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Abstract  A set of vertices and edges forms a graph. A 
graph can be associated with groups using the groups' 
properties for its vertices and edges. The set of vertices of 
the graph comprises the elements of the group, while the 
set of edges of the graph is the properties and 
requirements for the graph. A non-abelian tensor square 
graph of a group is defined when its vertex set represents 
the non-tensor centre elements' set of G. Then, two 
distinguished vertices are connected by an edge if and 
only if the non-abelian tensor square of these two 
elements is not equal to the identity of the non-abelian 
tensor square. This study investigates the non-abelian 
tensor square graph for the symmetric group of order six. 
In addition, some properties of this group's non-abelian 
tensor square graph are computed, including the diameter, 
the dominating number, and the chromatic number. The 
perfect code for the non-abelian tensor square graph for a 
symmetric group of order six is also found in this paper.  

Keywords  Graph Theory, Non-Abelian Tensor 
Square, Chromatic Number, Diameter 

 

1. Introduction 
This section is divided into three parts. The first part is 

about the non-abelian tensor square, followed by 
properties of graphs and lastly, the perfect code. This 

paper is constructed in the following manners: The first 
section is the Introduction section which includes a 
literature review related to the non-abelian tensor square, 
properties of graphs and perfect code. The second section 
shares some basic concepts and definitions needed, 
followed by the Main Results of the research. The last 
section is the conclusion, followed by the list of 
references. 

1.1. Non-abelian Tensor Square 

The non-abelian tensor square of a group G, G G⊗ , 
is produced by g h⊗ , where ,g h G∈ , with respect to 
the following relations: 

' '( )( )g ggg h g h g h⊗ = ⊗ ⊗  and 
' '( )( ),h hg hh g h g h⊗ = ⊗ ⊗  

for all ' ', , , ,g g h h G∈  with 1
' ' .g g gg g −= Various 

studies have been conducted on the non-abelian tensor 
square of a group. For example, in 2008, Ramachandran 
et al. [1] determined the non-abelian tensor square of the 
symmetric group of order six, S3. They constructed the 
Cayley table of 3 3 ,S S⊗ where the elements are 
(1) (1),⊗  (23) (23),⊗ (23) (12),⊗ (23) (13),⊗
(123) (23),⊗ and (132) (23).⊗  The Cayley table of 

3 3S S⊗  is given in Table 1. Based on Table 1, the centre 
of the non-abelian tensor square of S3 is (1) (1)⊗ . 
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Table 1.  The Cayley table of 3 3S S⊗  

 (1) (1)⊗  (123) (23)⊗  (132) (23)⊗  (23) (23)⊗  (23) (13)⊗  (23) (12)⊗  

(1) (1)⊗  (1) (1)⊗  (123) (23)⊗  (132) (23)⊗  (23) (23)⊗  (23) (13)⊗  (23) (12)⊗  

(123) (23)⊗  (123) (23)⊗  (132) (23)⊗  (1) (1)⊗  (23) (12)⊗  (23) (23)⊗  (23) (13)⊗  

(132) (23)⊗  (132) (23)⊗  (1) (1)⊗  (123) (23)⊗  (23) (13)⊗  (23) (12)⊗  (23) (23)⊗  

(23) (23)⊗  (23) (23)⊗  (23) (12)⊗  (23) (13)⊗  (1) (1)⊗  (123) (23)⊗  (123) (23)⊗  

(23) (13)⊗  (23) (13)⊗  (23) (23)⊗  (23) (12)⊗  (123) (23)⊗  (123) (23)⊗  (1) (1)⊗  

(23) (12)⊗  (23) (12)⊗  (23) (13)⊗  (23) (23)⊗  (123) (23)⊗  (1) (1)⊗  (132) (23)⊗  

 

Besides that, Ghorbanzadeh et al. [2] computed the 
non-abelian tensor square for p-groups focusing on those 
of order p4. They found that the tensor centre contains 
only the group's identity for 2.p ≥  Next, in 2013, Zainal 
et al. [3] found the non-abelian tensor square of groups 
with order p4, where p resembles an odd prime. Finally, in 
2013, Jafari et al. [4] characterised finite p-groups using 
its non-abelian tensor square.  

Most of the researches focused on the generalisation 
and characteristics of the non-abelian tensor square of its 
group. However, until today, there has been no evidence 
of researchers finding the algebraic structure of 
non-abelian tensor square. 

