,
e in each row and column. The inverse of the elements

are

0'=0, 1'=3, 2'=2 and 3*'=1.

3. U(n)={ All positive integers greater than or equal to 1,

relatively prime to n and less than n }

Example 1.4

1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1
U(8)={135,7}
1 3 5 7
1 1 3 3) 7
3 3 1 7 5
3) 5 7 1 3
7 7 5 3 1
* Group Theory 1 *
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Definition 1.6 (Order of a Group)
The number of elements in a group (finite or infinite) is called

its order. We will use |G| to denote the order of G.

Definition 1.7 (Order of an Element)
The order of an element g in a group G is the smallest positive

integer n such that 9" =e. If no such integer exists, we sa
g g g \Y)

has infinite order. The order of an element g is denoted by |g|

Note : The order of the identity is always 1 since €' =e.

Example 1.5
1) Let G=U(5)={1,2,3,4} with multiplication modulo

5. Then |U (5)| = 4. The order of each element in G is

stated below:

=1

2|=4; since 2x2x2x2=1.
3=4; since 3x3x3x3=1.
4 =2;: since 4x4=1.

2)  Consider the group Z,,under addition modulo 10. Since

1.2=2, 2-2=4, 3-2=6, 4-2=8, 5-2=0, we

* Group Theory 1 *
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3)

have |2|=5. Similar computations give |0/ =1, |7| =10,

5|=2 and |6|=5.

Consider the group Z under addition. Here every
nonzero element has infinite order since the series a, 2a,

3a, ... never becomes 0 when a #0.

* Group Theory 1 *
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Exercises 1: (Groups)

*xla|b|c|d]|e

ala|b|lc|b|d * alb d

blb|lc|la|e]|c ala|b|c

clclal|b|b]a blb|d Cc

dlb|e|b|le|d clclal|d]|b

eld|b|la|d]|c d|d a
Table 1.1 Table 1.2

Exercises 1 through 4 concern the binary operation * defined on S = {a, b, c, d, e}
by means of Table 1.1.

1.
2.

Compute b*d, c*c, and [(a*c)*e]*a.

Compute (axb)*c and a=*(b*c). Can you say on the basis of this
computation whether * is associative?

Compute (b*d)*c and b=(d=c). Can you say on the basis of this
computation whether * is associative?

Is * commutative? Why?

Complete Table 1.2 so as to define a commutative binary operation * on S =
{a, b, c,d e}

Table 1.3 can be completed to define an associative binary operation * on S
={a, b, c, d}. Assume this is possible and compute the missing entries.

* a b C d
ala|b|c|d
blb|la|c|d
clc|d|c]|d
d

Table 1.3

In Exercises 7 through 11, determine whether the binary operation * defined is
commutative and whether * is associative.

7.
8.

9.

10.
11.

12.

13.

* definedon Z by a*b=a-b.
* defined on Q by a*b=ab+1.
* defined on Q by a*b=ab/2.
« defined on Z* by axb=2%.
 defined on Z* by axb=a".

Let S be a set having exactly one element. How many different binary
operations can be defined on S? Answer the question if S has exactly 2
elements; exactly 3 elements; exactly n elements.

How many different commutative binary operations can be defined on a set
of 2 elements? On a set of 3 elements? On a set of n elements?

* Group Theory 1 *
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In Exercises 14 through 16, correct the definition of the italicized term without
reference to the text, if correction is needed, so that it is in a form acceptable for
publication.

14. A binary operation * is commutative if and only if a*b=b=*a.

15.  Abinary operation * onaset S is associative if and only if, for all a,b,c €S,

we have (b*c)*a=b=(cx*a).
16.  Asubset H of a set S is closed under a binary operation * on S if and only if
(a*b)eH forall a,besS.

In Exercises 17 through 22, determine whether the definition of * does give a binary
operation on the set. In the event that * is not a binary operation, state whether
Condition 1, Condition 2, or both of these conditions in the following are violated.

In an attempt to define a binary operation * on a set S we must be sure that

1. exactly one element is assigned to each possible ordered pair of elements of
S.

2. for each ordered pair of elements of S, the element assigned to it is again  in
S.

17.  On Z*, define = by axb=a-h.

18.  On Z*, define * by a*xb=a".

19.  On R, define * by a*b=a-Dh.

20. On Z*, define * by a*b=c, where c is the smallest integer greater than
both a and b.

21. On Z*, define * by a*b=c, where cis at least 5 more than a-+b.

22.  On Z*, define * by a*b=c, where c is the largest integer less than the
product of a and b.

a —-b
23. Let H be the subset of M, (R) consisting of all matrices of the form {b . }

for a,b e R. Is H closed under
a. matrix addition? b. matrix multiplication

24.  Mark each of the following true or false.

a. If * is any binary operation on any set S then axa=a for all
aeSs.

b. If = isany commutative binary operation on any set S, then
a*(b*c)=(bxc)*a forall a,b,ceS.

c. If = isany associative binary operation on any set S, then
ax(bxc)=(b*c)=*a forall a,b,ceS.

d. The only binary operations of any importance are those defined
on sets of numbers.

e. A binary operation * on a set S is commutative if there exist
a,beS suchthat axb=b=*a.

* Group Theory 1 *
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f. Every binary operation defined on a set having exactly one
element is both commutative and associative.

0. Abinary operation on a set S assigns at least one element of S to
each ordered pair of elements of S.

h. A binary operation on a set S assigns at most one element of S to
each ordered pair of elements of S.

I. A binary operation on a set S assigns exactly one element of S to
each ordered pair of elements of S.

___J. Abinary operation on a set S may assign more than one element

of S to some ordered pair of elements of S.

In Exercises 25 through 30, determine whether the binary operation * gives a group
structure on the given set. If no group results, which property/properties in the
definition of a group does/do not hold?

25.
26.

217.
28.
29.
30.

Let * be defined on Z by a*b=ab.
Let = be defined on 2Z ={2n|neZ} by axb=a-+b.

Let * be defined on R* by a*b=+/ab.

Let * be defined on Q by a*b=ab.

Let * be defined on the set R” of nonzero real numbers by a*b=a/b.
Let * be defined on C by a*b=|ab|.

In Exercises 31 through 38, determine whether the given set of matrices under the
specified operation, matrix addition or multiplication, is a group. Recall that a
diagonal matrix is a square matrix whose only nonzero entries lie on the main
diagonal, from the upper left to the lower right corner. An upper-triangular matrix
is a square matrix with only zero entries below the main diagonal. Associated with
each nxn matrix A is a number called the determinant of A, denoted by det(A). If A
and B are both nxn matrices, then det(AB) = det(A)det(B). Also, det(l,)=1 and A

is invertible if and only if det(A) = 0.

31.
32.
33.

34.
35.
36.
37.

38.
39.

All nxn diagonal matrices under matrix addition.

All nxn diagonal matrices under matrix multiplication.

All nxn diagonal matrices with no zero diagonal entry under matrix

multiplication.

All nxn diagonal matrices with all diagonal entries 1 or -1 under matrix

multiplication.

All nxn upper-triangular matrices under matrix multiplication.

All nxn upper-triangular matrices under matrix addition.

All nxn upper-triangular matrices with determinant 1 under matrix

multiplication.

All nxn matrices with determinant either 1 or -1 under matrix multiplication.

Let S be the set of all real numbers except -1. Define * on S by
ax*b=a+b+ab.

a. Show that * gives a binary operation on S.

b. Show that (S, *) is a group.

* Group Theory 1 *
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40.

41.

42.
43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.
54.

55.

56.

C. Find the solution of the equation 2+x*3=7 inS.

Show that if G is a finite group with identity e and with an even number of
elements, then there is a=e in G such that a*xa=e.

Show that every group G with identity e and such that x*x=e forall xeG
is abelian. [Hint: Consider (a*b)x*(ax*b).]

Show that if (a*b)? =a’ *b® for aand b in a group G, then a*b=bx*a.
Give two reasons why the set of odd integers under addition is not a
group.

2 2
Show that L J does not have a multiplicative inverse in GL(2, R).

For any elements a and b from a group and any integer n, prove that
(a™'ba)" =a'b"a.

Is the binary operation defined by the following table associative? Is it
commutative? |

o O TOD

OO T oL
O O O TI|IT
[oal N oRoN e
O T O QjQa

Show that {1, 2, 3} under multiplication modulo 4 is not a group but that {1,
2, 3, 4} under multiplication modulo 5 is a group.

2 6
Find the inverse of the element [3 5} in GL(2, Z,,).

Prove that the set of all 2x2 matrices with entries from R and determinant
+1 is a group under matrix multiplication.

Let G be a group with the following property: If a, b, and ¢ belong to G and
ab = ca, then b = ¢. Prove that G is Abelian.

(Law of Exponents for Abelian groups) Let a and b be elements of an Abelian

group and let n be any integer. Show that (ab)" =a"b". Is this also true for
non-Abelian groups?

Prove that a group G is Abelian if and only if (ab)™ =a'b™ forallaand b
in G.

Construct a Cayley table for U(12).

Let G be a group and let geG. Define a function ¢, from G to G by

¢, (X) = gxg " for all x in G. Show that ¢, 1s one-to-one and onto.
LetGbeagroupand g, heG. Define ¢, 4,, ¢,, as inthe previous problem
(that is, ¢, (x) =hxh™ and ¢,,(x) = (gh)x(gh)™) . Show that ¢, o ¢, =4¢,..

Prove that if G is a group with the property that the square of every element
is the identity, then G is Abelian.

* Group Theory 1 *
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57.

58.

Let Q :{ (ab)|abez } with the operation defined as

(a,b)-(c,d)=(a+c,(~1 b+d).
(1) Show that Qs a group with the operation defined above.
(i)  Show that Q is not abelian.

(iii)  Determine Z (<), the center of Q.

Let G be a group of matrices under multiplication. Show that:

@ If one element of G is singular, then all elements of G are singular.
(b) If one element of G is nonsingular, then all elements of G are

nonsingular.

* Group Theory 1 *
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CHAPTER 2

SUBGROUPS

2.1 Definitions and Subgroup Test

Definition 2.1  (Subgroup)
If a subset H of a group G is itself a group under the same

operation as in G, we say H is a subgroup of G.

Or

Definition 2.1 (Subgroup)

Let H be a subset of a group G. We say that H is a subgroup

of G if the following conditions are satisfied:

I.  The identity element of G is an element of H

ii.  The product of any two elements of H is itself an
element of H,

iii.  The inverse of any element of H is itself an element of
H.

We use the notation H <G to mean H is a subgroup of G. If
we want to indicate that H is a subgroup of G, but not equal to
G itself, we write H <G. Such a subgroup is called a proper

subgroup. The subgroup {e} is called the trivial subgroup of

* Group Theory 1 *
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G; a subgroup that is not {e} is called a nontrivial subgroup

of G.

Theorem 2.1  One-Step Subgroup Test
Let G be a group and H a nonempty subset of G. Then, His a

subgroup of G if H is closed under multiplication; that is, if

abtis in H whenever a and b are in H.

Theorem 2.2

Let H be a subset of a group (G,*). Then H isa subgroup of G
if and only if h; «h,* e H forall h;,h, eH .

Proof

Suppose H is a subgroup of a group G and h;,h, e H, then
h i ht e H (by condition (iii) definition of subgroup). Now
since hy,h,* e H implies hy *h;* e H (by condition (ii) of
definition of subgroup).

Conversely: Let Hbe a subset of a group (G,*) and

h,xh,' e H for all h,h, eH. Need to show that His a

subgroup of G.

i.  Since hy € H, then by given hypothesis e=h *h; 1 e H .

ii. Since eeHand h eH, then by given hypothesis
hit=exhteH .

ii.  Let hy, hz‘1 e H then by given hypothesis,

hy xhy =hy #(h;") " e H.

* Group Theory 1 *
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All the conditions of subgroups are satisfied and hence H is a

subgroup of G.

Example 2.1
Let G be an Abelian group with the identity e. Then

H ={x e G|x* =e} is a subgroup of G.

Theorem 2.3 Two-Step Subgroup Test

Let G be a group and H a nonempty subset of G. Then, His a

subgroup of G if

1. abeH whenever a,beH (H isclosed under
multiplication).

2. a'eH whenever acH (each element in H has

an inverse).

Theorem 2.4 Finite Subgroup Test
Let H be a nonempty finite subset of a group G. Then, His a

subgroup of G if H is closed under the operation of G.

2.2 Examples of Subgroups
1. The group of integers is a subgroup of the groups of
rational numbers, real numbers and complex numbers under

addition.

* Group Theory 1 *
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2. The group of non-zero rational numbers is a subgroup of
the groups of non-zero real numbers and non-zero complex

numbers under multiplication.

Definition 2.2 (Cyclic Subgroups)
Let aeG. Then (a) = {a”

n eZ} ={e,a, a?,a’, } is called a

cyclic subgroup of G generated by a.

Example 2.2
Let G = U(5)={12,34}. All cyclic subgroups of G and their

orders are listed as follows:

(L) =13 . then [(1)|=1
(2)={12,34} ; = then |(2)|=4,
(3)={12,34} ;  then|(3)=4,
(4)=1{L4} . then ‘(4)‘ _9.

Theorem 2.5 (a) is a subgroup

Let G be a group, and let a be any element of G. Then

(a)=1a"

ne Z} is a subgroup of G.

* Group Theory 1 *
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Lemma 2.1

Let g be an element of a group G. Then the set of all elements

of G that are of the form g" for some integer n is a subgroup
of G.

Proof
Let H={g" : neZ}.Then the identity element belongs to

H,since it is equal to go. The product of two elements of H is

itself an element of H , since g"g" = g™™" for all integers m
and n. Also the inverse of an element of H is itself an element
of H since (g")t=g™ for all integers n. Thus H is a
subgroup of G, as required.

Definition 2.3 (Center of a Group)
The center Z(G) of a group G is the set of elements in G that

commute with every element of G. In symbols,

Z(G):{aeG|ax:xa for all x in G}.

The notation Z (G) comes from the fact that German word for

center is Zentrum.

Examples 2.3

1. Consider the quaternion group Q={£L+i,*j =k},
where i’=j=k*=-1 | ij=k , jk=i, ji=—k , ik=-j.
Then find the centre of Qg.

* Group Theory 1 *
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Solution: Since 1 is the identity of Qg, therefore 1 commute
with every element of Qg, hence 1€Z(Q;). Also
(-1)-1=-1=1-(-1), (-D-i=i*i=i® and i-(-D=i-i* =i
that is (<1)-i=i®=i-(-1), (-)-(-i)=i’-(-i)=-i® and
(=) (=1 = (i) -i* = =i thatis (=1)- (i) =—i® = (=i)-(-1).
Similarly (=1)-(£]j)=(%]))- (-1 and (-1)- (k) = (zk)- (1)
hence —-1€Z(Q,). However, i-j=k and j-i=-k this
implies i, j ¢ Z(Qg). Similarly j-k=i and k- j=-I that is

k ¢ Z(Qg). Hence Z(Qy) ={z1}.

2. Consider the dihedral group of order 6 Ii.e.
D, ={e, a,a%,b,ab, a’b} where a® =b? = (ab)? =e, and the
groups 7Z,Q,IR and C of integers, rationals, reals and complex
numbers under their usual addition. Then Z(D3)={e},

2(2)=7, Z(Q)=Q, Z(R)=R, and Z(C)=C,

Theorem 2.6 Center is a subgroup

The center for a group G is a subgroup of G.

* Group Theory 1 *
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Theorem 2.7
Prove that the center Z(g) ={xeG : xg=gx} of agroup G is

a subgroup of G.

Proof

Since eg = g = ge forall g e G, this implies e Z(G). If x and
y are elements of Z(g), then gy=yg and gx=xg for all
g € G. Consider,

(xy)g = x(yg) = x(gy) = (xg)y = (9x)y = g(xy),
therefore xy is an element of Z(g). Also x is an element of
Z(g) for all elements x of Z(g), since

x1g=x(g)xt=xT(xg)x = gx L.

Thus Z(g) is a subgroup of the group G.

Definition 2.4 (Centralizer of ain G)

Let a be a fixed element of a group G. The centralizer of a in

G, C;(a) is the set of all elements in G that commute with a.

In symbols, C (a)={g €G|ga=ag}.

Theorem 2.8 C; (a) is a subgroup

For each a in a group G, the centralizer of a is a subgroup of
G.

* Group Theory 1 *
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Theorem 2.9

Theorem 2.10

Nor Haniza Sarmin & Hidayatullah Khan

Z(G)=NC;(a)

aeG

If H is a subgroup of a group G then the
order of H divides the order of G.

* Group Theory 1 *
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Exercises 2: (Subgroups)

In Exercises 1 through 2, determine whether the given subset of the complex numbers
is a subgroup of the group C of complex numbers under addition.

1. The set iR of pure imaginary numbers including O

2. The set zQ of rational multiples of =

In Exercises 3 through 5, determine whether the given set of invertible nxn matrices
with real number entries is a subgroup of GL(n, R).

3. The nxn matrices with determinant 2
4. The upper-triangular nxn matrices with no zeros on the diagonal
5. The nxn matrices with determinant -1 or 1

Let F be the set of all real-valued functions with domain R and let F be the subset
of F consisting of those functions that have a nonzero value at every point in R. In
Exercises 6 through 7, determine whether the given subset of F with the induced

operation is (a) a subgroup of the F under addition, (b) a subgroup of the group F
under multiplication.

6. The subset of all f € F such that f(1)=1
7. Nine groups are given below. Give a complete list of all subgroup relations,
of the form G, <G, that exist between these given groups G,, G,, ..., G;.

G, = Z under addition

G, =127 under addition

G, =Q" under multiplication

G, =R under addition

G, =R" under multiplication

G, ={#" | n e Z} under multiplication

G, =3Z under addition

G, = the set of all integral multiples of 6 under addition
G, ={6" | n € Z} under multiplication

Describe all the elements in the cyclic subgroup of GL(2, R) generated by the given
2x 2 matrix.

3 {_01 ﬂ

9. Which of the following groups are cyclic? For each cyclic group, list all the
generators of the group.
G = <Z’ +> G, = <Q’ +> G, = <Q+’ >
G, =(6Z, +)

G, ={6" | n € Z} under multiplication

* Group Theory 1 *
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10.

11.

12.

13.

14.

G, ={a+b+/2|a,b e Z} under addition

Find the order of the subgroup of the multiplicative group G of invertible
4x 4 matrices generated by

0 001
0 010
1 000
0100

Study the structure of the table for the group Z, in the following.

Ly,:

WIN| | O]+
W(N | O]|o
OlWN |-
ROlW[N]|N
N Oo|lw]|w

a. By analogy, complete Table 4.1 to give a cyclic group Z, of 6
elements. (You need not prove the associative law.)

b. Compute the subgroups (0), (1), (2), (3), (4), and (5) of the
group Z, given in part (a).

C. Which elements are generators for the group Z, of part (a)?

d. Give the lattice diagram for the part (b) subgroups of Z.. (We will
see later that these are all the subgroups of Z;.)

1]12[3[4]5
11213
213141510

Lg:

S
o1

QP WINFO|IO

OB WN P O]+

Table 4.1

Show that if H and K are subgroups of an abelian group G, then
{hk|heH and k € K}

is a subgroup of G.
Prove that if G is an abelian group with identity e, then all elements x of G
satisfying the equation x* =e form a subgroup H of G.
Let G be a group and let a be one fixed element of G. Show that
H, ={xeG|xa=ax}
is a subgroup of G.

* Group Theory 1 *

29



Chapter 2: Subgroups Nor Haniza Sarmin & Hidayatullah Khan

15.

16.

17

18.
19.

20.

21.
22.

23.
24.

25.

26.

For sets H and K, we define the intersection H nK by
HNK={x|xeH and xe K}.

Show that if H <G and K <G, then H K <G.

Prove that every cyclic group is Abelian.

For each group in the following list, find the order of the group and the order
of each element in the group. In each case, how are the orders of the elements
of the group related to the order of the group?

2% U(10), U(12), U(20), D,.

Prove that in any group, an element and its inverse have the same order.
Without actually computing the orders, explain why the two elements in each
of the following pairs of elements from Z,, must have the same order: {2,
28}, {8, 22}. Do the same for the following pairs of elements from U(15): {2,
8}, {7, 13}.

Let x belong to a group. If x*> =e and x° =e, prove that x* =e and x*> =e.
What can we say about the order of x?

Show that U (14) = (3) =(5). [Hence, U (14) is cyclic.] Is U (14) =(11)?

Show that Z, = (3) = (7)=(9). Is Z;, =(2)?
Let G be a group, and let a € G. Prove that C(a)=C(a™).
Suppose G is the group defined by the following Cayley table.

1 2 3 4 5 6 7 8

111 2 3 4 5 6 7 8
212 1 8 7 6 5 4 3
313 4 5 6 7 8 1 2
414 3 2 1 8 7 6 5
515 6 7 8 1 2 3 4
6|6 5 4 3 2 1 8 7
717 8 1 2 3 4 5 6
8|8 7 6 5 4 3 2 1

a. Find the centralizer of each member of G.

b. Find Z(G).

C. Find the order of each element of G. How are these orders

arithmetically related to the order of the group?

If H is a subgroup of G, then by the centralizer C(H) of H we mean that the
set {x e G| xh =hx for all h e H}. Prove that C(H) is a subgroup of G.

Let G be an Abelian group with identity e and let n be some integer. Prove

that the set of all elements of G that satisfy the equation x" =e is a subgroup
of G. Give an example of a group G in which the set of all elements of G that

satisfy the equation x* =e does not form a subgroup of G.

* Group Theory 1 *
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217.

28.
29.

30.

31.

32.

0 -1 0 1
Consider the elements Az{1 O} and B :[ J from SL(2, R). Find

|Al, |B|, and |AB|. Does your answer surprise you?
U(15) has six cyclic subgroups. List them.

a b
Let G:{L d}|a, b, c, deZ} under  addition. Let H=

a b
{[c d} la+b+c+d= O} Prove that H is a subgroup of G. What if 0 is
replaced by 1?

Let G=GL(2, R). Let H ={A<G|det A is a power of 2}. Show that H is a
subgroup of G.

a o0
Let G=GL(2, R) and H = {0 b} | a and b are nonzero integers}. Prove
or disprove that H is a subgroup of G.

Let G =GL(2, R).

et
e[

C. Find Z(G).

* Group Theory 1 *
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CHAPTER 3

CYCLIC GROUPS

3.1 Definition and Some Examples of Cyclic Groups

Definition 3.1 (Cyclic Group)
A group G is called cyclic if there is an element a in G such that

G ={a” In eZ}. Such an element a is called a generator of G.

Example 3.1

Some examples of cyclic and noncyclic groups.

i) (e)={e}.

i)  Z=(1)=(-1).

i) 7, =(1)=(3)={0,1,2,3}.

iv) U (10)=(3)=(7)={137,9).

v) U(8)={135,7} is not a cyclic group since it has no

generator.

vi) U (12)={15,7,11} is not a cyclic group since it has no

generator.
vil)  Z,=(1)=(3)=(5)=(7).

* Group Theory 1 *
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3.2 Elementary Properties of Cyclic Groups

Theorem 3.1
Let G be a group and let a be an element of G. If a has infinite

order, then all distinct powers of a are distinct group elements. If a
has finite order, say n, then (a) ={e,a, a’, ... ,a”‘l} and a' =a' if

and only if n divides i-j.

Corollary 3.1  If ak=e, then |a||k.

Corollary 3.2 If g G, then |g[|[G].

Example 3.2

We know ‘24‘=4. List all its elements orders:

0=1

2/=2 ~_*> 1and 3 are the generators of Z, since
3=4 ==l =4

Note that all of the elements orders are divisors of ‘24‘ —4,

Theorem 3.2

Let G =(a) be a cyclic group of order n. Then G = <a"> if and

only if the ged(k,n)=1.

* Group Theory 1 *
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Note : ged(k,n) =1 which means k and n are relatively prime

or k and n have no common factors. In other words, k e U (n)

Corollary 3.3
An integer k is a generator of Z, if and only if gcd(k,n)=1.

Theorem 3.3

Every cyclic group is Abelian.

Theorem 3.4

Prove that every cyclic group is commutative. But the converse
IS not true.

Proof

Let G is a cyclic group generated by g and a,beG. Then
a=g" and b=g" for some mnezZ. Consider

ab=g"g" =g™" =g"™ =g"g™ =ba. This shows that G is
commutative group as required.

Further consider the Klein 4—group i.e. V, ={e,a,b,c}, this
group is commutative however it is not cyclic.

* Group Theory 1 *

34



Chapter 3: Cyclic Groups Nor Haniza Sarmin & Hidayatullah Khan

3.3 Classification of Subgroups of a Cyclic Group

Theorem 3.5
If Ka)‘ =n, then the order of any subgroup of the group is a
divisor of n; and, for each divisor k of n, the group has exactly

one subgroup of order k, namely, (a"*).

Corollary 3.4

If a is a generator of a finite cyclic group G of order k, then the

other generator of G are the elements of the term a", where r is

relatively prime to k.

Theorem 3.6

A subgroup of a cyclic group is cyclic.

* Group Theory 1 *
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Example 3.3
Let G =(g) and |G|=24. Then for every k|24, there exists

H <G suchthat H =(g*). List of all subgroups are listed as

below:
Subgroups of G K \(gk>\=2k4
G=(g)={e.9.9° ...0%} 1 24
(0°)={e.0°.0" .. 0% 2 12
(0°)={e.0%.¢° .. .0% 3 :
(9)={e.0".0" .. .07} 4 6
(9°)={e.0° 0" 0" 6 4
(9°)={e.0% 0"} 8 3
(97)={e.0%} 12 2
(9%)=(e)={e} 24 1

In specific, if G=7Z,, Theorem 3.7 can be restated as in the

following.

* Group Theory 1 *
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Corollary 3.5
For each divisor k of n, the set <%> IS a unique subgroup of L, of

order k. Moreover, these are the only subgroups of L.

Example 3.4
Let G =Z%,,. All cyclic subgroups of G are stated below:

1)={0,1,2, ... ,23} with order 24,

0,2,4, ... ,22} with order 12,

H
N
~~—"
I
—— ()
o
H
N
——
p=-
-0
o
=
o
D
=
N

" 7 " " 7 " " 7
~— ~— \-E ~~—" ~—
I
o
S~
o
N
o
N—

:.
o0
o
=
o
D
=
(@))

3.4 Lattice Diagram

It is often useful to draw a lattice diagram of the subgroups of a
group. In such a diagram, a line running downward from a group
G to a group H means that H is a subgroup of G. Thus the larger

group is placed nearer to the top of the diagram.

* Group Theory 1 *
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Example 3.5 (Klien-4-group)

Let V ={e,a,b,c}. There are four subgroups of V which are

{e}, {e,a}, {e,b} and {e,c}. Thus, we can draw the Lattice

Diagram for V:

{ea}/{e'vbﬁc}
Ty

Example3.6 (Z,,)

Let G =7Z,,. The cyclic subgroups and orders of elements of G

are listed below:

(0)={0} ,  thus (0)| =1
(1)={012, ..,11} ,s0 [(1)|=12
(2)={0.2.4, .. ,10} ,s0 |(2)|=6,
(3)={0,3,6,9}, so (3) =4,
(4)={048}, 0 |(4)]=3.
(6)={06) , o |(8)]=2.
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The lattice diagram of G is given as below:

w | P
o)

* Group Theory 1 *
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Exercises 3: (Cyclic Groups)

In Exercise 1 through 4, find the number of generators of a cyclic group having the
given order.
1. 5 2. 8 3. 12 4. 60

In Exercises 5 through 9, find the number of elements in the indicated cyclic group.
5. The cyclic subgroup of Z,, generated by 25

6. The cyclic subgroup of Z,, generated by 30
7. The cyclic subgroup <|> of the group C* of nonzero complex numbers under
multiplication
The cyclic subgroup of the group C* of Exercise 7 generated by (1+ i)/\/§
9. The cyclic subgroup of the group C* of Exercise 7 generated by 1+i

In Exercise 10 through 12, find all subgroups of the given group, and draw the lattice
diagram for the subgroups.
10. Z,, 11. Lo 12. Zyg

In Exercise 13 through 17, find all orders of subgroups of the given group.
13. Z, 14. Z, 15.  Z,, 16. Z,, 17. 7,

In Exercises 18 through 21, either give an example of a group with the property
described, or explain why no example exists.

18.  Afinite group that is not cyclic

19.  Aninfinite group that is not cyclic

20. A cyclic group having only one generator

21.  Afinite cyclic group having four generators

22. Let r and s be positive integers. Show that {nr +ms|n,m e Z} is a subgroup
of 2.

23. Show by a counterexample that the following “converse” of the theorem
below is not a theorem: “If a group G is such that every proper subgroup is
cyclic, then G is cyclic.”

| Theorem: A subgroup of a cyclic group is cyclic. \

24. Show that Z, has no proper nontrivial subgroups if p is a prime number.

25.  Find all generators of Z,, Zg, and Z,.

26.  List the elements of the subgroups (3) and (15) in Z.

217. Let a be an element of a group and let |a| =15. Compute the orders of the
following elements of G.
a. a’, a°, a’, a*;
b. a’, a*;
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28.
29.

30.

31.

32.
33.

34.

35.
36.

37.

38.

39.

40.
41.

42.

C. a?, a*, a® a.

Let G be a group and let a € G. Prove that <a‘l> =(a).
Suppose that |a| = 24. Find a generator for (a”)~(a*). In general, what is a

generator for the subgroup (a")(a")?

If a cyclic group has an element of infinite order, how many elements of finite
order does it have?
Let G be a group and let a be an element of G.

a. If 2" =e, what can we say about the order of a?
b. If a™ =e, what can we say about the order of a?
C. Suppose that [G|=24 and that G is cyclic. If a®#e and a” =e,

show that (a)=G.

Prove that a group of order 3 must be cyclic.

Let Z denote the group of integers under addition. Is every subgroup of Z
cyclic? Why? Describe all the subgroups of Z.

Determine the subgroup lattice for szq, where p and g are distinct primes.

Determine the subgroup lattice for Z,.

Show that the group of positive rational numbers under multiplication is not
cyclic.
Consider the set {7,35,49,77}. Show that this set is a group under

multiplication modulo 84 by constructing its Cayley table. What is the identity
element? Is the group cyclic?
Let m and n be elements of the group Z. Find a generator for the group

(m)(n).

Let p be a prime. If a group has more than p—1 elements of order p, why can’t
the group be cyclic?

Let [x| =40. List all the elements of (x) that have order 10.

Let a and b be elements of a group. If |a|=10 and |b|=21 show
(a)n(b) ={e}.

Leta and b belong to a group. If [a| =24 and |b| =10, what are the possibilities
for (a)(b)?
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CHAPTER 4

PERMUTATION GROUPS

4.1 Definitions and Some Examples of Permutation
Groups

Definition 4.1 (Permutation)

A permutation of a set A is a function ¢ : A — A that is both one

to one and onto.

Definition 4.2 (Permutation Group)
Given a set A. Then a permutation group is a set consists of all
permutations on A that forms a group under the composition

operations.

Example 4.1
Suppose that A={1,2,3,4,5} and o and r are permutations

defined as below:

* Group Theory 1 *
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o T
1->4 1—-3
2—>2 255
3—>5 354
4—3 42
5—1 51

Both permutations can be written in a matrix form as:

1 2 3 4 5 1 2 3 45
o= , T= :

4 2 5 31 354 21
Then,

(1 2 3 4 5)(1 2 3 45) (123435
“la 2531 3542151324
For example, multiplying in right-to-left order gives

(o7)(1)= O'(Z'(l)) =o(3)=5.

Definition 4.3 (Permutation Group)

Let A be a finite set {1,2, ... ,n}. The group of all permutations

of A is the symmetric group on n letters and is denoted by, .

* Group Theory 1 *
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Note:

The order of permutation group denoted by |S, | is |S,|=n!

Example 4.2
An interesting example is the group S, of 3!=6 elements. Let

the set A be {1,2,3}. All permutations of A are listed below:

123 (123 (123
Po=ly 2 3) P72 3 1)P27(3 1 2
(r23) (123 . (123
=11 3 2) 73 2 1 H2=1o 1 3

S, is the same as the group D, of symmetries of an equilateral

triangle. Naively, we used p. for rotations and x for mirror
images. The nth dihedral group D, is the group of symmetries
of regular n-gon. The multiplication table for S, is shown in

Table 4.1:

* Group Theory 1 *
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Table 4.1 Multiplication Table for S3

Po P P t M, M
Po Po P P t M, M
P P P Po M th M,
P P Po P My My Hy
H Hy M, My Po P P
M, ) My | P Po P
M My ! M, P P Po

4.2 Cycle Notation

Example 4.3
: 1 2 3 456 7 8
Given o = € S;. Then o can be
386 7 415 2

written in a cycle notation as o =(136)(28)(475).

Figure 4.1 1s a nice way to visualize the structure of the

permutation o .
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Figure 4.1 o = (136)(28)(475)

Definition 4.4 (Cycle)
A permutation (a,a, ... a,) is a cycle if it contains more than

one element and m the length of a cycle.

Example 4.4

Working within S;, we see that

12345678
. — (16)(2475)(38),
a[64 72153]()( )(38)

8
1 2 3 456
1

8
= h
5 7] (163)(25874) . thus

aff = (16)(2475)(38) (163)(25874) = (1)(2)(3685)(4)(7) = (3685)
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Definition 4.5 (Disjoint Cycles)
Any integer is moved by at most one of these cycles, thus no

one number appears in the notation of two different cycles.

Example 4.5
Disjoint cycles:

(136)(28)(475), (16)(2475)(38)
Joint cycles:

(12)(32)(157), (1356)(246)

4.3 Properties of Permutations

Theorem 4.1

Every permutation of a finite set is a product of disjoint cycles.

Theorem 4.2

Multiplication of disjoint cycles is commutative.

Example 4.6
Consider the cycle (1456) and (23) in S:

(23)(1456) = (1456)(23).
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Definition 4.6 (Order of a Permutation)

The order of a permutation, « is the smallest positive integer,
n such that «" = ¢. The order of a permutation « is denoted

by |a|.

Theorem 4.3

A permutation of a cycle with length n has order n.

Example 4.7
‘(a1 az)‘ =2 and ‘(a1 a, a3)‘ -3
Let y = (146). Then

7| =|(146) =3, |r*|=|(146)(146)| =|(164) =3,

|l ~l(264)(146) - [ (4)(6)] =l -1

Theorem 4.4
The order of a permutation written in disjoint cycles is the least

common multiple (Icm) of the length of each cycle.

Example 4.8
(123)(45)| =lcm(3,2) =6,

(12)(3456) = lem(2,4) = 4,
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(12)(352)|=(2351)| = 4.

Definition 4.7  (Transposition)

A transposition is a cycle of length two (or a 2-cycle).

Theorem 4.5
Any permutation of a finite set of at least two elements is a
product of transpositions.

(In other words, any permutation of S., n>1 can be written as

a product of transpositions.)

Proof  For identity permutation & =(12)(12). Then for every

permutation with length k,

(313-2 ak—lak)z(alak)(alak—l) (a132)-

Example 4.9
We can write (86543217)=(87)(81)(82)(83)(84)(85)(86), a

product of 7 transpositions.

Note that : ‘(86543217)‘ =8.
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Corollary 4.1

If ¢ =p.5,0; ... B, Where S is a transposition, then r is an

even number.

Definition 4.8 (Even or Odd Permutation)
An even/odd permutation is a permutation that can be written

as a product of an even/odd number of transpositions.

For, an n-cycle, where n is odd, it can be written as a product of
n-1 (even) number of transpositions, thus it is an even

permutation.

For, an n-cycle, where n is even, it can be written as a product
of n-1 (odd) number of transpositions, thus it is an odd

permutation.
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Example 4.10
Product of No. of
Permutation, « . N Type
Transpositions transpositions
(12345) (15)(14)(13)(12) 4 even
(123)(45) (13)(12)(45) 3 odd
(123)(54)(876) | (13)(12)(54)(86)(87) 5 odd
(2) (12)(12) 2 even
Theorem 4.6

The set of even permutations in S, forms a subgroup of Sp.

Definition 4.9 (Alternating Group, An)

The subgroup of S, consisting of even permutations of n

letters is the alternating group, A, on n letters.

We can prove that |A, | = % when n > 1. This means half of the

elements in S, are even permutations and another half are odd

permutations.
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Example 4.11

S, =1(1).(12).(13).(14).(23). (24).(34),
(123),(124),(134),(132),(142),(143),(234),(243),
(1234),(1243),(1324),(1342),(1423),(1432),

(12)(34),(13)(24),(14)(23)}

S,|=41=24.

A, ={(1),(123),(124),(134),(132),(142), (143),(234),(243),
(12)(34),(13)(24),(14)(23)
A|=4=12.

For S, ={(1),(12),(13),(23),(123),(132)}, then

A, ={(1).(123),(182)}.

Now we look at the Cayley Table of A, :
Let 7, =(1), 7, =(123) and y, =(132). Thus the Cayley
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Nor Haniza Sarmin & Hidayatullah Khan

Y1 V2 Vs
Vil V2 Vs
Vol Ve V3 N
Vs | Vs V1 V2
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Exercises 4: (Permutation Groups)

In Exercises 1 through 5, compute the indicated product involving the following

permutations in Sy :

1 2 3 45 6
o = ’
31456 2
1 2 4 5 6
T= ’
2 413 6 5
_123456
“7ls 2 4316/
1l 7o 2. 7o 3. uo’ 4., ot 5. o'toc

In Exercises 6 through 9, compute the expressions shown for the permutations

o, 7, and u defined prior to Exercise 1.

I D

10. Let Abeasetandlet ce€S,. Forafixed ae A, the set

G, ={o"(@Inez}

is the orbit of a under o. Find the orbit of 1, 2, 3, 4, 5 and 6 under the

permutation 7z defined prior to Exercise 1.

11. Find the number of elements in the set {o €S, | o(3) =3}.
12. Find the number of elements in the set {o € S, | o(2) =5}.

13.  Consider the group S, of the following:

a subscripted Greek letter for a name.

(123 (123
Po=l1 2 3 =l 3 o)

Let the set A be {1, 2, 3}. We list the permutations of A and assign to each
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123 123
PZlo 3 1) H2=13 9 1)

(123 (123
Pe=l3 1 o) T2 1 3)

a. Find all cyclic subgroups (p,), (p,), and (z4) of S,.

b. Find all subgroups, proper and improper, of S, and give the lattice

diagram for them.
14.  Show by an example that every proper subgroup of a nonabelian group may
be abelian.
In Exercise 15 through 17, compute the indicated product of cycles that are
permutations of {1, 2, 3, 4, 5, 6, 7, 8}.
15, (1,4,5)(7,8)(2,5,7) 16.  (1,3,2,7)(4,8,6)
17. (1,2)(4,7,8)(2,1)7,28,1,5)

In Exercises 18 through 20, express the permutation of {1, 2, 3,4, 5,6, 7,8} asa

product of disjoint cycles, and then as a product of transpositions.

18 123456 7 8 19 123456 7 8
' 8 2 6 37 451 " |36 418257

- 123456 7 8
' 3147 2586

21. Recall that element a of a group G with identity e hasorderr >0 if a" =e
and no smaller positive power of a is the identity. Consider the group S.
a. What is the order of the cycle (1, 4, 5, 7)?
b. State a theorem suggested by part (a).
C. What is the order of o =(4, 5)(2, 3, 7)? of

r=(1 4)@3, 5, 7, 8)?

* Group Theory 1 *

55



Chapter 4: Permutation Groups Nor Haniza Sarmin & Hidayatullah Khan

d. Find the order of each of the permutations given in Exercises 18
through 20 by looking at its decomposition into a product of disjoint
cycles.

e. State a theorem suggested by parts (c) and (d). [Hint: The important

words you are looking for are least common multiple.]

In Exercises 22 through 26, find the maximum possible order for an element of S,

for the given value of n.