1.2. Properties of Graph 

A graph contains a set of vertices and edges. Many types 
of research have been conducted on graphs related to 
groups, including Cayley, cyclic, power, and order product 
prime graphs. For example, in 2013, Ma et al. [5] 
investigated the finite group's cyclic graph. The vertices of 
the finite group G's cyclic graph are the elements in G. 
Suppose x, y are the vertices of this graph. Then, ,x y  
resemble a cyclic subgroup of G if and only if the vertices x 
and y are adjacent. They found that if G1 is isomorphic to 
G2, then the cyclic graphs for both groups are also 
isomorphic. Moreover, in 2015, Pourghali et al. [6] studied 
the finite group's undirected power graph. This graph 
contains a vertex set, where two vertices are adjacent if one 
of the vertices is the other vertices' power. They found that 
the power graph of a p-group G is 2-connected if and only 
if G resembles a generalised quaternion group or cyclic. 

In 2020, Bello et al. [7] defined a new type of graph 
named the order product prime graph. If | || |x y pα= for 
α ∈  and p prime, then two vertices x and y are 
adjacent, and vice versa. In addition, they found that the 
order of product prime graph of a dihedral group is 
regular and complete if and only if the degree of the group 
is 2α . Meanwhile, if the degree of the dihedral group is
pα for all p, then the order product prime graph of a 

dihedral group is connected.  
All graphs have their own properties. These properties of 

graphs can give many benefits in real-life applications. 
Some of the graph properties are identified first before 
applying them to solve real-life applications. 

In 2006, Miklavič and Potočnik [8] explored the 
properties of the Cayley graph. The distance-regular 
Cayley graphs on dihedral groups have been classified in 
this paper. It turned out that the graph is bipartite and has a 
diameter of 3. Moreover, in 2018, Khormali [9] explored 
the local distinguishing chromatic number. They found that 
the complete graph's local distinguished chromatic number 
of n vertices is indeed n. In 2019, Cardoso et al. [10] also 
studied the properties of the graph. In the paper, the authors 
focused on the coloring of edges for graphs. They only 
investigated the simple graph with two minimum vertices 
and one minimum edge. The injective edge coloring of 
graphs denotes the minimum number of colours required to 
colour three consecutive edges. By considering a graph Γ  
with m edges and n vertices, they also found that the 
injective edge coloring of Γ equals m if and only if Γ  it is 
a complete graph. 

Then, Pham [11] explored the (d,s)-edge coloured 
graph G. If a d-regular graph G follows a proper d-edge 
coloring where every edge of G is contained in at least 
(s-1) 2-colored 4-cycles, then the graph is called as 
(d,s)-edge colourable. They found that 1 2G G G= ×  of a 
graph G1 and G2 resemble a (d,s)-colourable graph having 
certain conditions. Also, Coll et al. [12] explored the 
proper diameter of a graph. They found that the proper 
diameter equals 2m-1, where m is the diameter for any 
properly connected 2-colouring of a cycle graph. Finally, 
Cameron and Jafari [13] studied the independence number 
and connectivity of groups' power graphs. They found that 
the clique cover number and independence number of the 
power group of a group G that has a finite independence 
number is equal. 

The studies on graphs for non-abelian tensor squares 
can lead to many real-life applications. One of the 
applications is in-network. In the review paper by 
Sadavare and Kulkarni in 2012 [14], the graph theory is 
used in creating the shortest path algorithm to increase the 
efficiency of the system. Another application of graph 
theory is in computer science. Apart from that, in 2014, 
Singh [15] reviewed applications of graph theory in 
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computer science and engineering. The concepts in graph 
theory, including graph coloring and directed graphs, can 
be used in the operation system. Then, in 2018, 
Chakraborty [16] explored the application of graph theory 
in social media. The relations of users in social media can 
be observed using the concept in graph theory. Next, 
graph theory also can be used in chemistry. In 2016, 
Prathik et al. [17] reviewed a paper on the application of 
graph theory in chemistry. The molecule structure can be 
studied in detail by transforming it into a graph. 

Some of the properties of the graph are also related to 
perfect code. More literature reviews on perfect code are 
written in the following subsection. 

1.3. Perfect Code 

A subset C of ( )V Γ  denotes a perfect code in the 
graph Γ if and only if C resembles an independent set of 
Γ , where every vertex in ( \ )V G C is adjacent to exactly 
one vertex in C. The perfect code can be found using 
some of its properties. The researches on perfect code 
have been done since the 1970s. 