22.

27.

n=5 23. n=6 24. n=7 25. n=10 26. n=15

Mark each of the following true or false.

a. [Every permutation is a cycle.

b. Every cycle is a permutation.

c. The definition of even and odd permutations could have been
given equally well before the following theorem.
Theorem: No permutation in S, can be expressed both as a
product of an even number of transpositions and as a product of
an odd number of transpositions.

d. Every nontrivial subgroup H of S, containing some odd
permutation contains a transposition.

e. A has 120 elements.
f. S isnotcyclic forany n>1.

__ 9. A, isacommutative group.

h. S, is isomorphic to the subgroup of all those elements of S, that
leave the number 8 fixed.

I. S, is isomorphic to the subgroup of all those elements of S, that
leave the number 5 fixed.

___ ). Theodd permutations in S, form a subgroup of S, .
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28.
29.

30.

31.

32.

33.
34.

35.
36.

37.

Show that if & is a cycle of odd length, then &2 is a cycle.

Find the order of each of the following permutations.

a. (14) b. (147) c. (14762)

What is the order of each of the following permutations?

a. (124)(357) b. (124)(356)

c. (124)(35) d. (124)(3578)

What is the order of each of the following permutations?
{123456} b{1234567}
215 4 6 3 7 6 12 3 45

What are the possible orders for the elements of S, and A,? What about
S, and A ?
Show that A, contains an element of order 15.

Determine whether the following permutations are even or odd.
a. (135) b. (1356) c. (13567)
d. (12)(134)(152) e. (1243)(3521)

If « is even, prove that o is even. If « is odd, prove that ™" is odd.

Let
12 3 456 123 456
o= and g = :
2 135406 6 1 2 4 35

Compute each of the following.

a a

b Lo
c off
Let

_12345678andﬁ_12345678
12135 47 6 8 11387 6 5 2 4]

Write o and S as

Nor Haniza Sarmin & Hidayatullah Khan

a. products of disjoint cycles,
b. products of 2-cycles.
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38. Do the odd permutations in S, form a group? Why?

39. Leta and g belongto S,. Prove that o™ 5o is an even permutation.
40.  Use Table 4.2 to compute the following.
a. The centralizer of o, = (13)(24).

b. The centralizer of ¢, = (124).

(In this table, the permutations of A, are designated as «;, «,, ..., &, and an entry
k inside the table represents ¢, . For example, a0 = ¢.)

o QG 0 Q G G O & Qg &y & Oy

O=e,| 1 2 3 4 5 6 7 8 9 10 11 12
@2@4)=a, | 2 1 4 3 6 5 8 7 10 9 12 11
W)24)=c, |3 4 1 2 7 8 5 6 11 12 9 10
423)=a, | 4 3 2 1 8 7 6 5 12 11 10 9

123)=a,| 5 8 6 7 9 12 10 11 1 4 2 3
(243)=c; | 6 7 5 8 10 11 9 12 2 3 1 4
(42)=a, | 7 6 8 5 11 10 12 9 3 2 4 1
(34)=c, | 8 5 7 6 12 9 11 10 4 1 3 2
132)=e, | 9 11 12 10 1 3 4 2 5 7 8 6
143)=e, |10 12 11 9 2 4 3 1 6 8 7 5
(234)=a,, |11 9 10 12 3 1 2 4 7 5 6 8

124)=e, |12 10 9 11 4 2 1 3 8 6 5 7

Table 4.2 The Alternating Group A, of Even Permutations of {1, 2, 3, 4}

41.  Whatcycleis (aa,..c)™"?
42. Let H={p S, | 1) =1and B(3) =3}. Prove that H is a subgroup of S..

43. In S,, find a cyclic subgroup of order 4 and a noncyclic subgroup of order

4.
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44,

45.

46.

47.
48.

In S,, find elements  and B sothat || =2, ||=2, and |a8|=3.
Show that A, has 24 elements of order 5, 20 elements of order 3, and 15

elements of order 2.

Let G be a group. For elements a, b € G, define a mapping

fab: G = G by fap (X) = axb for all xe G.

(i) Show that each fap is a permutation of the set G.

(i) Decide if the set H = { fap | @, b € G } is a subgroup of the group Sc
of all permutations of the set G.

How many elements of order 2 are in Sg?

If @ commutes with gand  commutes with y. Show that o may not

commute with .
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CHAPTER 5

HOMOMORPHISMS AND ISOMORPHISMS

5.1 Introduction

It turns out that permutation groups can serve as models
for all groups. In order to describe the relation of permutation
groups with groups in general, we need the concept of

isomorphism.

5.2 Definition and Some Examples
We define formally the concept of homomorphism and

isomorphism below.

Definition 5.1 (Homomorphism)
If (G.,x) and (G,*,) be any groups. A mapping
into
f :1(G.,*)—(G,,*,) is said to be a homomorphism or
homomorphic mapping of G, into G, if
f(a*, b)= f(a)*, f(b) forall a,beG,.

Note:

If f is homomorphic mapping of G, onto G, so that
f(G,)=G,, then the group G, is called the homomorphic
image of a group G,.
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Examples 5.1

1. Let Z be the group of integers (with the operation of
addition). The function f : Z — Z that sends each integer n

to 2n i.e. f(n)=2n is a homomorphism. This follows from
the fact that 2(m+n) = 2m+2n for all integers m and n. More
generally, given any integer g, the function that sends each
integer n to gqn is a homomorphism.

2. There is an obvious homomorphism from the group of
integers to the group of real numbers (where the binary
operation for both the groups is addition). This is the
homomorphism that sends each integer to itself.

3. Let a be a positive real number. The function that sends
each integer n to the real number a" is a homomorphism from
the group of integers (with the operation of addition) to the
group of non-zero real numbers (with the operation of
multiplication). This follows from the fact that a™" =a™a"
for all integers m and n.

4. Let g beanelementofagroup G,andlet f : Z >G
be defined by f(n)=g" for all integers n. The fact that
g"™" =g"g" forall integers m and n ensures that the function
f : Z—>G is a homomorphism from the group of integers

(with the operation of addition) to the given group G.
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Theorem 5.1
into

Let f : G,—G, be a homomorphism. Then f(G,) is a group.
In other words, the homomorphic image f(G) of agroup G is
a group.

into

Proof Let f : G,—G, be a homomorphism. To show that
f (G,) is a group we check all the four properties of a group for
F(Gy).

. Closure property: Let f(g,), f(g9,)e f(G) for all

d,,9, €G, and consider, f(g9,)- f(9,)=f(9,-9,) (f being a
homomaorphism) that is,

f(g,) F(9,)=(g,-9,) € f(G) (because 9,9, €G,).

Ii.  Associative property: Let f(g,), f(9,), f(9;) e f(G))
forall g,,9,,9, € G, and consider,

(f(9)-1(9,))- F(9s) = T(9,-9,) T(9,)
=1((9,-9,)-9)
= 1(9,-(9,.9;))
= f(g,)- f(9,-9;)
= 1(9,)-((9,)- f(9;))

ili.  Existence of the identity: If e, is the identity of G,, then
f (e,) is the identity of G,, because for any f(g,) € f(G,), we
have,

f(9,)-f(e)=1(9,-&)=1(g,)

and
f(e)-f(9,)="f(e-9,)="T(9)
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iv.  Existence of the inverse: For each f(g,) € f(G,), there
exists f (g;') e f(G,) such that,

f(9)-f(9,)="(9,-9,)="(e)
and

f(9,")-1(g)="7(9,"-9)=T(e).
Hence f(G,) isagroup. [l

Theorem 5.2

The homomorphic image of an Abelian group is Abelian.

Proof Let f : G—>G" be a homomorphism of an abelian
group G into a group G*. Let f(x),f(y)e f(G), where
X,y € G and consider, f(x)-f(y)=f(xy)=f(yx)=f(y)- f(x).

This shows that f(x)-f(y)=f(y)-f(x) for all
f(x), f(y) e f(G) and hence f(G) is Abelian. [

Theorem 5.3

The homomorphic image of a cyclic group is cyclic.

Proof Let f : G — G* be ahomomorphism of a cyclic group

G into a group G*. Let G be generated by a. Since aeG,
therefore f(a)e f(G). Let x e f(G), then x= f(g) for some

g G, but g =a", hence,

* Group Theory 1 *
63



Chapter 5: Isomorphisms Nor Haniza Sarmin & Hidayatullah Khan

x = f (a*)(for some integer k)
=f(a-a-... k-times)
= f(a)- f(a)...k-times
=(f(@)
This shows that every element of f(G) is of the form(f (a))‘.
Hence f(G) is cyclic. [

Theorem 5.4
into

If f : G—>G" isahomomorphismand H is any subgroup of
agroup G, then f(H) is asubgroup of G*.

Proof Since H is a subgroup therefore e H and hence
f(e)e f(H) thatis f(H) is non-empty. Let f(x), f(y)e f(H),
where x,y e H. Consider,
F0-(F() " = (- f(y™)

= f(xy™") e f(H) (because xy " € H),

implies, f(x)-(f(y)) e f(H). Hence f(H) is a subgroup of
G*. O

Definition 5.2 (Isomorphism)

An isomorphism ¢ from a group G to a group H is a one-to-

one and onto function that preserves the group operation, i.e.

¢(gh)=¢(g9)¢(h) Vg,heG.
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Note that a mapping that satisfies operation preserving is called
a homomorphism. A homomorphism from a group G to itself

is called an endomorphism.

If there exists an isomorphism that maps a group to another

group, we say that those two groups are isomorphic.

Definition 5.3 (Isomorphic)
If there exists an isomorphism from G to H, then we say G
and H are isomorphic or G is isomorphic to H. In symbols,

we write G=zH or H=G.

5.3 Operation Preserving

There are four types of operation preserving, depending on

the operations on G and H, listed in the table below:

Operationon G Operationon H  Operation Preserving

# # ¢(g#h)=¢(g)#s(h)
i . #(9#h)=¢(g)*4(h)
. # #(9+h)=¢(9)#4(h)
# . #(9*h)=4(g)*4(h)
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5.4 How to show two groups are isomorphic.

There are four normal steps to show that (S,*) and (S',#) are

isomorphic:

Step 1:

Step 2:

Step 3:

Step 4:

Define the function ¢ that gives the isomorphism
of S withS’. This means that we have to describe,
in some fashion, what ¢(s) is so that ¢(s) is closed
for every seS.

Show that ¢ is a one-to-one function. This means
we suppose that ¢(x)=g¢(y) in S’ and deduce
from thisthatx =y in S.

Show that ¢ isonto S". That is, suppose that s' € S’
IS given. Then we show that there exists s € S such
that ¢(s)=s".

Prove that ¢ Is operation preserving. That is, to
show that ¢(x*y)=g(x)#¢(y) VX, yeS. Thisis
just a question of computation. Compute both sides

of the equation and see whether they are the same.
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Example 5.2
Let 2Z ={2n|neZ}. Thus 2Z is the set of all even integers.

We claim that (Z,+) is isomorphic to(2Z,+), where + is the

usual addition.

Step 1:  The obvious function ¢:7Z — 27 is given by
¢(n)=2nforneZ.
Step2:  If g(m)=¢(n), then 2m=2nsom=n. Thus ¢ is

one-to-one.

Step3: Ifne2Z,thennisevenso n=2m for ng.

Hence ¢(m)=2(gj: n,so ¢ isonto 27.
Step4: Let m,neZ.We have
g(m+n)=2(m+n)=2m+2n=¢(m)+¢(n).

Thus, ¢ is an isomorphism.

Example 5.3

Let us show that the binary structure (R,+) with the usual

addition operation is isomorphic to the structure <IR{+, > where

“.” 1s the usual multiplication.
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Step 1:

Step 2:

Step 3:

Step 4:

We have to somehow convert an operation of

addition to  multiplication. Recall from

a”*=(a")(a°) that addition of exponents

corresponds to multiplication of two quantities.

Thus we try defining ¢:R—R" by
¢(x)=e" forxe R. Note that e* >0 forall xeR.
So indeed ¢(x)eR".

If ¢(x)=¢(y), then e =e’. Taking the natural
logarithm, we see that, x =y so ¢ is indeed one-

to-one.

If reR", then In(r)eR and ¢(Inr)=e"" =r.
Thus ¢ isonto R".

For x,y e R, we have ¢(x+y)=e"" =e*-e’

=(x)-4(¥).

Thus we conclude that ¢ is an isomorphism.

Example 5.4

Let G=SL(2,R), the group of 2x2 real matrices with

determinant 1. Let M be any 2x2 real matrix with nonzero

determinant. Then we can define an isomorphism from G to G

itself by ¢, (A)=M *AM,VA€G.
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Step 1:

Step 2:

Step 3:

Step 4:

¢, 1s a function from G to G. Here, we must show
that ¢, (A) is indeed an element of G whenever A
is. This follows from properties of determinants:
det(MAM ) = (det(M)) " (det A)(detM )
=det(A)=1.
Thus, M™AM isin G.
We show that ¢_ is one-to-one. Suppose

é..(A) =g, (B). Then by the left and right

cancellation, M™AM =M 'BM gives A=B.

Next, show ¢_ isonto. Let B belongs to G. We must
find a matrix A in G such that ¢, (A)=B. If sucha
matrix A is to exist, it must have the property that

M AM = B. But this tells us exactly what A must
be. We may solve for A to obtain A=M 'BM .

Lastly, we show that ¢_ is operation preserving.
Let A and B belong to G. Then,
4, (AB)=M " (AB)M
=MA(MM *)BM
=(MAM )(M *BM )
=6 (A)- ¢ (B).

Thus we conclude that ¢ is an isomorphism.
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Example 5.5

Any finite cyclic group of order n is isomorphic to Z_. In

general, any infinite cyclic group is isomorphic toZ. Indeed,

in either case, if a is a generator of the cyclic group, then the
mapping ¢(a" )=k is an isomorphism.
Step 1:  The mapping is ¢:(a) — Z with g(a*)=k.
Step2: ¢ isone-to-one. Let g(a“)=g(a'), then k =1.
This gives a“ =a'.
Step3: ¢ isonto. We must find k € Z such that any
a' e(a),¢(a')=k. This gives | =k .
Step4: ¢ is operation preserving, which means that,
p(a“-a')=¢(a“)+¢(a'),va",a' (a).
Then, g(a“-a')=g(a“"' )=k +I1=g(a*)+4(a').
Since ¢ is an isomorphism, we conclude that any cyclic

group with order n is isomorphic to 7Z ..

Example 5.6
U (10)=Z, =U (5). To verify this, one need only observe that

both U (10) and U (5) are cyclic of order 4. Then, use Example
9.5.
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Example 5.7
Decide whether ¢ is an isomorphism.

) ¢:(Z,+)>(Z,+) with ¢(n)=-
i) #:(GL(2.R),") > (R,:) with ¢(A):|A|.
i) ¢:1(R,+) > (R*,-) with ¢(x)=2
(Note that R" =R\ {0}).
iv)  4:(M,(R),+)—>(R,+) with g( A)=tr(A), where

tr(A) is the trace of A.

v) ¢:f >R where ¢(f):jf(x)dx.

Here, we denote R = <R\{O} ,><> and f is a continuous

function.

5.4 Some Properties of Isomorphism
In this section we list some important properties for

isomorphism.

Let ¢ be an isomorphism from a group G to a group H.
Then

1.  ¢#(e;)=e,, where e; denotes the identity element in G

and e,, denotes the identity element in H.
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2. ¢4(a?) =(¢(a))_1 forall ain G.

3. ¢5(a”):(¢(a))n forall ain G.
4. ab=ba<«>¢(a)¢(b)=¢(b)g(a) forallabinG,in

other words, G Abelian <« H Abelian.

5. G cyclic « H cyclic.
6. |a|=|¢(a)| forallainG.
7. ¢ isanisomorphism from H onto G.

8. K<G—g(K)<H whereg(K)={g(k)lkeK}.

Theorem 5.5

into

Let f 1(G,*)—(G,,*,) be a homomorphism (or an
isomorphism). If e, is the identity of G,, then f(e) is the
identity of G,.

Proof Let e and e, be the identities of G, and G,
respectively. If a e G,, then f(a) € G,. Now consider,

€, %, f(a): f(a): f(el * a): f(el)*z f(a)1
that is,
€, % f (a) = f(el)*z f(a),
hence e, = f(e,). This shows that f(e,) is the identity of G,.
[]
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Theorem 5.6
into

Let f :(G,*)—>(G,,*,) be a homomorphism (or an
isomorphism). Then f(g™)=(f(g))".

Proof Let g be an element of G,. Let e, and e, be the
identities of G, and G,, respectively. Then f(e)=e,.
Consider, e, = f(e,) = f(g*, 9™ = f(g)*, f(g™) thatis,

e, = T(g)*, f(g™). This shows that f(g™) is the inverse of
f(g) in G,, consequently f(g™) =(f(g))". O

Theorem 5.7
If |G| <0 and |H|<o. Then G=H —|G|=|H|. Conversely,

if |G|£|H|—>GZH.

Theorem 5.8

Any finite cyclic group of order n is isomorphic to Z

Definition 5.4 (Automorphism)

An automorphism on G is an isomorphism ¢ from a group G

onto itself , i.e.¢:G —> G, and ¢ is an isomorphism.

Examples 5.8
Decide whether G and H are isomorphic. Give your reasons.
1. Given G=U(10) and H=U (5).

* Group Theory 1 *



Chapter 5: Isomorphisms Nor Haniza Sarmin & Hidayatullah Khan

G=U(10)={137,9}, H=U(5)

{1,2,3,4} and let

geG and he H.
The mapping can be given as follows:
geG heH
1——> 1
33— 2
71— 3
9—> 4

» the mapping is one to one
» the mapping is onto

» we can check the preserving operation is satisfied

We conclude that U (10) =U (5).

2. G=U(10)andH =7Z,
G=U(10)={137,9}, H=2,={0,1,2,3} and let
geG and he H.

The mapping can be given as follows:
geG heH

1——> 0

3—— 1

7><2
9 3
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» the mapping is one to one
» the mapping is onto

» we can check for preserving operation

So U (10)27Z,.

3. G=U(10)andH =U (12)
G=U(10)={1,3,7,9}, H =U(12)={1,5,7,11} and let
geG and he H.

Since G is cyclic but H is not cyclic, then G is not

isomorphic to H.

4. G=Z,andH =Z,
G=2,={0123} and H =%, ={0,1,2,3,4,5}.

Since the order of the groups are not the same, there
does not exist a mapping that is both one to one and

onto. Therefore, G is not isomorphic to H.

5. G=D;andH =7%Z,.

G=D,={py. 00, P> s 1, 11}, H=7={0,1,2,3,4,5}.
#  Since Z, is cyclic but D, is not cyclic, then the

mapping is not an isomorphism OR
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#  Since Z is an abelian but D, is not abelian group, then

the mapping is not an isomorphism OR

#  Since the order of elements in D, are not the same with
the order of elements in Z, thus D, is not isomorphic

to 7Z,.

6. ¢:C—C where ¢(a+bi)=a-bi isan

automorphism.

7. LetR®={(ab)|abeR}. Then ¢(a,b)=(b,a) isan
automorphism. We can see ¢ as a mirror on the axis
y=X.

Note:
Any group G is always isomorphic to itself (identity mapping).
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Definition 5.5 (Kernel of Homomorphism)

Let f : G, > G, be a homomorphism of a group G, onto a
group G,. Then the kernel of f is denoted and define as

kerf ={facG : f(a)=0}.

Theorem 5.9
A homomorphism f : G—G" is one-one if and only if

ker f ={e}, where e is the identity of G.

Proof Let f : G—>G" be one-one homomorphism. If
x e ker f, then f(x) =¢" (identity of G*), also f(e) =¢" that is
f(x)=f(e). But f is one-one, therefore x=e and hence
ker f ={e}.

Conversely: Let ker f ={e} and x,y € G such that,

f(x)= f(y), then

= F(x)-(f(y)) =e

= f(x)- f(y™")=¢

= f(xy™)=¢"

= xy ' eker f ={e}

=Xy y=ey

— x =Y. This shows that f is one-one. []
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Exercises 5: (Isomorphisms)

In Exercises 1 through 6, determine whether the given map ¢ is a homomorphism.

Let ¢: R — Z under addition be given by ¢(x) = the greatest integer < x.
Let ¢: R —R" under multiplication be given by ¢(x) =|x.

3. Let ¢:Z, > Z, be given by ¢(x) = the remainder of x when divided by 2,
as in the division algorithm.

4. Let G be any group and let ¢:G — G be given by ¢(g) =g~ for g €G.

5. Let F be the additive group of all continuous functions mapping R into R.
Let R be the additive group of real numbers, and let ¢: F — R be given by

#(f) =j04 £ (x) dx.

6. Let GL(n, R) be the multiplicative group of invertible nxn matrices, and
let R be the additive group of real numbers. Let ¢:GL(n, R) — R be given
by ¢(A)=tr(A), where tr(A) is defined as the sum of the elements on the
main diagonal of A, from the upper-left to the lower-right corner.

In Exercises 7 through 14, determine whether the given map ¢ is an isomorphism
of the first binary structure with the second. If it is not an isomorphism, why not?

7. (Z, +) with (Z, +) where g(n)=-n for neZ

8. (Z, +) with (Z, +) where g(n)=n+1for neZ

9. (Q, +) with (Q, +) where g(x)=x/2 for xeQ

10.  (Q, ) with (Q, -) where ¢(x)=x* for xeQ

11. (R, <) with (R, -) where ¢(x)=x’ for xeR

12.  (M,(R), -) with (R, -) where ¢(A) is the determinant of matrix A
13. (M, (R), -) with (R, -) where ¢(A) is the determinant of matrix A
14. (R, +) with <IR<*, > where ¢(r)=0.5" for reR

Let F be the set of all functions f mapping R into R such that f(0)=0 and f has
derivatives of all orders. Follow the instructions for Exercise 7 through 14.
15.  (F, +) with (R, +) where ¢(f)= f'(0)

a —-b
16. Let H be a subset of M, (RR) consisting of all matrices of the form [b . }

for a,beR, where H is closed under both matrix addition and matrix
multiplication.
a Show that (C, +) is isomorphicto (H, +).
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17.

18.

19.
20.

21.

22.

23.

24,
25.

26.

b. Show that (C, -) is isomorphicto (H, -).
(We say that H is a matrix representation of the complex numbers C.)

Find an isomorphism from the group of integers under addition to the group
of even integers under addition.

Let R™ be the group of positive real numbers under multiplication. Show
that the mapping ¢(x) = Jx is an automorphism of R*.

Show that U(8) is not isomorphic to U(10).
Show that U(8) is isomorphic to U(12).

Let G be a group. Prove that the mapping a(g) =g for all g in G is an
automorphism if and only if G is Abelian.
Let G be a group and let a belong to G. Prove that the mapping of ¢, defined
by ¢,(x) =axa™ is an automorphism of G.
Show that the mapping ¢(a+bi) =a—bi is an automorphism of the group
of complex numbers under addition. Show that ¢ preserves complex
multiplication as well —that is, ¢(xy) =¢(x)¢(y) forall xandy in C.
Explain why S, (n>3) contains a subgroup isomorphic to D, .
Let G ={(a, b,c)|a, b, c € R} with multiplication defined by

(a1, bz, c1)(az, b2, €2) = (a1 + az, by + by, c1 + C2 + axby).
and let0#t e R. Prove that the map f; : G — G defined by

fi((a, b, c)) = (ta, th, t%c)

is an automorphism of G.

Let G be a finite Abelian group and n a positive integer that is relatively

prime to |G| Show that the mapping a — a" is an automorphism of G.
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CHAPTER 6

DIRECT PRODUCTS

6.1 Introduction

Two or more groups can be combined to produce a larger
group. This is called an external direct product of groups. In this
chapter, we first define the external direct product formally.
Then we include some properties of external direct products in
the next section.

The concept of a direct product can be used for

factorization of a group into a product of smaller groups.

Definition 6.1  (External Direct Product)
Let G,,G,,...,G, be a finite collection of groups. The

external direct product of G,,G,, ... ,G, is defined as

G,®G,® .. ®G,={(9,,9,, . .9,)| 9, €G;}.

Example 6.1
1. U(6)@uU(12)
={15} ®{1,5,7,11}

={(11),(15),(1,7),(111),(51),(5,5),(5.7).(5.11)}.
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2.  IR? :RCJBR:{(X, y)‘x,ye]Ri} where

(% y)-(x,y)=(x+x,y+Y')
3. 7,97,={01®{012}

={(0,0),(02),(0,2),(1,0),(11),(1.2);

6.2 Properties of External Direct Product

In this section, we list some important properties of
external direct product.

Assuming that all groups are finite, the first property states
that the order of an external direct product is just the product of
the orders of each group listed as a component in the external

direct product.
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Property 1
G,®G,® .. G|= |@G,
i=1
=|Gl|><|G2|>< ><|Gz|
=1j|Gi|-

Example 6.2
L U(E)eU )= (6)x]u (12)

=2x4=8.
. 7Z,®D,
0

10,1, 2} 4 g, Progs Posos ks s Hs |
{(0':00)’(0’plzo)'(O’:0240)'(O'ﬂl)'(o’ﬂz)’(o’ﬂs)’
(L.£0): (L Przg )+ (1 s ) o (L 1) (L 122 ), (L, 115),
(2,,00),(2,,0120),(2,,0240),(2,/11),(2,/12),(2,/13)}

|Z,® D,|=|Z,|x|D,|=3x6 =18.

Thus, there are 18 elements in Z, @ D;,.

The second property states that the multiplication of two
elements in the external direct product preserves the operations

in the groups involved.
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Property 2

Let (G,,*) and (G,,#) are two structures, where * and # are the
binary operations of G, andG,, consecutively. Then
(9.,,9,)(95.9.)=(9, *9;,9,#9,) where g,,0,eG, and
J,,9,€G,.

Example 6.3
i.  Refer to Example 6.1, calculate (5,7)-(5,5):
(5,7)-(5,5)=(5><5,7><5)
=(25mod6,35mod12)
= (1,12).
ii.  Refer to Example 6.2, calculate(2, p,, ) (2, 1, ):

(21,0120)’(21/%) :(2"'21:0120 ':uz)
=(L 1)

The third property states that the identity element in the direct
product is formed componentwise from the identity elements

from each group involved.
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Property 3

€ :(e e , .. ,B )
610679 ... 8G, G G Gn

Example 6.4
i.  LetG=U(6)®U(12). Then e, =(11).
ii. LetG=D,®Z,. Then e;=(p,,0).
iii. LetG=U(7)®Q®SL(2,R). Then

10
e = [1,1,(0 ln,where Q is the quaternion.

Theorem 6.1  Order of an Element in a Direct Product
The order of an element in a direct product of finite groups is
the least common multiple of the orders of the components of

the elements. In symbol:

(9,95 - .9,)|=lem(|9,].|9,], - .|9,])-

We write this in short as Property 4.

Property 4

(9,950 - .9,)|=lem(|9,].|9,], - |9,])
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Example 6.5

Let (15)eU (6)®U (12)

By definition, (1,5)° =(L,5)-(15)
=(1mod6,25mod12)
=(L1)=e

Thus |(1,5)=2.

OR

Using Property 4,
(1,5)[=lem([],|5]) = lem(1,2) = 2.

Let (1, ,0120) elU (8) ® D,.
By definition,
(1’ P20 ) . (1’ P20 ) . (1’ P20 )

(11 P40 ) ' (1’ P20 )

(1’/00)26-

Thus |(1, oy, )| = 3.

OR

Using Property 4,
‘(l’ P120 )‘ = |Cm(|l|,|p120|) =lcm (1’3) =3.
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U(7)®Q®SL(2,R), where Q

us

el
=lcm(3,4,1)
=12.

]eU (7)®Q@SL(2,R), then

:|cm{|2|,|—i|"[§ iﬂ

= |Cm(3,4,oo) =0

We list some other properties of a direct product in the

following. Property 4 states that the inverse of an element in the

direct product is formed from the inverse of each element from

the components.
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Property 5

(gligz)_l =(91_1,g2‘1)
(gl’gz’ ’gn)_l :(gl_l’gz_l, ,gn_l)

Example 6.6
i. Let(15)eU(6)®U(12). Then

(1L5) " =(1"5")=(15).
ii. Let (1, )eU(8)®D,. Then

(1’ Prao )_1 = (1_11/0120_1) = (1’ P2ag )

(1 O

iii. Let (2,—],(0 1]) eU(7)®Q®SL(2,R), where Q
Is the quaternion. Thus

=il 3] oo 3 Hesla )

Property 4 is used in the following example.

Example 6.7
We will determine the number of elements of order 5 in

Z .5 ® 7. By Property 4, we must count the number of elements

(a,b)in Z, ®Z; so that 5=|(a,b)| =lcm{|a|,|b]}. Clearly, this
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requires that either |a|=5 and |b|=1 or 5, or [b|=5 and |a| =1

or 5. We consider three mutually exclusive cases:

Casel: |a|=5and |b|=5.
Here, there are four choices for a and four choices for b. This

gives sixteen elements of order 5.

Case Il: |a|]=5 and |b|=1.
Here, there are four choices for a and only one for b. This

gives four more elements of order 5.

Case Ill: |a|=1and |b|=5.
This time there is one choice for a and four choices for b so

that we obtain four more elements of order 5.

Thus Z.,, ® Z. has 24 elements of order 5.
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Example 6.8

Find all subgroups of order 15 in Z,. © Z.
Let G=7Z,®Z, and H<G. We have H=H, ®H, where

H <Z, and H,<Zg This gives |H,|25, which implies
H,|e{1525}and  |H,|5 gives |H,|e{L5}. Since
15=|H|=|H,|x|H,| we conclude that there is no such

H, and H, exists. Furthermore, there is no element of order 15

in G (verify this).

Theorem 6.1
Let G and H be two finite cyclic groups. Then G ® H s cyclic

if and only if gcd(|G[,[H]|) =1.

Example 6.9

1.Z,0Z,=7Z

2.2, DL, =1L,

3.2,9Z,®72,=7Z,DZ,
=7Z,®DZ,

Corollary 6.1

For G,®G, ®...®G,,n <x,G; is cyclic, |G| <, then
G, ®G,d...®G, is cyclic if and only if gcd(|Gi|,‘Gj‘) =1 for

1# .
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Corollary 6.2
Let m=nn,..n,.Then Z =7, @7, ©..®Z, ifandonly

if (n,n,)=1forizj.

Example 6.10

D

22@22@23@25;ZIZ@ZG@ZIS;ZG@ZN ~7,®Z,.

Note that Z, @ Z,, % Z, -

i) Z,9Z,@7,=7,,®Z,
=7, DL,
=7, DLy

= Z105

i) Z,02,92,92;=7,D7L, D7,
=7,D7L,D 7L,

=7 DLy

=7, ® Ly,
Y/NCY/NSY/M
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Example 6.11

Find all abelian groups up to isomorphism, of the given order:

i) 12 ii) 20 iii) 14

6.3 Groups of Units Modulo n as an External Direct
Product

In this section, we will see that groups of units modulo n,
written earlier as U(n), can be written as an external direct

product of cyclic groups under addition, Z(n).

Theorem 6.2
Let m=nyn,...n,,and gcd(n;,n;) =1 for i = j. Then
Um)zU(n)eU((n,)e®...eU(n,).

Example 6.12

U105 =U@B)@U(B)eUuU(7)
~U(15) U (7)
~U (3) U (35)
~U (21) ®U (15).
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U2 =7, ={1},
U@2")=27,87,,,n>2,

U(p)=7

p-17

where p is an odd prime,

U(p );an_pn_l.

Example 6.13
1. U@os)zu@a@uB)eu(7)

2. U@N=U(F)=z

~7,07,DZ,.

3?32 :ZlS \
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Exercises 6: (Direct Product)

1. List the elements of Z, ®Z,. Find the order of each of the elements. Is this
group cyclic?
2. Repeat Exercise 1 for the group Z,®Z,.

In Exercise 3 through 4, find the order of the given element of the direct product.
3. (2,3)iINZgD®Zys
4. (3,10,9)in Z,®7Z,, ® 7

5. What is the largest order among the orders of all the cyclic subgroups of
Zig®@7g? of 2, D77
6. Find all proper nontrivial subgroups of Z,® 7, ®7Z,.
7. Fill in the blanks.
The cyclic subgroup of Z,, generated by 18 has order

a
b. Z,®7, is of order

C. The element (4, 2) of Z,, ©®Z, has order .

d The Klein 4-group is isomorphicto Z _ @ 7Z .
e

: 7,®7.®7, has______ elements of finite order.
8. Calculate the number of elements of order 4 ineach Z,,, Z,®7Z,, 7., D 7Z,,
and Z,97,0Z,.
9. Prove that any Abelian group of order 45 has an element of order 15. Does

every Abelian group of order 45 have an element of order 9?
10. Find all Abelian groups (up to isomorphism) of order 360.

In Exercises 11 through 12, find all abelian groups up to isomorphism, of the given
order.
11.  Order 16 12.  Order 720

13. Mark each of the following true or false.

a. If G, and G, are any groups, then G, @G, is always isomorphic
to G, ®G,.

b. Computation in an external direct product of groups is easy of
you know how to compute in each component group.

c. Groups of finite order must be used to form an external direct
product.

d. A group of prime order could not be the internal direct product of
two proper nontrivial subgroups.

e. 7,97, isisomorphicto Z,.
Z,®Z, isisomorphic to S,.

_ 9. Z,®Zg isisomorphicto S,.
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14.

15.
16.

17.
18.
19.

20.
21.

22.
23.

24.
25.
26.
217.

28.

29.

30.
31.

32.
33.
34.
35.

h.  Every element in Z, ® Z, has order 8.

I.  The order of Z,, ®Z, is 60.

__J 7_,®Z, has mn elements whether m and n are relatively prime
or not.

Let G be an abelian group of order 72.

a. Can you say how many subgroups of order 8 G has? Why?

b. Can you say how many subgroups of order 4 G has? Why?

Prove that a direct product of abelian groups is abelian.

Let G be an abelian group. Let H be the subset of G consisting of the
identity e together with all elements of G of order 2. Show that H is a
subgroup of G.

Find the order of each elementin Z,®Z,.

Show that Z, ®7Z, ©Z, has seven subgroups of order 2.

Determine the subgroup lattice of Z,®Z,.

Prove or disprove that Z® 7 is a cyclic group.

Prove, by comparing orders of elements, that Z,®Z, is not isomorphic
to Z,®7Z,.

Is Z,® Zg4 isomorphic to Z,, ? Why?

How many elements of order 9 does Z,®Z, have? (Do not do this
exercise by brute force.)

Suppose G, =G, and H, = H,. Prove that G, ®H, =G, ®H,.

Construct a Cayley table for Z, ®Z,.

What is the largest order of any element in Z,, ®Z,, ?

Let G={3"6"|m, neZ} under multiplication. Prove that G is
isomorphic to Z ® Z.

Determine the number of elements of order 15 in Z,, ®Z,,. Hence give two
cyclic subgroups of order 15 in Z,, @ Z,,.

Without doing any calculating in U(27), decide how many subgroups
U(27) has.

What is the largest order of any element in U(900)?

Use the results presented in this chapter to prove that U(55) is
isomorphic to U(75).

Show that Z, ®Zy @ Z45 is not isomorphicto Z, ®Z3 @ Zs.

Find the numbers of elements of order 9 in Z3 ®©Zg.

Find all subgroups of order 16 in Z,y © Z,g . Are they cyclic or not cyclic?
GivenG=U(10)®Z3.

@ Find the order of G.

(b) List all elements of G and find their orders.
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(©) Is G Abelian? Is G cyclic?
(d) Find

H  G2(1

(i)  (9,2)(3,2)

a 0
36. Let G =
)

i. List all elements of G and all elements of H.
i List all elements of G®H .

a,be Zz} under addition and H = S3.

iii. Find the order of each elementin G®H .

Iv. Is G&®&H Abelian? Cyclic? Why or why not?
V. Find a group that G@ H is isomorphic to and give your reasons.
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CHAPTER 7

COSETS AND LAGRANGE THEOREM

7.1 Introduction

The binary operation in a given group can be used in a
natural way to define a product between subsets of the group.
This leads to the definition of cosets. The notion of subgroups
will later lead to factor or quotient groups that will be discussed

in the next chapter.

We define cosets of a subgroup in a group formally as

follows.

Definition 7.1  (Cosets of H in G)
Let G be agroupand H <G. Then for aeG,
aH ={ah|heH} is called the left coset of H in G.

Ha={ha|heH} is called the right coset of H in G.

The element a is called the coset’s representative.
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Example 7.1
Let G=7Z, and H =(2)={0,2,4,6}. In this case, the group
operation is addition, so we use the notation a+ H instead of

aH to find all left and right cosets of H in G.

The left cosets of H in G are:

0+H ={0,2,4,6} =H, 4+H ={4,6,0,2)
1+ H ={1,35,7}, 5+H =1{5713]
2+H ={2,4,6,0, 6+H ={6,0,2,4)
3+H ={3571}, 7+H ={7,1,35.

The cosets of H in G can be seen as a partition of the group
G. In other words, they separate the elements of G into

mutually disjoint subsets. This is illustrated in the following

figure.

{1,3,5,7) =1+ H

Figure 7.1 Cosets of Z,
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The right cosets of H in G are:

H+0={0,2,4,6}=H, H+4={4,6,0,2)
H+1={135,7}, H+5={5,7,13]
H +2={2,4,6,0}, H+6={6,0,2,4)
H +3={35,7,1, H+7={7,135.

In this example, the right cosets and the left cosets turn out to

be the same.

Note that the coset’s representative is not unique. In the
example above, the elements 0, 2, 4 and 6 are all representatives
for the coset H. Likewise, the elements 1, 3, 5 and 7 are

representatives for the coset 1+H.

Example 7.2
Let H ={0,3,6} in Z, under addition. Thus the left cosets of

Hin Z, are:

0+H={0,36}=3+H=6+H
1+H ={1,4,7)=4+H =7+H
2+H={2,58=5+H=8+H.
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Example 7.3
Let G =S, ={(1),(12),(13),(23),(123),(132)} and

H = {(1),(13)).

The left cosets of H in G are:

()H ={(1)(1).(1)13)} =H.

(12)H {(12)1 2)(13)} ={(12),(132)} = (132)H.
(13)H ={(13)(1).(13)(13)} ={(13),(1)} = H.
(23)H ={(23)(1),(23)(13)} = {(23),(123)} = (123)H

Straightforward computations show that the right cosets of H
in G are:

H(1)=H(13)=H.

H(12) ={(23),(132)} = H (123).

H (23)={(23),(132)} = H (132).
In this example, the right cosets and the left cosets turn out to
be different.

Example 7.4

Consider the Klein 4-group i.e.V4 ={e,a,b,c} and H ={e, a}
a subgroup of V4. Then the right cosets of H in G are,

e ={ee, ae}={e a}, Ha={e.a,a.a}={a, a2} ={a, e},
Hb ={eb, a.b}={b, ab}={b, c} and
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Hc ={e.c,a.c}={c,ac}={c,b}. This shows that there are two
distinct right cosets of H in V4 and that are He ={e, a} and
Hb ={b, c}.

Meanwhile, the left cosets of H in V4, are

eH ={ee,e.a}={e, a}, aH ={a.e,a.a}={a, a2} ={a, e},
bH ={b.e,b.a}={b,ba}={b,c} and
cH ={c.e,c.a} ={c,ca} ={c, b}. The distinct left cosets of H in
V, are eH ={e, a} and bH ={b, c}.
As eH = He , aH = Ha, bH = Hb and cH = Hc i.e. left cosets

and right cosets coincide and hence V, is a commutative group.

7.2 Properties of Cosets
In this section we list some main properties that involve cosets.

Let H be a subgroup of G, and let a,bG. Then,

1. aceaH.
.aH=H < aeH.
. aH =bH oraH nbH =¢.