For example, Biggs in 1974 [18] studied non-trivial 
perfect codes comprising distance-transitive graphs. A 
perfect e-code in a graph denotes a subset C of the graph's 
vertices, where ( )V Γ  forms a partition provided that

( , )u v e∂ ≤  for ( )v V∈ Γ , u C∈  and e is the distance. 
They found that if the graph is distance-transitive, then the 
polynomial of distance must divide the polynomial of 
diameter. Moreover, in 1986, Kratochvíl [19] explored the 
generalisation of perfect codes over graphs. They found 
that there are no non-trivial 1-perfect codes over complete 
bipartite graphs with at least three vertices. 

Perfect code is also known as a perfect domination set. 
In 2001, Lee [20] investigated on perfect domination set 
of the Cayley graph for an abelian group. Let Si and Sj be 
independent domination sets of a group G, where both are 
pairwise mutually disjoint. They found that the order of Si 
and that of Sj are the same. In 2020, Chen et al. [21] 
studied the characterisation of subgroup perfect code in 
Cayley graphs. They found that group G has no 
non-trivial proper subgroup as a perfect code for a group 
of composite order.  

1.4. The Conclusion of the Introduction 

In this paper, a new graph called the non-abelian tensor 
square graph has been introduced. This graph has been 
found for the symmetric group of order six. Moreover, this 
study elaborates some of the graph properties, including 
the diameter, the dominating number and the chromatic 
number that have been computed. Lastly, the perfect 
code for this graph has been determined. 

2. Preliminaries 
Some definitions used throughout this study are stated in 

the following. 

Definition 1.0 [22] Symmetric group 
Let A be the finite set of n letters. The symmetric group 

on n letters, as labelled by Sn has n! elements, which are
! ( 1) ( 2) 3 2 1n n n n= ⋅ − ⋅ − ⋅ ⋅ . Sn consists of the group 

of all permutations of A. 

Definition 2.0 [23] The tensor centre of G 
The tensor centre of a group G, ( )Z G⊗ , is defined as 

follows: 

( ) { : 1 , }Z G g G g x x G⊗
⊗= ∈ ⊗ = ∀ ∈ , 

where 1⊗  is the identity of the non-abelian tensor square 
of G.  

Definition 3.0 [24]  Diameter 
The maximum distance of adjacent vertices of a graph 

Γ is the diameter of Γ . Therefore, the diameter of a graph 
is denoted as ( )diam Γ . 

Definition 4.0 [25] Chromatic number 
The least number of colours used for the colouring of 

two distinct vertices in such a way that no adjacent vertices 
have the same colours is denoted as the chromatic number 

( )χ Γ . 

Definition 5.0 [26] Dominating number 
A set S of vertices for the graph Γ  is a dominating set 

of Γ  provided that all vertices in ( )V SΓ −  are adjacent 
to several vertices in S. A dominating number of Γ , 
denoted as ( )γ Γ  resembles the cardinality of a minimum 
dominating set. 

Definition 6.0 [27] Complete graph 
A complete graph on n vertices nK  resembles a graph 

where every two distinct vertices are adjacent.  
The following section shows the construction and 

finding of properties and perfect code for non-abelian 
tensor square for the symmetric group. 

3. Results and Discussion 
The main results throughout this research are presented 

in this section, starting with a newly introduced notion of 
the non-abelian tensor square graph of a group. 

Definition 6.0 Non-abelian tensor square graph 

Let G be a group and ( )Z G⊗  denotes the tensor center 
of G. The non-abelian tensor square graph of a group G, 
denoted as nts

GΓ , resembles the graph where the set of 
vertices, ( )nts

GV Γ  is \ ( ),G Z G⊗  where any two distinct 
vertices, g and h, are connected if and only if 1g h ⊗⊗ ≠  
for all , .g h G∈  

The tensor center of 3S  is stated in the lemma below.  
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Lemma 1.0 Let

( ) ( ) ( ) ( ) ( ) ( ){ }3   1 , 12 , 23 , 13 , 123 , 132 .S =  Then, the tensor 

center of S3, 3( )Z S⊗  is {(1)}.  
Proof Let (1)g =  and x denote any elements in G. 

Then, (1) 1x ⊗⊗ = for all x in G as in the following:  

(1) (1) (1) (1) 1 ,

(1) (12) (1) (1) 1 ,

(1) (13) (1) (1) 1 ,

⊗

⊗

⊗

⊗ = ⊗ =

⊗ = ⊗ =

⊗ = ⊗ =

 

(1) (23) (1) (1) 1 ,

(1) (123) (1) (1) 1 ,

(1) (132) (1) (1) 1 .