2
3
4. aH =bH &> a'beH.
5. [aH|=|oH]|

aH =Ha< H =a'Ha

.aH <G o aeH.

~N O

Refer to Examples 7.1, 7.2 and 7.3.
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Proposition 7.1

Let H be asubgroup of agroup G. Then the left cosets of H
in G have the following properties:

(i) aceaH forall aeG .

(i) If x and y are elements of G, and if y = xa for some

aeH,then xH = yH.
(iii) If x and y are elements of G, and if xH myH is non-
empty then xH = yH .

Proof

(i) Let xe G. Then x = xe, where e is the identity element of
G.But e e H. It follows that x € XH . This proves (i).

(if) Let x and y be elements of G, where y = xa for some
aeH. Then yh=x(ah) and xh= y(a_lh) for all heH.
Moreover ahe H and atheH forall he H ,since H is a

subgroup of G. It follows that yH < xH and xH < yH, and
hence xH = yH . This proves (ii).

(iii) Finally suppose that xH nyH is non-empty for some
elements x and y of G. Let z be an element of xH myH.
Then z = xa for some ae H, and z=yb forsome be H. It
follows from (ii) that zH =xH and zH =yH. Therefore
xH = yH . This proves (iii). [

Proposition 7.2

Let H be a finite subgroup of a group G. Then each left coset
of H in G has the same number of elements as H .
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Proof Let H={h,hy,.,hn}, where hy,hy,.. hy are
distinct, and let x be an element of G. Then the left coset xH

consists of the elements xhj for j=1,2,...,m. Suppose that |
and k are integers between 1 and m for which xh; = xhy . Then
hj = x_l(xhj) = x_l(xhk) =hy, implies hj=h and thus
j =k, since hy,ho,...,hy are distinct. It follows that the

elements xhg, xhs,..., Xhy, are distinct. We conclude that the

subgroup H and the left coset xXH both have m elements, as
required.

Similarly each right coset of H in G has the same number of
elements as H. Consequently there is a one-one
correspondence between any two right (or left) cosets of H in
G. O

Proposition 7.3

Any two right (left) cosets of H in G are either identical or
disjoint.

Proof Let aH and bH be two distinct left cosets of H in G.

Suppose aH NbH = ¢, let x e aH nbH , implies x € aH and

X € bH , implies there exists hy,h, € H such that x = aly and

x =bh,, implies ahy =bh,, implies ahh* = bhoh*, implies
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a= bhzhl_l. Now consider y e aH. This implies y =ahg for
some hg e H , which implies y = bhyh g (using a = bhyhi 1.

This then implies y = b(hoh thg) € bH (because hyhythg € H)
and therefore y ebH , implies aH < bH . Similarly we can

show that bH < aH and hence aH =bH . O

7.3 Lagrange’s Theorem
Lagrange’s Theorem states that if a group G is finite, then
the order of any subgroup of G must divide the order of G. We

state this formally in the following theorem.

Theorem 7.1 Lagrange’s Theorem

If G is a finite group and H is a subgroup of G, then |H|
divides |G|.

Proof Each element of G belongs to at least one left coset of
H in G, and no element can belong to two distinct left cosets
of H in G. Therefore every element of G belongs to exactly
one left coset of H . Moreover each left coset of H contains

IH| elements. Therefore |G| =n|H|, where n is the number of

left cosets of H in G. The result follows. O
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Corollary 7.1 IG|/|H| is the number of cosets

If H is a subgroup of a finite group G, then the number of
distinct left (right) cosets of H in G is |G|/|H|.

We also call the number of distinct left (right) cosets of H in G

as the index of H in G, denoted by [G:H ] =H.

H

Lagrange’s Theorem is of great value if we are interested
in finding all the subgroups of a finite group. In connection with

this, it is important to include the following corollary.

Corollary 7.2 |a| divides |G|
In a finite group G, the order of each element in the group
divides the order of the group. In symbols, we write

|a|HG| VaeG.

Using Corollary 7.2 and Lagrange’s Theorem, we can prove the

following.

Theorem 7.2 Groups of Prime Order are Cyclic

A group of prime order is cyclic.
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Another important property in a group is that any element

raised by the order of the group will produce the identity.

Theorem 7.3 (aG = e)

Let G be a finite group and let ae G. Then a% =e.

Lagrange’s Theorem can be used to prove Fermat’s Little

Theorem stated in the following.

Theorem 7.4 Fermat’s Little Theorem
For every integer a and every prime p, a’mod p=amod p.

An example of Fermat’s Little Theorem is given as below:

Example 7.5
10°mod3=10mod3=1.

7.4 An Application of Cosets to Permutation Groups

The theory of cosets can be applied to permutation groups.
In this section we define the stabilizer and orbit of a point in a
set {1,2, ... ,n}.
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Definition 7.2 (Stabilizer of a Point)

Let G be a group of permutation on the set {1,2, ... ,n}. For any
1<i<n, let G;={¢eG|g(i)=i}. The set G, is called the

stabilizer of i in G or the set of permutation that fixes i.

Definition 7.3 (Orbit of a Point)

Let G be a group of permutation on the set {1,2, ... ,n}. For each
1<i<n, let i®={g(i)|¢cG}. The set i° is subset of
{1,2, ... ,n} called the orbit of i under G or the sets of images

of I.

Example 7.5
Let G = {(1),(132)(465)(78),(132)(465),(123)(456),

(123)(456)(78),(78)} < S,.
Then,
1°={132}, G ={(1).(78)}
2°={2,13}, G,={(1).(78)]
F={321, G,={(1).(78)}
4°={4,6,5}, G,={(1).(78)}
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5 ={54,6}, G, ={(1)(78)}
6° = (6,54}, G,={(1)(78)}
7°={7.8}, G, ={(1).(132)(465),(123)(456)}
8°={87},  G,={(1),(132)(465),(123)(456)}

From the example, we can see that an orbit can be viewed as a

mapping for set S or the partition of the set S, such that

1. i@ Vies,
2.i1°Nj®=@ fori=jand
3. Ui® =S.

ieS

It turns out that the set G, is a subgroup of the group.

Theorem 7.5
Let G be group then G, <G.

Definition 7.4 (Index of a Group)

Let H be a subgroup of a group G. If the number of left cosets
of Hin G is finite then the number of such cosets is referred to
as the index of H in G, denoted by [G : H].
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Conclusion: The proof of Lagrange's Theorem shows that the
index [G : H] of a subgroup H of a finite group G is given by

[G H]:E_

7.5 Normalizer and Centralizer

Definition 7.5 (Normalizer)
Let H be a subgroup of a group G. Then the normalizer of H in

G is the set of all those elements G which commute with H,

symbolically we write, Ng(H) ={g €G : gH = Hg}.

Theorem 7.6
Verify that N(H) is a subgroup of G.

Proof Since eH = He implies e € Ng(H), hence Ng(H) # ¢.
Let abeNg(H), then aH =Ha and bH = Hb. Since
bH = Hb, then

b bHb ! =b*Hbb ! = eHb ™ =b'He = Hb ™ =b7IH.

this implies ble N (H). Now consider,

(@b ™H =a®bH) =a(Hb™) = (aH)b ™ = (Ha)b ™) = H(ab ™)

That is (ab™)H =H(ab™). This implies ab™* e Ng(H) and
hence Ng(H) is asubgroup of G. [
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Example 7.6

Let G=<ab : a®=b?=(ab)’=e> ie. G={eaa%b,aba’h}
and H ={e,b}.

For aeG  consider aH={aeab}={aab} and
Ha={e.a,b.a}={a,ba} as ab=ba, implies aH = Ha and
hence a¢ Ng(H).

For b e G consider bH ={be,bb}={b,b?}={b,e} (as b% =e in
G) and Hb={eb,bb}={b,b*}={b,e} thatis bH=Hb and
hence beN;(H) .

For a’eG consider a’H ={a’e,a’b}={a’a’h} and
Ha® ={e.a’,b.a*}={a’ ba*}={a* ab}

(as ba’ =baa=a’ba=a%a’b=a’b=aab=ab) but a’b = ab ,
therefore a?H = Ha? this implies a ¢ Ng(H).

For abeG consider, abH ={abe, abb}={ab,ab’} and
Hab ={e.ab, b.ab} = {ab, bab} = {ab, a’bb} = {ab, a’b?} = {ab, a*}

(as b%=e) but a® = ab?, therefore, abH = Hba this shows that
ab ¢ NG (H) .

For a%beG consider, a’bH ={a’*he,a*hb}={a’h,a’*h’}
={a’h,a’} (as b?=e)

and Ha’b ={e.a’b,b.a’b}={a’b,ba’*b}={a’b,ab.b}={a’b,ab*}
—{a’b,a} (as b®=e) but a®=a, therefore a’bH = Ha% this
implies ab ¢ Ng(H). Hence Ng(H)={e,b}. O
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Definition 7.6 (Centralizer)
Let H be a subgroup of a group G. Then the centralizer of H in

G is the set of all those elements G which commute with every
element H, symbolically we write,
Cg(H)={geG : gh=hgforallhe H},

Note:

If H={x}, then the normalizer and centralizer of H are
identical. However, if H contains more than one element, then
the normalizer and centralizer may be different.

Example 7.7
Consider the subgroup H ={e,a,a%,a} of the dihedral group of

order 8 i.e. Dy=<ab : a*=b?=(ab)>=e>. Then find the
centralizer of H in Dy.

Solution

The dihedral group of order 8 is given as
D4 ={e,a, a?,a,b,ab, azb,asb}, as (ab)2 =e implies
ab=(ab) T=blat=ba® (since bl=b and al=a%) ie.
ab=ba’. Moreover, a’h=a-ab=a-ba’=ab-a’=bha’-a’

—ba?-a*=ba’-e=ba’.i.e. a’b=ha’.
For be Dy: As bazab=be Cp,(H).
For abeD,: As (ab)a’=ba’a®=ba*a®=ba’> ie.

a3(ab) =ba? and a’(ab) =a*b=b, this implies a>(ab) = (ab)a
and hence ab¢ Cp, (H).
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For a’b e D,: As (ab)a=ba%a=ba’=ab i.e. (a’h)a=ab and
a(azb) = a(baz) = aba? =ba’a® =baa* =bae=ba .e.
a(a’b)=ba but ab=ba, implies (a%)a=a(a®) hence
a’b e Cp, (H).

For a’he Dy:  AS (a3b)a3 —a’ba®=alab=a’h=b e
(a3b)a3 =b and as(a®) =a*a’h=ea’h =a’ e
aS(a®v)=a’b but a’b=b, hence (a’v)a=a’(@h), implies
a’b e Cp, (H). Hence Np, (H)=H.
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Exercises 7: (Cosets and Lagrange Theorem)

o o~ Wik

10.

11.

12.
13.
14.
15.
16.

Find all cosets of the subgroup 47 of Z.
Find all cosets of the subgroup 47 of 2Z.

Find all cosets of the subgroup (2) of Z,,.
Find all cosets of the subgroup (4) of Z,,.
Find all cosets of the subgroup (18) of Z.

Find all left cosets of the subgroup {p,, 1} of the group D, given by
Table 7.1 below.

Po | Pl Po| Py | M| |0 |0
Po|lPo| P | P | P |t | |6 |6
Plp | PP | P |6 |6 | 1| 1y
P | P | P3| P | P | My | M |0 |0
P | Py | Po | P | P |0 | O | I | 1
Mot |6 | |6 | P | P | Py | P
o | o | O |t | O | Po| Po| P | P
O | O |t |0 | 1| P | Ps | Po| P

O | 0 | M |60 | 1 | P3| P | P2 | P2
Table 7.1

Repeat the preceding exercise, but find the right cosets this time. Are they the
same as the left cosets?
Rewrite Table 7.1 in the order exhibited by the left cosets in Exercise 6. Do

you seem to get a coset group of order 4? If so, is it isomorphic to Z, or to
the Klein 4-group V?
Repeat Exercise 6 for the subgroup {p,, p,} of D,.

Repeat the preceding exercise, but find the right cosets this time. Are they the
same as the left coset?
Rewrite Table 7.1 in the order exhibited by the left cosets in Exercise 37. Do

you seem to get a coset group of order 4? If so, is it isomorphic to Z, or to
the Klein 4-group V?
Find the index of (3) in the group Z,,.

Find the index of () in the group S,.

Find the index of (p;) in the group D, given in Table 8.1.
Let o =(1254)(23) in S;. Find the index of (o) in S.
Let u=(1245)(36) in S;. Find the index of () in Sq.
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17.

18.
19.

20.
21.

22.

23.
24.

25.

26.

27.

28.

29.
30.
31.

32.
33.

34

Let H = {(1), (12)(34), (13)(24), (14)(23)}. Find the left cosets of H in A,.
Let H={0, £3, £6, =9, ...}. Find all the left cosets of H in Z.

Let H be as in exercise 18. Decide whether or not the following cosets of H
are the same.

a. 11+Hand 17+ H

b. -1+Hand5+H

C. 7+Hand 23 +H

Find all of the left cosets of {1, 11} in U(30).

Exercise Cosider a subgroup H ={e,b} of a group D4. Then evaluate

right and left cosets of H in D, and show that xH = Hx forall x e Dy.

Cosider a subgroup H ={e,a,a2,a3} of a group D4. Then evaluate
right and left cosets of H in D, and show that xH = Hx forall xe Dy .

Suppose that a has order 15. Find all the left cosets of <a5> in (a).

Let G be a group and let H be a subgroup of G. Let aeG. Prove that aH =
Hif and only if ae H.
Let G be the group of nonzero complex numbers under multiplication, and let

H={xeG||x=1}. (Recall that |a+bi|=+a*+b®.) Give a geometric

description of the cosets of H.

Let G be a group of order 60. What are the possible orders for the subgroups
of G?

Suppose that K is a proper subgroup of H, and H is a proper subgroup of G.
If |K|=42 and |G|=420, what are the possible orders of H?

Suppose that |G| = pg, where p and g are prime. Prove that every proper

subgroup of G is cyclic.
Use Corollary 1 of Lagrange’s Theorem to prove that the order of U(n) is
even whenn > 2.

Find all the left cosets of {(0, 1), (1, 2), (2, 4), (3, 3)} in Z, ®U(5).
Let |G| =15. If G has only one subgroup of order 3 and only one of order 5,
prove that G is cyclic. Generalize to |G| = pq, where p and q are prime.

Let G be a group of order 25. Prove that G is cyclic or g°> =¢ forall gin G.
Let |G|=8. Show that G must have an element of order 2. Show by example

that G need not have an element of order 4.

Let G = {(2), (12)(34), (1234)(56), (13)(24), (1432)(56), (56)(13), (14)(23),
(24)(56)}-

a. Find the stabilizer of 1 and the orbit of 1.

b. Find the stabilizer of 3 and the orbit of 3.

C. Find the stabilizer of 5 and the orbit of 5.
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35.  Consider the subgroup H :{e,a,az} of the group G ={e,a, a’,b,ab, azb}.
Then prove that Ng(H) =G.

36.  Consider the subgroup H ={e,a,a2,a3} of the dihedral group of order 8

l.e. Dy=<ab : at=p’= (ab)2 =e >. Then find the normalizer of H in
G.
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CHAPTER 8

NORMAL SUBGROUPS AND FACTOR GROUPS

8.1 Introduction

A special case of a set of cosets of a group where the left

cosets coincide with the right cosets is called a normal

subgroup.

Definition 8.1  (Normal Subgroups)
A subgroup H of a group G is called a normal subgroup of G if
aH = Ha for all a in G. We denote this by H < G.

In other words, a subgroup is normal if all its left and right

cosets are the same.

Note:

Every group G has at least two normal subgroups, namely the
identity subgroup E ={e} and the group G itself. Normal
subgroups of G different from these two are called proper
normal subgroups.

Note:
Groups having no proper normal subgroups are called Simple
Groups.
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There are several equivalent formulations of the definition
of normality. We have chosen the one that is the easiest to use
in applications. However, to verify that a subgroup is normal, it

is usually much easier to use the following theorem.

Theorem 8.1 Normal Subgroup Test

A subgroup H of G is normal in G if and only if x *Hx = H for
all x in G.

In other words, a subgroup H of a group G is said to be a normal
subgroup of G if xhx e H forall heH and xeG.

In symbols, we write H <G < X '"HXc H VvxeG).
y

Many students make the mistake of thinking that H is normal in
G means ha=ah for each aeG and he H. This is not what
normality of H means; rather it means thatif ac G and he H

then there exists some h’ e H such that ah =h’a.

Example 8.1

Consider a subgroup H ={e,b} of a group Dy. Since a e Dy
and abal=aba’ = a(ba)a2 = a(a‘q’b)a2 =a%ba? =ba’ ¢ H

i.e. aba * ¢ H . This shows that H is not a normal subgroup of
Dy.
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Theorem 8.2

Every subgroup of an Abelian group is normal.

Proof LetN be asubgroup of an Abelian group G and consider
xnx = (xn)x" forallne N and x € G,

= (nx)x™" G being an Abelian group,

=n(xx™")=ne=ne N where e is the identity element of G.
i.e.xnx 1 e N . The result follows. [J

The converse of this is not true, because every subgroup of Qg

(quaternian group of order 8) is normal but Qg is not an abelian

group.

Theorem 8.3

The center, Z(G), of a group is always normal.

Proof Consider a € Z(G) and 9 € G, then @g = da , implies

gag_1 =aeZ(G) for all gG ie. gag‘1 e Z(G) for all
g € G . This shows Z(G) is normal subgroup of G. [
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Theorem 8.4

The alternating group, A, , of even permutations is a normal

subgroup of S, .

Proposition 8.1

The intersection of two normal subgroups of a group is also a
normal subgroup of that group.

Proof Let N; and Ny be normal subgroups of a group G.

Then since the intersection of two subgroups is a subgroup
therefore N7 N Ny is a subgroup of G.

Next we consider n€ Ny Ny, implies € N1 and ne Ny,
Then gng‘1 e N; and gng‘l e N, forall g €G (since N; and

N5 are normal subgroups of G). This implies gng_1 e Ny Ny
for all ne Ny Ny and g € G. This shows that Ny NNy is
normal in G. [

Theorem 8.5

A subgroup of index 2 in a group G is normal.

Proof If H isasubgroup of index 2 in G then G ={H,Hg} and
G ={H,gH} for all g €G such that g ¢ H and therefore
{H,Hg}={H,gH}, implies Hg = gH forall g € G such that
g ¢ H. However if g € H then obviously Hg =gH. This

shows that H is normal in G.
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Theorem 8.6

Let a be an element of order 2 in a group G. Then the subgroup
H ={e, a} isnormal in G if and only if a € C(G) (centralizer
of G).

Proof For g € G, Hisnormal in G if and only if Hg = gH if

and only if {e,a}g = g{e, a} if and only if {9,9a}={g,aq} if
and only if ag = ga if and only if a € C(G) as required. O

Theorem 8.7

A sub group N of a group G is a normal subgroup of G if and
only if product of any two right cosets of N in G is right coset
of Nin G.

Proof If N is a normal subgroup of G and let x and y be
elements  of G then Nx=xN, and therefore
(NX)(Ny) = N(xN)y = N(NX)y =(NN)(xy). But NN=N
(since N is a subgroup of G). Therefore (NX)(Ny) = N(xy).
Thus the product of two right cosets of N in G, i.e. the product
of Nx and Ny is Nxy (Xy € G) which is a right coset of N in
G.

Conversely; Let N be a group of G such that the product of right

cosets of N in G is right coset of N in G. Let x be an elements
of G, then xis also an element of G. Therefore Nx and Nx !

are right cosets of N in G. Consequently, by hypothesis NxNx !
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is also a right coset of N in G. Since € € N, so we can write
e =exex L e NxNx L. Thus N and NXNX " are two right cosets
of N in G with one common element e and hence NXNx* = N
. therefore for N;,N> € N we can write nlxngx_l e N, implies

nl_l(fhxnzx_l) € nle =N, implies anx_l € N . This shows

that N is a normal subgroup of G. O

Example 8.2

The subgroup of rotation in D, is normal in D, .

Example 8.3
The group SL(2,R) of 2x2 matrices with determinant 1 is a

normal subgroup of GL(2,IR), the group of 2x 2 matrices

with nonzero determinant.

A special class of group where its only normal subgroups

are the trivial subgroup and itself is called a simple group.

Definition 8.2 (Simple Group)

A group is simple if its only normal subgroups are the identity

subgroup and the group itself.
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In other words, we say that a group is simple if it has no proper

normal subgroups.

There is another easy way to determine whether a
subgroup of a group is normal or not by checking its index. If
the index is two, then we can say that the subgroup is normal in

the group. However, the converse is not necessarily true.

Theorem 8.8
If the index of H in G is 2, then H is a normal subgroup.
In other words, we say that if H has only two left or right cosets

in G, then H is normal in G.

8.2 Factor Groups

If H is a normal subgroup of G, then aH = Ha for all ain
G, so there is no distinction between left and right cosets of H

in G. In this case we refer simply to the cosets of H in G.

If H is a normal subgroup of G, then the set of all cosets

of H in G forms a group, and is called the factor group.
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Proposition 8.2

Let G be a group, and let N be a normal subgroup of G. Then
the set of all cosets of N in G is a group under the operation of
multiplication. The identity element of this group is N itself, and

the inverse of a coset XN is the coset x N for any element X
of G.

Proof Since N is normal subgroup of G, therefore each right
coset is a left coset. Hence there is no distinction between right
and left cosets, so we simply write a coset here.
Let G/N be the collection of all cosets of N in G i.e.
G/N ={xN : xeG}.
e Closure property: Let X,y € G then,
(XN)(YN) = x(Ny)N = x(yN)N (because N is normal in G)
= (xy)NN = xyN (using NN = N)
since Xy € G therefore xyN isa coset of Nin G i.e.
XyN € G/N, This implies G/N is closed with respect to coset
multiplication.
e Associative property: Let x, y and z be any elements of G,
then XN, YN and zN . Consider
[(XN)(YN)](zN) = (xy)N(zN) = (xy)zN = x(yz)N
((xy)z =x(yz) forallx,y,z€G)
= XN [yzN]=xN[yNzN].
This implies G/N satisfies associative property with respect to
coset multiplication.

e Existence of identity: The subgroup N is itself a coset of N in
G, since N =eN. Moreover, (XN)N =(xN)(eN)=(xe)N
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=xN and N(xN) = (eN)(xN) = (ex)N = xN , this implies N
is the identity element of G/N .

e Existence of inverse: Since (xN)(x‘lN) = (xx‘l)N =N and
(" IN)(xN) = (x I)N = N . This shows that X *N is the

inverse of XN for all elements x of G.
Thus the group axioms are satisfied.

Definition 8.3  (Factor Groups)
Let G be agroup and H < G. Then a subgroup consisting of
all cosets, aH or Ha, is called a factor group for G of H.

or
Let N be a normal subgroup of a group G. The quotient group
(or factor group) G/N is defined to be the group of cosets of N

in G under the operation of coset multiplication.

Example 8.4

If N, and Ny are normal subgroups of a group G. Then
G/Ng =G/Njy ifand only if Ny =Ny,

Solution

Let G/Ny=G/Ny, then as N;eG/N;=G/Ny, implies
N1 € G/Ny i.e. Ny is equal to some coset of N, in G. But we
know that two cosets are either identical or disjoint, and here
N, and Ny are not disjoint because € € Ny~ Ny and hence
N1 = No.

Conversely; If Ny = N5, then obviously G/N, =G/N,,
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Theorem 8.9
Let G be a group and H a normal subgroup of G. The set

G/H ={aH|aeG} is agroup under the operation

(aH)(bH)=abH .

Theorem 8.10

If G/Z(G) is cyclic then G is abelian, where Z(G) denotes
the center of a group G.

Proof Let Z(G)=C andlet Cg be agenerator of G/C, where
geG. Let a,beG then Ca,CbeG/C, then Ca=(Cg)™ and
Ch = (Cg)" for  some mneZ*,  this implies
Ca=Cg-Cg-Cg---Cg (m-times), implies Ca=Cg™ similarly
Cb=Cg". As acCa=Cg™, then a:clgm, for some €1 €C .
Similarly b =c,g", for some ¢, € C. Consider,

ab:(Clgm)(czg”):cl(gmcz)g“ :cl(czgm)g“ !
(because ¢, C, impliesg™c, =¢,g")

m+n
=¢CC,0 =C,C 0

:Czclgngm =G, (Clgn)gm :Cz(gncl)gm :(ngn)(clgm):ba,
i.e. ab=Dba forall a,b G and hence G is abelian.

(because c,,c, € C, implies c,c, =c,C,),
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Example 8.5
Let G=Z,;and H =(6)={0,6,12}. Then,

G/H :{0+H,1+H,2+H,3+H,4+H,5+H}.

Example 8.6
Let G=S, and H ={(1),(123),(132)}. We can prove that

H <G using Theorem 8.2 because the index of H in G is 2.
Then, G/H ={H,(12)H }with
H ={(1),(123),(132)} and

(12)H ={(12),(23),(13)}

The Cayley table for the factor group is given as follows :

H H |(12)H

(12)H |(12)H | H

Example 8.7
Let 4Z ={0,+4,%8, ... }. To construct Z/4Z, we must first

determine the left cosets of 47 in G. Consider the following

four cosets:

* Group Theory 1 *

125



Chapter 8 : Normal Subgroups and Factor Groups Nor Haniza Sarmin & Hidayatullah Khan

0+4Z=47={...,.-8,-4,0,48, ...},
1447 ={..,-11,-7,-3,15,9, ... },
2+47={..,-10,-6,-2,2,6,10, ... },
3+47={..,-9,-5-13711 ...

Now we claim that there are no other cosets. If k e Z, then

k =4q+r where 0<r <4; and, therefore,

K+4Z=r+4q+4Z=r+47.

Now that we know the elements of the factor group, our
next job is to determine the structure of Z/47. . 1ts Cayley table

Is given in the following:

0+47Z | 1+47 | 2+47Z | 3+4Z
0+4Z | 0+47 | 1+47 | 2+47 | 3+47Z
1+47 | 1+47 | 2+ 47 | 3+47 | 0+4Z
2+47 | 2+47 | 3+47Z | 0+47Z | 1+ 47
3+47 | 3+47 | 0+47 | 1+ 47 | 2+ 47

We can show that Z /47 = 7. More generally, if forany n>0
we let nZ ={0,£n,£2n,+3n, ... }, then Z/nZ is isomorphic to

7

ne
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8.3 Internal Direct Product

Another application that is related to normal subgroups is
internal direct product. However, internal direct product differs
from external direct product in the sense that internal direct

product involves subgroups of the same group.

We first define a product of two subgroups of a group in

the following.

Definition 8.4 (Product of Subgroups)

Suppose H and K are subgroups of some group G, then we

define the set HK ={hklheH keK} as a product of

subgroups H and K.

Example 8.8
Given U (24)={1,5,7,11,13,17,19,23}. Let H = {1,17} and

K ={1,13}. Then, HK ={1,5,13,17}, since 5=17-13mod 24.

Example 8.9
In S, let H={(1),(12)} and K={(1),(13)}. Then

HK ={(1),(13).(12),(12)(13)} = {(1),(13), (12), (132)}
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We should be careful not to assume the set HK is a

subgroup of G; in Example 9.6 it is, but in Example 9.7 it is not.

We are now ready to define internal direct product of two

subgroups, given in the following.

Definition 8.5 (Internal Direct Product of H and K)
Let H and K be two normal subgroups of a group G. We say that
G is the internal direct product of H and K and write G =H xK
if

1. G=HK,

2.  hk=kh VheH,kekK,

3. HnNK={e}.

Example 8.10
Let G=R. Then, for E= set of even numbers and
D =set of odd numbers, ExD =E @& D.
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Example 8.11
Let G=C,xC,={(11),(1a),(Lb).(a,b)}, then
G :{1,a}><{1,b}.

Example 8.12

In D, the dihedral group of order 12, let F denote some
reflections and let R, denote a rotation of k degrees. Then,

Ds :{Rm Ri201 Rosos Fy RipF, R240F}X{R0'R180}'
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Exercises 8: (Normal Subgroups and Factor Groups)

In Exercises 1 through 8, find the order of the given factor group.

=

Zs1(3) 2. (Z,®Zy,)1{(2,2))
(Z,®Z,)1{(2 1)) 4. (Z,®Zs)1{(0,3))

(Z,®Z,)1{(1 1)) 6. (Z,®Zy)I{(4 3))
(Z,®8,)/{(L p,)) 8. (Z,®Z;){(1 1))

In Exercises 9 through 15, give the order of the element in the factor group.

9.

10.
11.
12.
13.
14.
15.

16.

17.

18.

19.
20.

21.

22.

5+(4) in Z,1(4)

26+(12) in Zg, 1(12)

(2, D+(( D) in (Z,®Z,)/{(L 1))
B D+(L D) in (z,®27,)/{(1 1))
(3, D+((0, 2)) in (z,®2,)/{(0, 2))
(3 3)+((L 2) in (Z,®Z,)/{(1, 2))
(2, 0)+((4, 4)) in (Z, ®Z,)I{(4, 4))

A student is asked to show that if H is a normal subgroup of an abelian group
G, then G/H is abelian. The student’s proof starts as follows:

We must show that G/H is abelian. Let a and b be two elements of
G/H.
a. Why does the instructor reading this proof expect to find nonsense
from here on in the student’s paper?
b. What should the student have written?
C. Complete the proof.

Show that the intersection of two normal subgroups of G is a normal subgroup
of G.

Show that an intersection of normal subgroups of a group G is again a normal
subgroup of G.

Let H={(1), (12)}. Is Hnormal in S,?

Prove that A, isnormal in S.
a b
Let H ={O d}la, b, d ER} Is H a normal subgroup of GL(2, R).

Prove that SL(2, R) is a normal subgroup of GL(2, R).
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23.

24.
25.

26.
27.

28.
29.

30.
31.

32.

33.

34.

35.
36.

37.

38.
39.

40.

Viewing (3) and (12) as subgroups of Z, prove that (3)/(12) is isomorphic
to Z,. Similarly, prove that (8)/(48) is isomorphic to Z,. Generalize to

arbitrary integers k and n.
Prove that if H has index 2 in G, then H is normal in G.

Let H={(1), (12)(34)} in A,.

a. Show that H is not normal in A,.

b. Referring to the multiplication table for A,, show that, although
oH =a,H and o,H =, H, itis not true that o, ,H = o, H.

Explain why this proves that the left cosets of H do not form a group
under coset multiplication.

Prove that a factor group of a cyclic group is cyclic.

What is the order of elements 5+(6) in the factor group

Zy1(6)?

Let G=7/(20) and H =(4)/(20). List the elements of Hand G/H.
What is the order of the factor group Z, / (15)?

What is the order of the factor group (Z,, ®U (10))/((2,9))?

Let G = U(16), H = {1, 15}, and K = {1, 9}. Are H and K isomorphic? Are
G/H and G/K isomorphic?

Let G=7,®Z,, H={(0,0),(2,0),(0,2),(2,2)},and K =((1,2)). Is G/H
isomorphicto Z, or Z,®7Z,? Is G/K isomorphicto Z, or Z,®Z,?

Let G=GL(2, R) and H={AcG|detA=3% keZ}. Prove that H is a

normal subgroup of G.
Express U(165) as an internal direct product of proper subgroups in three
different ways.

Let Z, let H=(5) and K =(7). Prove that Z = HK. DoesZ =H @K ?

Let G={36"10°|a, b, ceZ} under multiplication. Prove that
G =(3)®(6)®(10), whereas H = (3)®(6)®(12).

Show, by example, that in a factor group G/H it can happen that aH =
bH but [a] = o].

Prove that a factor group of an Abelian group is Abelian.

If |G|=pq, where p and g are not necessarily distinct primes, prove that
|Z(G)| =1 or pq.

Let G={£1, +i, +j, £k}, where i*=j*=k*=-1 —i=(-Di,
P =(-1°=1 ij=—ji=k, jk=—kj=i, and ki =—ik = j.

a. Construct the Cayley table for G.

b. Show that H ={1, -1} «G.

* Group Theory 1 *

131



Chapter 8 : Normal Subgroups and Factor Groups Nor Haniza Sarmin & Hidayatullah Khan

C. Construct the Cayley table for G/ H.

(The rules involving i, j, and k can be remembered by using the circle below.

By
[

Going clockwise, the product of two consecutive elements is the third one. The same
is true for going counterclockwise, except that we obtain the negative of the third
element.) This group is called the quaternions and was invented by William Hamilton
in 1843. The quaternions are used to describe rotations in three-dimensional space,
and they are used in physics. The quaternions can be used to extend the complex
numbers in a natural way.

41.

42.

43.

44,

45.

If N is a normal subgroup of G and H is any subgroup of G, prove that NH is
a subgroup of G.

If N and M are normal subgroups of G, prove that NM is also a normal
subgroup of G.

Let N be a normal subgroup of a group G. If N is cyclic, prove that every
subgroup of N is also normal in G.

Let H be a normal subgroup of a finite group G. If gcd(x|, |G/H|) =1, show
that x e H.
If H is a normal subgroup of G, and |H| =2, prove that H is contained in the
center of G.
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CHAPTER9

SERIES OF GROUPS, NILPOTENT GROUPS
AND SOLVABLE GROUPS

9.1 Series of Groups

We restate the definition of normal subgroups from the previous

chapter below.

Definition 9.1 (Normal Subgroups)
A subgroup H of a group G is normal in G, denoted by H < G,

if Hx = xH for every x in G.

Next, we introduce a special sequence of subgroups of a group

called subnormal series.

Definition 9.2 (Subnormal Series)

A subnormal (or subinvariant) series of a group G is a
finite sequence H,, H,,...,H of subgroups of G such that
H, <H,,,,and H, is a normal subgroup of H. with Ho={e}

and H, = G.
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A special case where all subgroups are normal is called a normal

series of a group.

Definition 9.3 (Normal Series)
A normal (or invariant) series of G is a finite sequence

H,,H,,...,H of normal subgroups of G such that H, < H. ,, Ho

={e},and H,=G.

i+11

We observe that a normal series always exists for an arbitrary

group.

Definition 9.4 (Composition Series)

A composition series of G is a finite sequence H,,H,,...,H  of

subgroups of G such that H, < H.,, and H;j is maximal normal

subgroup of Hj,1withHy={e},and H,=G.

Example 9.1
The symmetric group S, has the following normal series,

among others:
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where V, is the Klein 4-group and, as usual, C, denotes a

cyclic group of order n, here, e.g., take C, =((12)(3 4)) .

Example 9.2

Consider the group (Z,,,+;,). All subgroups of Z,, are normal
because it is abelian. Hence, the following chains are normal.
. (Oc6ycZy,,

i, (0)c(B)c=(3) cZy,

ii. (OycBHc(2)cz,y,,

iv. (0)c(6)c(2)cZ,y,.

In the above chains, ii-iv are composition series.

In mathematics, especially in the fields of group
theory and Lie theory, acentral seriesis a kind of normal
series of subgroups or Lie subalgebras, expressing the idea that

the commutator is nearly trivial. For groups, this is an explicit
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expression that the group is a nilpotent group, and for matrix
rings, this is an explicit expression that in some basis the matrix
ring consists entirely of upper triangular matrices with constant

diagonal.

Definition 9.5 (A Central Series)

A central series is a sequence of subgroups of a group G
{}=H,<H,<..<H =G

such that the successive quotients are central, in the sense that

|G, H,.]<H,, where [G,H]

denotes the commutator subgroup

generated by gth*gh forgin G and h in H.

Note that the subgroups in a central series are always normal

subgroups of G.

The lower central series and upper central series (also
called the descending central series and ascending central
series, respectively), are characteristic series, which, despite the
names, are central series if and only if a group is nilpotent as we

shall define later.

Here we define the upper (or ascending) central series. The

lower central series can be defined accordingly.
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Definition 9.6 (Upper Central Series)

A series {1} = H, < H, <... of subgroups of a group G is called

the upper central series of G with H; = {1}, H, =Z(G) is the

Hi+ — G
center of G, and %i_z(/_li).

9.2 Nilpotent Groups

Nilpotent groups arise in Galois theory, as well as in the
classification of groups. They also appear prominently in the

classification of Lie groups.

Definition 9.7 (Nilpotent Groups)
A group G is nilpotent if its upper central series ascend to G
in a finite number of steps. A group G is nilpotent of class k if

and only if in its upper central series H, =Gand H,, #G.

Example 9.3

Every abelian group is nilpotent.

Example 9.4

All finite p-groups are nilpotent.
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Example 9.5
Other nilpotent groups include the dihedral and quaternion

groups of order 8.

9.3 Solvable Groups

In the field of group theory, asolvable group (oris
sometimes called soluble group) is a group that can be
constructed from abelian groups using extensions. That is, a
solvable group is a group whose derived series terminates in
the trivial subgroup.

Historically, the word "solvable" arose from Galois
theory and the proof of the general unsolvability of qui-
ntic equation. Specifically, a polynomial equation is solvable
by radicals if and only if the corresponding Galois group is

solvable.

Definition 9.8 (Solvable Groups)
A group G is called solvable if it has a subnormal series
whose factor groups are all abelian, that is, if there are

subgroups {1} =G, <G, <..<G, =G such that G, is nor-

mal in Gj, and G, /G, , isan abelian group for j=1,2,...k.
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For finite groups, an equivalent definition is that a
solvable group is a group with a composition series all of whose
factors are cyclic groups of prime order. This is equivalent
because a finite abelian group has finite composition length, and

every finite simple abelian group is cyclic of prime order.

Example 9.6

All abelian groups are solvable.

Example 9.7
A small example of a solvable, non-nilpotent group is

the symmetric group Ss.

Example 9.8
The group Ss is not solvable since it has a composition series
{E, As, S5} giving factor groups isomorphic to Asand Cy;

and As is not Abelian. While S; and A4 are solvable.

Example 9.9

All nilpotent groups are solvable.
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Exercises 9: (Series of Groups, Nilpotent Groups and Solvable Groups)

Find the upper central series and the class for groups in Example 9.2 — 9.4.
Find the subnormal series for groups in Example 9.5 — 9.6.

Show that all nilpotent groups are solvable.

Find all composition series of the group 7Z/({42). Verify that they are

equivalent.

PobdE
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CHAPTER 10

THE SYLOW THEOREMS

10.1 Introduction

The aim of this chapter is to sample the flavor of more
advanced work in groups while maintaining an acceptable level
of rigor in the presentation. We first start with a section of

conjugacy classes.

10.2 Conjugacy Classes

The elements of any group may be partitioned into
conjugacy classes, where members of the same conjugacy class
share many properties. The study of conjugacy classes of non-
abelian groups reveals many important features of their
structure.

We define the conjugacy class formally as follows.

Definition 10.1 (Conjugacy Class of a)

Let a,beG. We say a and b are conjugate in G (and call b a
conjugate of a) if x'ax=Db for some x in G. The conjugacy

class of a is the set cl(a) = {x "ax|x € G}.
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Next, we state some properties of conjugacy classes. The
first one states that the identity element is always in its own
class.

Theorem 10.1 cl(e)={e}.
Proof From the definition,

cl(e)= {x‘lex| X eG} ={e}. O

Next, we prove that an element is always contained in its

own conjugacy class.

Theorem 10.2 aecl(a).

Proof All groups contain an identity element, e. This gives

a=eae ", thus the theorem is proven. [
Note that if G is abelian, then cl(a)={a},VaeG.

Example 10.1

Find the conjugacy class of each element in S,.

(i) For(12):
(D(E2)()
(23)(12)(32) = (13), (123
Thus cl((12)) ={(12),(23),(13)}.

(12),(12)(12)(21) = (12), (13)(12)(31)=(23).
)(12)(132) =(23),(132)(12)(123)
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(i) cl((1))={(1)}, sincex(1)x " =xx"(1)=(1).

(iii) cl((123))={(123),(132)} since
(123)(123)(132) = (123),(132)(123)(123) = (132).