⊗

⊗

⊗

⊗ = ⊗ =

⊗ = ⊗ =

⊗ = ⊗ =

 

Using the relation ' '( )( )g ggg h g h g h⊗ = ⊗ ⊗ , choose 

(123) (123)⊗ and let (123),g =  ' (1),g =  (123).h =  
Then, 

(123)(1) (123) ((1) (123))((123) (123)),

(123) (123) ((1) (123))((123) (123)).

⊗ = ⊗ ⊗

⊗ = ⊗ ⊗
 

Therefore, (1) (123) (1) (1) 1⊗⊗ = ⊗ = . 
The other elements are not in the tensor center for S3. 

Choose \ {(1)}g G∈  and x be any element in G. Then, 

some of the relations are not equal to 1⊗  as in the 
following: 

(12) (23) (1) (1),

(13) (23) (1) (1),

(123) (23) (1) (1),

(132) (23) (1) (1),

(23) (13) (1) (1).

⊗ ≠ ⊗

⊗ ≠ ⊗

⊗ ≠ ⊗

⊗ ≠ ⊗

⊗ ≠ ⊗

 

Therefore, based on Definition 2.0, the tensor center of 
S3 3( )Z S⊗  is {(1)}.  

Next, the non-abelian tensor square graph of S3 is 
constructed using the definition stated in the following 
theorem. 

Theorem 1.0 The non-abelian tensor square graph for S3 
denotes a complete graph with five vertices 5K . 

Proof  Based on Lemma 1.0, the tensor centre of S3 is 
{(1)}. Then, {(1)} is not included in the set of vertices for 
the non-abelian tensor square graph of S3. Hence, the set of 
vertices for the non-abelian tensor square of S3 is given as 
below:  

3
( ) {(12), (23), (13), (123), (132)}nts

SV Γ = . 

The edges of the graph are formed if any two vertices 
satisfy the condition given in Definition 6.0. Using the 
relation, ' '( )( ),g ggg h g h g h⊗ = ⊗ ⊗ the calculations are 
shown below. 

First, choose (132) (23)⊗  and let (12),g = ' (13),g =  
(23).h =  Then, 

( )( )
( )( )

(12)(13) (23) (12)(13)(12) (12)(23)(12) (12) (23) ,

(132) (23) (23) (13) (12) (23) .

⊗ = ⊗ ⊗

⊗ = ⊗ ⊗
 

Based on Table 1, (132) (23)⊗  and (23) (13)⊗ are not 
equal to (1) (1)⊗ . Hence, (12) (23)⊗  it is also not equal 
to (1) (1)⊗ . It is because if (12) (23) (1) (1)⊗ = ⊗ , then  

( )( )(132) (23) (23) (13) (1) (1) ,

(132) (23) (23) (13).

⊗ = ⊗ ⊗

⊗ = ⊗
 

This is a contradiction since (132) (23) (23) (13)⊗ ≠ ⊗ . 
Based on Definition 6.0, the vertices (12) and (23) are 
adjacent in 

3

nts
SΓ .  

Second, we choose (23) (23)⊗  and let (132),g =  
' (12),g =  (23).h =  Then, 

( )( )
( )( )

(132)(12) (23) (132)(12)(123) (132)(23)(122) (132) (23) ,

(23) (23) (13) (12) (132) (23) .

⊗ = ⊗ ⊗

⊗ = ⊗ ⊗
 

Based on Table 1, (23) (23)⊗  and (132) (23)⊗  are 
not equal to (1) (1)⊗ . Hence, (13) (12)⊗  it is also not 
equal to (1) (1)⊗  because if (13) (12) (1) (1)⊗ = ⊗ , then  

( )( )(23) (23) (1) (1) (132) (23) ,

(23) (23) (132) (23).

⊗ = ⊗ ⊗

⊗ = ⊗
 

This is again a contradiction since 

(23) (23) (132) (23)⊗ ≠ ⊗ . 

Based on Definition 6.0, the vertices (13) and (12) are 
adjacent in 

3

nts
SΓ . 

Third, choose (123) (13)⊗  and let (13),g =  
' (12),g =  (23).h =  Then, 

( )( )
( )( )

(13)(12) (23) (13)(12)(13) (13)(23)(13) (13) (23) ,

(123) (23) (23) (23) (13) (23) .

⊗ = ⊗ ⊗

⊗ = ⊗ ⊗  
Based on Table 1, (123) (23)⊗  and (23) (23)⊗ are 

not equal to (1) (1)⊗ . Hence, (13) (23)⊗  is also not 
equal to (1) (1)⊗ . It is because if (13) (23) (1) (1)⊗ = ⊗ , 
then  

( )( )(123) (23) (23) (23) (1) (1) ,

(123) (23) (23) (23).