The complete list will be:

(D) ={@)},

cl((22)) = {(12).(23),(13)} = I ((13)) = I ((23)).

cl((123)) ={(123),(132)} =cl((132)).

Theorem 10.3  If [cl(a)|=1, then ae Z(G).

We can also rewrite Theorem 10.3 as cl(a)={a}.

Theorem 10.4

The number of elements in a conjugacy C5 of an element a in
a group G is equal to the the index of its normalizer in G i.e.

Cal=[G : Ng(a)].

Proof Let QQ be the collection of all right cosets of

Ng(a) = N, where a is an element of a group G. We have to
show that the number of elements in Q being the index of

Ng(a) is equal to the number of elements in C, . To do this we

define a function f : Q—>C, by f(Ng)=glag, where geG
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that is to each right coset Ny associate the conjugate element

g tag of a e C, under f.

First of all we show that £ is well defined, let

Ng, = Ng, = Ng,0," =Ng,9;" = Ne=Ng g =N =Ng,9," = 9,9, e N
this implies there exist ne N such that g,g; =n=> g, =ng,.
Consider 92'agz = (ngy) a(ngy) = g7 (n""an)g; = 01 (a)gy
(because neN=na=an=>a=n"tan), this impllies

g5'ag, = grtag; and hence f(Ngy) = f (Ng;). This shows that f
is well defined.
Next we have to show that f is bijective. Since each

g lag e C, is the image of Ng € Q, therefore f is clearly onto
(surjective).

Next consider, f(Ngp)=f(Ngy), implies f(Ngz)=f(Ngy),
implies g5%ag, = gi'ag;, implies 910229707 = 9101 a0u0
implies ( gg5Da(gy(g,) )L =a, implies g9, e N, implies
g1 € Ng, but g; €Ngq, implies Ng, = Ng,. This implies f is
bijective. And hence Q and C; have same number of elements
i.e. [Ca| =[G : Ng(a)l.

Corollary 10.1

Let a be an element of a finite group G. Then the number of
elements in the conjugacy class C, of a divides the order of G.

Proof Since Ng(a) is a subgroup of G, hence by Lagrange's
theorem, the order and index of N (a) will divide the order of
G. Also we know that the index of Ng (a) is equal to the number

of elements in C,. Hence, from the above discussion we
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conclude that the number of elements in the conjugacy class Cy

of a divides the order of G. O
10.3 The Sylow Theorems

The Sylow theorems, named after Ludwig Sylow, form a
partial converse to Lagrange's theorem, which states that if H is
a subgroup of a finite group G, then the order of H divides the
order of G. The Sylow theorems guarantee, for certain divisors
of the order of G, the existence of corresponding subgroups, and
give information about the number of those subgroups.

The following theorem was first proposed and proven by
Norwegian mathematician Ludwig Sylow in 1872, and

published in Mathematische Annalen.

Theorem 10.5 First Sylow Theorem
Let G be a finite group and let |G| = p"m where n>1and p
does not divide m. Then
1. G contains a subgroup of order p' for each i
where 1<i<n,

2. Every subgroup H of G of order p' is a normal

subgroup of a subgroup of order p'** for 1<i<n.
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Example 10.2
Let |G|=2%-3°-5*-7. Using First Sylow Theorem, G has at least

a proper nontrivial subgroup of order
2,4,8,3,9,5,25,125,625 and 7.

Example 10.3

Let |G|=2%-3°-5°. Thus, G has a subgroup of order 2, 4, 3, 9,

27,5, 25 and 125.

Let |H,|=3,|H,|=9,|H,|=27,|H,|=2,|H,|=4,|H/| =5,

|H,|=25and |H,|=125. Then, by First Sylow Theorem,
H,<H,<H,, H,<H,and H,<H, <H,.

Definition 10.2  (Sylow p-Subgroup)
Let G be finite group and let p be a prime divisor of |G|. If p*

k+1

divides |G| and p“** does not divide |G|, then any subgroup of

G of order p* is called a Sylow p-subgroup of G.

Example 10.4
Let G be a group with |G|=2°-3°-5*-7. Then we call any

subgroup of order 8 a Sylow 2-subgroup of G, any subgroup of
order 9 a Sylow 3-subgroup of G, any subgroup of order 625 a
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Sylow 5-subgroup of G, and any subgroup of order 7 a Sylow
7-subgroup of G.

Any subgroup of G of order p* is called a Sylow p-subgroup
of G and we denote it by Syl G .

Example 10.5
(i) Let|G|=20=2°x5.Then
|SyIZG =2?=4, |SylL,G|=5.

(i) Let |G =2°x3°x5°. Then

SylL.G|=22 =4, |Syl.G|=3*=27, |Syl.G|=5° =125.
2 3 5

The following less general version of Theorem 10.4 was

first proved by Cauchy.

Corollary 10.2 Cauchy’s Theorem
Let G be a finite group and p a prime that divides the order of

G. Then G has an element of order p.

Therefore, we can conclude that the converse of Lagrange
Theorem is true for two cases, that is for finite Abelian groups

and groups with prime number order.
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Definition 10.3 (Conjugate Subgroups)
If H and K are both subgroups of a finite group G, then we say

H is a conjugate of K if there exists an element x of G such

that H = X *KXx.

Theorem 10.6 Second Sylow Theorem

Let P, and P, be Sylow p-subgroups of G. Then P, and P, are

conjugate subgroups of G.

Example 10.6
Let G =S, ={(1),(12),(13),(23),(123),(132)}. Since

G| =|S,|=2-3, then we have |Syl,G|=2 and |Syl,G|=3.

R P, ¥
SYL,6| =2 = Sy1,G are {(1),(12)},{(1),(13)}, and{(1) (23)}.
|SyL,G|=3= Syl.G is {(1),(123),(132)}.
We know P; and P; are conjugates if 3xeG > xPx™ = P,. We
nave (23)R(23)” = {(29)(1)(32).(23)(12)(32)}

{(©).(13)}

P

-
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Theorem 10.7 Third Sylow Theorem
If G is finite and p divides |G|, then the number of Sylow p-

subgroups of G is one modulo p and divides the order of G.

We will use the notation n(SyIpG) for the number of
Sylow p-subgroups of G.

Recall from before the following definition.

Definition 10.4 (A Simple Group)

A simple group is a group with no proper normal subgroup.

A very important consequence of Theorem 10.6 is that the
condition n(Syl,G)=1 is equivalent to saying that the Sylow

p-subgroup of G is a normal subgroup.

Corollary 10.3 A Unique Sylow p-Subgroup Is Normal
A Sylow p-subgroup of a finite group G is normal subgroup of
G if and only if it is the only Sylow p-subgroup of G.

In symbols, we write:

n(Syl,G)=1<> Syl, <G.

* Group Theory 1 *

149



Chapter 10 : The Sylow Theorems Nor Haniza Sarmin & Hidayatullah Khan

Example 10.7

Syl,S; ={(1).(12)}, {(1),(13)} and {(1),(23)}. Using

Sylow’s Third Theorem,
n(Syl,S;) =k, where k =1mod2 and k||S,|=6. Thus we have
k =3.

Example 10.8
Find the number of all Syl 'S,

Since |S,|=4!=24=2°-3, thus we have
ISyl,S,| =8 and |Syl,S,| =3.

For Syl,S,:
n(SyLS;)=1(2)
(51,5, 24 }1,2,3,%,5,8,1/2,24

~n(Syl,S,)=1 or 3.

For Syl,S,:

(S, )‘;4( )}1,1,/@,4,;5,3,%,24

SyI
~n(Syl,S,)=1 or 4
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There are actually three Syl,S,, namely ((1234),(12)(34)),
((1243),(12)(43)), ((1324),(13)(24)) and four Sylow-3

subgroups of S,, namely ((123)),((124)),((134)),((234)).

10.4 Applications of Sylow Theorems

In this section, we give two examples on how Sylow Theorems

can be applied to solve certain problem.

Example 10.9

Given a group with order 40. Decide whether the group is
simple.

Solution:

Let G be the group and |G| =40. We can write |G|=40=2°-5.
Thus [Syl,G|=8 and |Syl,G|=5. Since n(Syl,G)40 and
n(Syl,G)=1 mod 5, this gives n(Syl,.G)=1.

Let K =Syl.G. Thus G has only a subgroup of order 5 and it is

normal (i.e K <G). Therefore, G is not simple.

However, the Sylow-2 subgroup of G is not necessarily normal.

There are 2 cases to consider:
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Casel: n(Syl,G)=1.

Let H =Syl,G. Then H <« Gin this case.
Case Il:  n(Syl,G)=5.

Then H # G in this case.

Example 10.10
Let G be a group with order 99. Show that G has a normal
subgroup of order 9 and 11, respectively.

Solution:
Let H beSyl,G and K beSyl,,G. Since|G| =99 =37 -11, then
H|=9, |K|=1L.
Furthermore,
n(H )99 and n(H)=1(3),
which gives n(H )=1. Therefore H < G.

We conclude that a group of order 99 has a normal subgroup
of order 9.
Similarly,
n(K)[99 and n(K)=1(11),
gives n(K)=1. Thus, K <G.

We conclude that a group of order 99 also has a normal

subgroup of order 11.
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Exercises 10: (The Sylow Theorems)

In Exercises 1 through 2, fill in the blanks.
1. A Sylow 3-subgroup of a group of order 54 has order :
2. Using the Third Sylow Theorem, we can show that the group of order 255 =

(3)(5)(17) must have either or Sylow 3-subgroups and or
Sylow 5-subgroups.
3. Find two Sylow 2-subgroups of S, and show that they are conjugate.

Find the conjugacy class of each element of Ds.

Let H be a subgroup of a group G. Show that G,, ={geG|gHg " =H} isa
subgroup of G.

6 Show that every group of order 45 has a normal subgroup of order 9.

7. Show that there are no simple groups of order 255 = (3)(5)(17).

8. Calculate all conjugacy classes for the quaternions.

9. Describe the conjugacy classes of an Abelian group.

10. Find all the Sylow 3-subgroups of A,.

11.  Show that every group of order 56 has a proper nontrivial normal subgroup.
12. How many Sylow 5-subgroups of S, are there? Exhibit two.

13. Prove that a group of order 595 has a normal Sylow 17-subgroup.
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CHAPTER 11

RINGS AND INTEGRAL DOMAINS

11.1 Rings

Aring is an algebraic structure consisting of
a set together with two binary operations (usually called
addition and multiplication) where each operation combines
two elements to form a third element. To qualify as a ring, the
set together with its two operations must satisfy certain
conditions — namely, the set must be an abelian group under
addition and a monoid under multiplication such that multipli-
cation distributes over addition.

The concept of a ring first arose from attempts to
prove Fermat's last theorem, starting with Richard Dedekind in
the 1880s. After contributions from other fields,
mainly number theory, the ring notion was generalized and
firmly  established during the 1920s by Emmy
Noether and Wolfgang Krull.

We define a ring formally as follows:
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Definition 11.1 (Ring)
Aring <R,+,-> isaset R together with two binary operations

+ and -, defined on R such that

1. <R,+>isan Abelian group.
2. (a-b)-c=a-(b-c) for a,b,ceR.
3. a-(b+c)=(a-b)+(a-c) and (a+b)-c=(a-c)+(b-c) for

a,b,ceR.

Example 11.1 Some examples of a ring
1. <Z,+,->, <Q,+,->, <R,+,->and <C,+,->.

2. <M,(R),+->and <M (Z),+->.

3. <F,+,-> where F is a set of all continuous function.
4, <NZ,+,->.

5. <L, +,->.

11.2 Types of Rings

Definition 11.2 (Commutative Ring)
Aring <R,+,-> is called a commutative ring if a-b=b-a

vV abeR.

Example 11.2
Therings Z,Q,R,Z, and R[X] are all commutative rings.
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Definition 11.3 (Ring with Unity)
Identity under multiplication of a ring R is called a unity
denoted by I. A ring with unity is a ring with multiplicative

identity.

Example 11.3
Therings Z,Q,R,Z, and RIX] are rings with unity(identity),

0
while the ring {0 ;j : a,beR} IS not a ring with unity.

Definition 11.4 (Unit, Division Ring & Field)

Let R be a ring with unity 1=0. An element reR is aunit if it
has a multiplicative inverse in R. If every non zero element is a
unit, then R is called a division ring. A field is a commutative

division ring.

Note:

An element reR is a unit if exist r1eR such that
r-ri=r1l.r=1eR and r1is called the multiplicative inverse
of r.

Note:

Aring R is a division ring if and only if (R\{0},-) is a group.
Therefore if R is a division ring, then for all a € R, a # 0 there
exists a unique element denoted by a‘eR such that
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aa'=1=a"'a. We call the element a™ the multiplicative
inverse of a.

Similarly, a ring R is a field if and only if (R\{0},-) is a

commutative group.

Example 11.4

1. Unitsin Z,, are 13,5,9,1113. These are also elements in

U(14).
2. 7 isnot a field.
3. Q and R are fields.

11.3 Integral Domains

Definition 11.5 (Zero Divisor)
A non-zero element a in aring R is called a zero divisor, if
there exist b € R such that b = 0 and either ab =0 or ba =0.
We do not call 0 a zero divisor.

or
Definition 11.6 (Divisors of 0)
If a and b are non-zero elements such that a-b=0, then we

called a and b as divisors of 0.
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Definition 11.7 (Integral Domain)
A commutative ring with unity 1= 0 and containing no divisors
of 0 is called an integral domain.

or

Definition 11.8 (Integral Domain)

A commutative ring R with identity is called an integral domain
if R has no zero divisors.

Example 11.5

1. Zy, p prime, is an integral domain.

2. 7, isnotan integral domain.

Example 11.6

: b :
Decide whether Mz(Zz):”i d} |a,b,c,d eZz} is an
integral domain or not.

Theorem 11.1 Every finite integral domain is a field.

Corollary 11.1
Let R be aring with 1. Then R = {0} if and only if 0 #1.
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Proof Suppose R #{0} and 0= a <R, consider,

1=0
—a-l=a-0
—=a=0
a contradiction, thus 0 = 1.
Conversely; Let 0 =1 i.e. 0 and 1 are distinct elements of a ring

R. And hence R={0}. O

Theorem 11.2

Let R bearing with 1 (identity) and T the set of all units
of R. Then,
)T#g(ii)0eT (iii)abeT forall a,beT .

Proof
(i). Since 1-1=1=1-1, implies 1T and hence T = ¢.
(if). Let us suppose on contrary that 0T, then there exists

v € R such that Ov=1=v0. However Ov=0, implies 0=1,
a contradiction. Hence 0 ¢ T .

(iii). a,beT then there exists ¢,d € R such that ac=1=ca
and bd =1=db. Consider, (ab)(dc)=a(bd)c=a-1-c=ac=1
and (dc)(ab)=d(ca)p=d-1-b=db=1. This shows that
abeT forall a,beT. [

Theorem 11.3

Let R be aring with 1 (identity) and u € R isaunitin R. Then
show that u is non-zero divisor in R.
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Proof Let r e R suchthat r-u=0, but it is given that u is a
unitin R, implies u™ exists, therefore,
ru=0=(r-uju*=0u"=0
=ruut)=0
=r@)=0
=r=0

Also,
ur=0=u'(ur)=u"0=0
= (uu)r=0
=1-r=0
=r=0

This implies u is not a zero divisorin R. [

Theorem 11.4

If a ring R has no zero divisors, then ab =ac implies b=c
(Left cancellation Law)for all a,b,ce R, with a=0 and

ba=ca implies b=c (Right cancellation Law). If either
cancellation law holds then R has no zero divisors.

Proof Suppose R has no zero divisors. Let a,b,c € R with
a#0 suchthatab=ac=ab—-ac=0=a(b-c)=0. Since R
has no zero divisors and a = 0, then (b—c) =0 or b =c. Hence

the left cancellation law holds. Similarly, the right cancellation

law holds.
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Conversely; Suppose one of the cancellation law holds, say, the
left cancellation law holds that is for all a,b,c € R, with a =0,
ab =ac implies b=c.
Consider,

ab=0=ab=a-0

= b =0 (by canceling a)

Again consider,
ba=0andb=0

—ba=Db-0
= a =0 (by canceling b)

a contradiction. Therefore b = 0. Hence R has no zero divisors.
[]

Theorem 11.5

A finite commutative ring R with more than one element and
without zero divisor is a field.

Proof Let a,a,,a,..,a, be distinct elements of R. Let
O=aeR then ag R forall i=12,3,...,n and hence the set
{aa,,aa,,a3;,....aa, }—R. If aa =aaj, then a =a; (by
cancellation law) therefore the elements aa,aa,,aa;,...,aa,

must be distinct and hence R={aa,aa,,aa,,...,aa, }. Since

ae R, therefore a=aa; (say). Similarly if b e R then there
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exists aj € R such that b=aa;j. But it is given that R is

commutative, so we can write
bai = aib
= aj(aaj) (putting for b)
= (aja)aj
= (aaj)a; (R being commutative)
= (a)aj

=D
From this we see that ba; =Db.

This implies a; is the identity of R and we denote the identity
of R by 1. From the above we conclude that
leR={aa,aa,aa;,...,aa,} implies 1=aa; for some j,
hence aaj =1=aja. Implies every non-zero element of R is a

unit. And hence R is a commutative division ring with 1
consequently R is a field. ]

Theorem 11.6

If R is a commutative ring with 1. Then R is an integral domain
if and only if ab =ac = b =c, where a,b,c € R with a =0.

Proof Let R be anintegral domain, a,b,c € R with a=0 and
consider ab=ac=ab—-ac=0=a(b—-c)=0. Since a=0

and R is an integral domain, therefore R has no zero divisor.

Hence a(b—c) =0 implies (b—c) =0 consequently b =c.
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Conversely; Let ab=ac=b=c for all ab,ceR with

a#=0. Consider R is not an integral domain, then R has some
zero divisor. Let a be a zero divisor of R. Let 0= b e R such
that ab =0 implies ab =a0 implies b =0 (by hypothesis) a
contradiction as b = 0. Hence, R is an integral domain. []

Theorem 11.7

A division ring has no zero divisor.

Proof Let R be divisionring and 0= a e R, then a must be

a unit that is a—* exists. Consider

ab =0 for some b € R,
=a'(ab)=a"'-0=0,
= (a"a)b =0,
=b=0.

11.4 Characteristic of a Ring

If 3neZ* suchthat n-a=0 VaeR then the least n is called a
characteristic of a ring R. If not, the characteristic is 0. We

denote the characteristic of a ring R as char(R).
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Example 11.7
1. LetR=Z, Thenchar(R)=n.,

2. LetR=7Z. Thenchar(R)=0.

3. Therings Z, Q, R and C have characteristic zero. The
ring Z, (n=12,3,... ) has characteristic n.

Note:

In Zg, 2] =[6]=[0] and 2[3]=[6]=[0]. However 6, is the
smallest positive integer such that 6[a] =[0] for all [a] € Z.

In particular, [1] has additive order 6.

Theorem 11.8

Aring R has characteristic n > 0 if and only if n is the smallest
positive integer such that n-1=0.

Proof Let R has characteristic n>0, then na=0 for all
aceR and hence in particular n-1=0. If m-1=0 for
O<m<n, then ma=m(l-a)=(m-)a=0-a=0, However,
this contradicts the minimility of n. Hence n is the smallest
positive integer such that n-1=0.

Conversely; Suppose n is the smallest positive integer such that
n-1=0.Thenforall ac R, na=n(l-a)=(n-)a=0-a=0.By
the minimility of n for 1, n must be the characteristic of R.
O
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Theorem 11.9

The characteristic of an integral domain R is either zero or a
prime.

Proof  If there does not exist a positive integer n such that
na=0 forall aeR,then R is of characteristic zero. Suppose
there exist a positive integer n such that na=0 forall aeR,
and let m be the smallest positive integer such that ma =0 for

all ae R. Then m-1=0. If m is not a prime number, then there
exist integers M, M, such that mM=m_-m, where
0<m,m,<m . Hence,

0O=m-1
| (mlmz) 1
=(m, -1)(m, -1),
= (m -)(m, -1) =0.
Since R is an integral domain therefore R has no zero divisors,
consequently, (M, -1)(m,-1) =0 implies, m;-1=0 or m,-1=0,
This contradicts the minimility of m, thus m is a prime. [

Definition 11.9 (Subrings)

Let (R,+,-) bearingand S be a subset of R. Then (S,+,") is
called a subring of (R,+,-) if (S,+) is a sub-group of (R,+) and
xy e S forall x,yeS.

Examples 11.8

1. Thering E of even integers is a subring of Z . We note
that 1eZ butle¢ E.
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2. Consider the sub-set Eg = {[0],[2],[4],[6]} of Z,. Then Eg
is a subring of Z,. Hence Eg is commutative. However, Eg has
no identity and does have zero divisor, namely, [2],[4],[6].

Theorem 11.10

A non-empty subset S of aring R isasubring of R if and only
if x—yeSand xyeS forall x,yeS.

Proof Let S isasubringof ofaring R. Then S isaring and

hence x—yeS and xyeS forall x,yeS.

Conversely; Suppose x—yeS and xyeS for all x,yeS.
Since x—y eSS forall x,y €S implies (S,+) is a sub-group of
(R,+). Also by hypothesis xyeS for all x,yeS. Hence
(S,+,7) isasubring of (R,+-). [

Theorem 11.11

Let {S; : i € O} be a non-empty family of subrings of a ring
R.Then ~ S;j is also a subring of R.
e
Proof Since 0€S; forall i e Q, implies 0 e n §; and hence
e

N Sj#¢. Let x,ye n §;, implies x,y e S; for all ieQ.
eQ) eQ

Since each S; is a subring of R, therefore x—y € S;, X,y € S
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for all ieQ. Hence x—ye N §; and Xx,ye N §j. Hence

1€Q) 1€Q
M Sj is also a subring of R. [
e
Definition 11.10 (Left ideal)

A non-empty sub-set | of aring R is called a left Ideal of R if
a-bel andrael forall a,bel and r e R.

Definition 11.11 (Right ideal)
A non-empty sub-set | of aring R is called a right Ideal of R
ifa-bel andarel forall a,bel and r e R.

Definition 11.12 (Ideal)
A non-empty sub-set | of aring R is called a (two-sided) Ideal
of R if I is both left and right ideal of R.

Note:

From the definition of a left (right) ideal, it follows that if | is
a left (right) ideal of a ring R, then | is a subring of R. Also,
iIf R is commutative ring then every left ideal is a right ideal
and every right ideal is a left ideal. Thus for commutative rings
every left or right ideal is an ideal.

Examples 11.9

The sub-sets {0} and R of aring R are (left, right ) ideals of

R. Theses ideals are called trivial ideals and all other (left,
Right) ideals are called non-trivial ideals.

Definition 11.13 (Proper ideal)
Anideal | ofaring R is called a proper ideal if | = R.
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Next, we give an example of a ring in which there exist a left
ideal which is not a right ideal, a right ideal which is not a left
ideal and a subring which is not a left (right) ideal.

Example 11.10 Consider the ring M,(Z) and let,

ST )

; . a,b,c,d areeven integers},
a 0]
I, = ae’
0 0 '
8 eIy, implies 17 =4 . Let {a O}, {C g}ell and

{ b ol |d
[ y}eM(Z)

(@)

W
Then. a O_C O:a—c OEll and
b 0| [d O b-d O

X ylla O xa+yb 0
. = Ell
z wi|lb O za+wb O
This shows that 14 is a left ideal of M,(Z) But

{a OHX y}:{ax ay:|g I;. Hence 1, is not a right ideal of
b O0||z w| |bx by

M, (Z).

Similarly, 1, is not a right ideal of M,(Z) but is a left ideal. I,
is an ideal of M,(Z). And 1, is a subring but not an ideal of
M,(Z).
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Theorem 11.12

Let {I; : i Q} beanon-empty collection of left (right) ideals
ofaring R. Then 1 isa left (right) ideal of R.

1eQ)

Proof Suppose {I; : i eQ} is a non-empty collection of left
ideals of aring R. Since O I; forall i e QQ, implies 0e N |
ieQ

.Hence n lj #¢.Leta,be N Ij,
1eQ 1eQ

= a,beljforalli e Q,
= a—beljforalli e Q (becauseeach I; is left ideal),
=a-be N Ij.
e
Let r e R, then
ra e |j foralli € Q (since each Ij is a left ideal of R)

=rae N l;. Thisshows that m I; is a left ideal of R.

e 1eQ
Similarly if {I; : ieQ} is a non-empty collection of right
ideals of aring R then m I isaright ideal of R.
ieQ)

11.5 Quotient Ring

We now give the analogue of quotient groups for rings.
Let I be an ideal of aring R. Then since (I,+) is a sub-group

of (R,+) and (R,+) is commutative, therefore (I,+) is normal
in (R,+). Hence, if R/1 denotes the set of all cosets,
r+l={r+a : aelforallr e R}
Then (R/1,+) is commutative group, where addition and
multiplication is defined on R/ 1 by,
(r+D)+(r'+1)=(r+r)+1 forall (r+1),(r'+1)eR/I
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(r+1)-(r'+1)=rr'+1 forall (r+1),(r'+1)eR/I
Then (R/1,+,-) isaring.

Definition 11.14 (Quotient Ring)
| is an ideal of aring R, then the ring (R/1,+,-) is called the
quotient ring of R by I.

Definition 11.15 (Ring Homomorphism)
Let (R,+-) and (R'+-) be given rings, the a function

into

f : R—>R" is called a homomorphism of R into R" if,
f(a+b)=f(a)+ f(b), f(a-b)="f(a)- f(b) forall a,beR.

Definition 11.16
into

A homomorphism f : R—>R' of aring R into aring R" is
called,

into
(i) Monomorphism if f : R—>R" is one-one,
into
(ii) Epimorphism if f : R—>R"isinto R",
into

(iii) Isomorphism if f : R—>R" is bijective.

Theorem 11.13

Let f : RR’ be a ring homomorphism of aring R into a ring
R'. Then

(i) f(0)=0", where 0" is the zero of R".

(i) f(-a)=—-f(a) forall aeR.

Proof
(i) Let x e R and consider,
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f(x)= f(x+0)

= f(x)+ f(0) (f being homomorphsm),
= f(x)— f(x)=f(x)+ f(0)- f(x),
=0'=0+f(0),
=0'=f1(0).
This is the required result.

(ii) Let a € R, and consider a+ (—a) =0,

= f(a+(-a))= f(0)

= f(@)+ f(-a)= f(0) (f being homomorphism)
=-f(a)+f(a)+f(-a)=—"f(a)+ f(0)

=0+ f(-a)=—f(a)+0'

= f(-a) =-"f(a). Hence proved.

Theorem 11.14

into

Let f : R—>R" be aring homomorphism of aring R into aring
R". Then the following assertion holds.

(i) f(R)={f(a): aeR}isasubringof R".

(ii) If R is commutative, then f(R) is commutative.

Proof

(i). Let f(a), f(b)e f(R)c=R". Consider
f(a)-f(b)= f(a)+(-f(b))

= f(a)+ f(-b)

= f(a—Db) e R(f being homomorphsm),
= f(a)-f(b)eR. Also
f(a)-f(b)=f(ab)eR= f(a)- f(b) eR hence
f(R)={f(a): aeR}isasubringof R".
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(ii) Let R is commutative and X,y e f(R), then x = f(a) and
y = f (b) for some a,b € R. Consider,
xy = f(a)- f(b)
= f (ab) (f being homomorphism)
= f(ba) (R being commutative)
= f(b)- f(a) (f being homomorphism)

= yX.
This implies f(R) is commutative.

Theorem 11.15

onto

Let f : R—>R" be a ring homomorphism of a ring R onto a
ring R', where R has an identity. Then prove that,

(i)  f(1) isthe identity of R".

(i) If aeR isaunitin R then f(a) is a unit of R' and

(f@)*="f@).

Proof

(i) Since it is given that 1€ R this implies f(1) e f(R) but
since f is onto therefore f(1)e f(R)=R' thatis f(1)eR". Let
f(a)eR', where a € R and consider,

f@-f(@="f@-a) (f being homomorphism)= f(a),

= f(@)-f(a)="f(a) forallaeR,

Similarly,

f(a)-f()=f(a-1) (f being homomorphism)= f(a),

= f(@)-f()=f(a)forallaeR,

Showing that f (1) is an identity of R".

(i) Let aecR is a unit in R therefore a* exist and
aa ' =1=a'a. Now consider,
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fQ="f(aa")="f(@) f(a,

— f()=f(a) f(a™?) similarlyf@) = f(a?)- f(a).
Hence f(a) isaunitin R'.

Next consider,

f(a)-f(a)="7(@),

=(f(a) f@) f@’)=(f(@) fQ),

= fah)=(f(a) .

Definition 11.17 (Kernel)

into
Let T : R—>R" pe aring homomorphism of aring R onto a
ring R'. Then the kernel of f is denoted and define as
ker f ={aeR : f(a)=0}

Theorem 11.16

into
Let f : R—>R' be a ring homomorphism of a ring R onto a
ring R', then show that ker f is an ideal of R.

Proof Since 0 R and f(0) =0, implies 0 < ker f that is
ker f = ¢. Let a,b e ker fand r € R. Consider,

f(a—b)= f(a+(-b))= f(a)+ f(-h)
= f(a)— f(b)=0-0(sincea,b eker f)=0,
—a—-bekerf.

Also consider,
f(ra)=f(r)f(a)
= f(r)-0 (since aeker f) =0,
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—raeker f.Hence ker f isanideal of R. [

Theorem 11.17

Let | beanideal ofaring R, thenthe mapping g : R—> R/I
defined by g(a)=a+1 for all aeR, is a homomorphism,

called the natural homomorphism of R onto R/I.
Furthermore, kerg = 1.

Proof Let a,beR ,then
gla+b)=(a+b)+l1=@+1)+{O+1)

= g(a)+g(b),
and
ga-b)=(@-b)+1=@+1)-(b+1)
=g(a)-g(b).
Hence g : R— R/ I isa homomorphism.
Next as,

kerg={aeR : g(@)=I1}={aeR : a+l =1}
={aeR : ael}=RnIl =1
Hence, kerg = 1.

11.6 Isomorphism Theorems

Theorem 11.18 (First Isomorphism Theorem)
Let f be a homomorphism of a ring R into a ring R*. Then

f(R) isanideal of R' and R/ker f = f(R).
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Proof
into

Let f : R—>R" be a ring homomorphism of a ring R onto a
ring R'. To show that f(R) is an ideal of R', we let f(a),
f(b) e f(R), where a,b € R and consider,
fa)-f(b)= f(a)+(- f(b))

= f(a)+ f(-b) (because— f (b) = f(-b))

= f(a+(-b)) (f being a homomorphsm)

= f(a-b)e f(R)(asa-beR)
= f(a)- f(b) e f(R).
Now let r'e R', then r'= f(r) for some r € R. Consider,
rf(a=f(r)-f(a

= f(ra) € f (R) (f being a homomorphism and ra € R)

=r'f(a)e f(R)
Similarly,
f(@)r'e f(R)
Hence f(R) isanideal of R'.
Next we suppose ker f =1 and define
h: R/l > f(R)byh(r+1)=f(r)forallr+1 eR/I
Now to show that this mapping is well defined, we consider,
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r+1=r'+1

S-r+r+l=-r'+r'+l

S-r'+r+1=0+1

<S-r'+r+1 =1

< -r'+rel=kerf

< f(-r+r)=0

< f(-r)+ f(r)=0 (f being a homomorphism)

< —f(r)+ f(r)=0 (because f (—b) =—1 (b))

< f(r)=f(r)

< h(r+1)=h(r'+1) (by definitionof h : R/1 - f(R))
This shows that h is well defined and one-one.
To show that h is onto, let x € f(R), then x = f(r) for some

r € R and hence h(r + 1) = f(r) = x, this shows that h is onto.
Finally we have to show that h is homomorphism, to do this we

consider,
h[(r+D+(r'+D]=h[(r+r")+1],

= f(r +r") (by definition),

= f(r)+ f(r") (f being homomorphism),

=h(r+1)+h(r'+1) (by definition),
=hr+D)++D]=h(r+D)+h(r'+1),

Also consider,
h[(r+1)-(r'+D]=h[(r-r)+1]= f(r-r") (by definition),
= f(r)- f(r") (f being homomorphism),
=h(r+1)-h(r'+1) (by definition),
= h[(r+1D)-(r'+D]=h(r+1)-h(r'+1).
This shows that h is homomorphism and hence
R/ker f ~ f(R). [
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Theorem 11.19 (Second Isomorphism Theorem)
If I and J areidealsofaring R,then 1 /1 nJ=(1+J)/J.

Proof Let us define a mapping f:1—>(1+J)/J by
f=1+J for all ieland i+j+Je(l+J)/J, then
j+J=J (since jeJ). Thus i+ j+J=i+J = f(i). This
implies (i+ j+J) is the image of some i<l under f and
hence f is onto.
Next we consider,
f(i,+i,)=(,+i,)+J foralli,i, el,

=, +J)+(@,+J),

= f(,)+ f(i,).

Also
f(,-1,)=(,-1,)+J foralli,i, el,
:(i1+'J)'(i2+J)’
= f (il)' f (iz)-
This shows that f is homomorphism and hence by First

Isomorphism Theorem, | /ker f = (1 +J)/J
Finally we need to show that ker f =1 nJ consider,

kerf ={iel : f(i)=J},
={iel :i1+J =173}
={iel 1€},
=1nJ.
Consequently, 1 /1 nJ =(1+J)/J. [
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Theorem 11.20 (Third Isomorphism Theorem)

If 1 and J are ideals of a ring R, such that | < J then
(R/ID/AI1)=R/].

Proof Define a mapping, f :R/I > R/J by f(r+1)=r+J
forall r e R.

Toshowthat f iswell defined, let r,+1,r,+1 R/l such that

n+l=r+lI,
=>-L+n+l=-r+r,+I,
=>-L+r+1=0+1,
=>-rL+r+l=1,
=>-rL+relcld,
=-I,+rel,
=-rL+r+J=1J,
=>n+J=r+J,
= f(+1)=f(r,+1).

This shows that f is well defined.

Next to show that f is homomorphism, let r,+1,r,+1eR/I
and consider

Fl(n+ 1)+ +D]=f[(rn+r)+ )]
:(r1+r2)+J,
=(rL+J)+(r,+J),
=f(n+1)+f(r,+1),

= f((+D)++))=f+1)+f(r,+1).

Also,
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Fl(n+1)-(p+1)]=f[(r-)+1)],

:(rl'rz)""]’

=(rL+J)-(r,+J),

=f(+1)-f(r,+1).
Shows that f is homomorphism.
If xeR/J, then x=r+J for some reR follows that
x=r+J="f(r+1).Thisimplies f isonto. Hence by the First
Isomorphism Theorem, (R/1)/ker f = R/J.

Finally we need to show that ker f =J /1, consider
ker f ={xe R/l : f(x)=J},

={x=r+1: f(r+1)=J},
={r+1 : r+J=1J},
={r+1 : reld},

=J/I.
Hence (R/1)/(J/1)=R/J.
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Exercises 11: (Rings and Integral Domains)

1. The set {0, 2,4} under addition and multiplication modulo 6 has a unity.
Find it.
In Exercise 2 through 4, find the characteristic of the given ring.

2. 1O 3. 7,87, 4, Z,®7Z,

5. Let R be a commutative ring with unity of characteristic 3. Compute and
simplify (a+b)® for a,beR.

1 2
6. Show that the matrix L 4} is a divisor of zero in M, (Z).

7. Verify a through g below are as claimed.
a. The ring of integers is an integral domain.

b. The ring of Gaussian integers Z[i]={a+bi|a,beZ} isan
integral domain.

c. Thering Z[x] of polynomials with integer coefficients is an
integral domain.

d. Thering Z[\/E] = {a+ b\/§| a,be Z} is an integral domain.
e. Thering Z  of integers modulo a prime p is an integral domain.

f. Thering Z, of integers modulo n is not an integral domain when

n is not prime.
g. Thering M,(Z) of 2x2 matrices over the integers is not an

integral domain.

8. Which of a through e in Exercise 7 are fields?

9. List all zero-divisors in Z,, . Can you see a relationship between the zero-
divisors of Z,, and the units of Z,, ?

10.  Show that every nonzero element of Z_ is a unit or a zero-divisor.

11. Prove that every field is an integral domain.

12.  Prove thataring R is commutative if and only if (a+b)> =a”+b’ +2ab
forall a,beR.

13.  Give an example of a commutative ring without zero-divisors that is not an
integral domain.

14.  If x*=x forall X belongingtoaring R. Then prove the following,

(i) 2x=0 forall xeR.
(ii) R is commutative.

15. Is Z@®Z an integral domain? Explain.
16. If R is a ring with 1 such that (xy)?=x?y? for all xe R. Then R is
commutative.
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17.

18.

19.

20.
21.

22.

23.
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Prove that the set of matrices ¢ :{a b} Cabce R} forms a subring of the ring
0 c|]

M,(R).
Prove that the set of matrices ¢ :{a b} - abce R} is not a subring of the
c 0

ring M, (R).
If I, and 1, are tow left (right) ideals of aring R . Then prove that 1, N1, is

also a left (right) ideal of R.
Prove or disprove that union of two ideals of ring R is also and ideal of R .
Let I beanideal ofaring R. Thenshow that (R/1,+,.) isalso aring under
addition and multiplication defined as
(r+D+(r+1)=(r+r)+1 forall (r+1),(r'+1)eR/I
(r+D).(r'+1)=rr'+1 forall (r+1),(r'+1)eR/1.

into

Let f : R—>R" be aring homomorphism, then show that,
(i) f(na)=nf(a) forallacR and neZ.
(i) f(na)=(f(a))" forallacRand nez.

Prove that the composition of two ring homomorphism is a ring
homomorphism.
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CHAPTER 12

GROUPS PRESENTATIONS

12.1 Introduction
A group can be formed by giving (i) a set of generators for the
group and (ii) certain equations or relations that the generators
satisfy. We write

G=<0,0,....0,[L=I,=...=I[=e>,

where g; generators and r; relations.

12.2 Examples of Groups Presentation
1. C =<X ‘ x" =e>, the cyclic group of order n.

2. D,=< a,b\a“ =h? =(ab)? =e >, the dihedral group of order
eight.

2. 7,97,=<a,bla‘=b’=e, ab=ba>

3. Q=<a,bja’=b*=(ab)y’ >, the quaternion group of order
eight.
Note that b?=(ab)? =abab implies b=aba
and a*=Db?=(aba)(aba)=aba’ha=abb’ba=ab‘a implies

b*=e.
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Exercises 12: (Groups Presentations)

1.
2.

10.

Show that (a,b|a® =b* =e,ba=a’b) is isomorphic to Z,.

In any group, show that (a,b)=(a,ab).

. 0 -2 1 . 1 -2 0
Let M =§ 2 0 -2|and N :§ -2 0 2 |.Show that the group
-1 2 0 0o 2 -1

generated by M and N is isomorphic to D, .

What is the minimum number of generators needed for Z, ®Z, ®Z, ? Find
a set of generators and relations for this group.

Let (a,b|a’ =b* =e,ab=b’a).

a. Express a’v’abab® in the form b'a’.
b. Express babab’a in the form b'a’.
Give a presentation of Z, involving

a. one generator.

b. two generators.

C. three generators.

Give a presentation of S, involving three generators.
Gives the tables for both the octic group (a,b|a‘ =1,b* =1,ba=a’) and
the quaternion group (a,b|a® =b* =e,ba=a’b). In both cases, write the

elements in the order 1, a, a°, a*, b, ab, a’b, a’b. (Note that we do not
have to compute every product. We know that these presentations give
groups of order 8, and once we have computed enough products, the rest are
forced so that each row and each column of the table has each element
exactly once.)

Determine all groups of order 21 up to isomorphism.

Show that the presentation (a,b|a’® =1,b* =1,ba=a’b) gives a group of
order 6. Show that also it is nonabelian.
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