⊗ = ⊗ ⊗

⊗ = ⊗  
This is a contradiction since (123) (23) (23) (23).⊗ ≠ ⊗  

Based on Definition 6.0, the vertices (13) and (23) are 
adjacent in 

3

nts
SΓ . 

Fourth, choose (13) (23)⊗  and let (123),g =  
' (12),g =  (23).h =  Then, 
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( )( )
( )( )

(123)(12) (23) (123)(12)(132) (123)(23)(132) (123) (23) ,

(13) (23) (23) (13) (132) (23) .

⊗ = ⊗ ⊗

⊗ = ⊗ ⊗

 

Based on Table 1, the inverse of (23) (13)⊗  is 
(23) (12)⊗ . Hence, the product of (23) (13)⊗  and 
(132) (23)⊗  is not equal to (1) (1)⊗ . Therefore, 
(13) (23)⊗  is not equal to (1) (1)⊗ . Based on Definition 

6.0, the vertices (13) and (23) are adjacent in 
3

nts
SΓ .  

Fifth, choose (12) (23)⊗  and let (132),g = ' (13),g =  
(23).h =  Then, 

( )( )
( )( )

(132)(13) (23) (132)(13)(123) (132)(23)(123) (132) (23) ,

(12) (23) (23) (12) (132) (23) .

⊗ = ⊗ ⊗

⊗ = ⊗ ⊗
 

Based on Table 1, the inverse of (23) (12)⊗  is 
(23) (13)⊗ . Hence, the product of (23) (12)⊗  and 
(132) (23)⊗  is not equal to (1) (1)⊗ . Therefore, 
(12) (23)⊗  is not equal to (1) (1)⊗ . Based on Definition 

6.0, the vertices (12) and (23) are adjacent in 
3

nts
SΓ . Using 

the same calculation for all vertices, it is found that 
(1) (1)g h⊗ ≠ ⊗  for all 

3
, ( )nts

Sg h V∈ Γ .  

Therefore, all vertices in 
3

nts
SΓ are adjacent to each other 

and form a complete graph with five vertices 
3 5

nts
S KΓ = .  

Three properties, namely the diameter, the chromatic 
number and the dominating number, can be determined 
from this graph. Based on Theorem 1, the non-abelian 
tensor square graph for S3 is the complete graph with five 
vertices. Hence, every two distinct vertices are adjacent to 
each other. Thus, the maximum distance between two 
distinct vertices is 1. Based on Definition 3.0, the diameter 
for the non-abelian tensor square graph of S3 is 1, as shown 
in Proposition 1.0.  

Proposition 1.0  The diameter for the non-abelian tensor 
square graph of S3 is 1.  

Based on the non-abelian tensor graph of S3, all the 
vertices are adjacent to each other. Thus, the minimum 
colour needed to colour all the vertices so that every 
adjacent vertex has a different colour is 5. Therefore, based 
on Definition 4.0, the chromatic number for the 
non-abelian tensor square graph of S3 is 5, as shown in 
Proposition 2.0.  

Proposition 2.0  The chromatic number for the 
non-abelian tensor square graph of S3 is 5.  

Since the non-abelian tensor graph of S3 is a complete 
graph, then the minimum number of vertices in dominating 
set of 

3

nts
SΓ is 1. Therefore, the dominating number of 

3

nts
SΓ

is 1, as shown in Proposition 3.0. 

Proposition 3.0  The dominating number for the 

non-abelian tensor square graph of S3 is 1.  

Proposition 4.0  Let 
3

nts
SΓ  denote a non-abelian tensor 

square graph of S3. Then, the perfect codes of 
3

nts
SΓ are 

( ) ( ) ( ) ( ) ( ){ 12 },  { 13 },  { 23 },  { 123 },  { 132 }.  

Proof Since 
3

nts
SΓ  is a complete graph with five 

vertices by Theorem 1. Hence, there are five independent 
sets, , 1, 2,3, 4,5iC i =  that can be obtained from 

3
( )nts

SV Γ  
in a way that every vertex is adjacent exactly to one vertex 
in iC  as written in the following form: 

( ){ }
( ){ }
( ){ }
( ){ }
( ){ }

1

2

3

4

5

 12 ,

 13 ,

 23 ,

 123 ,

 132 .

C

C

C

C

C

=

=

=

=

=

 

Therefore, the perfect codes are {(12)}, {(13)}, {(23)}, 
{(123)} and {(132)}.  

4. Conclusions 
The non-abelian tensor square graph for the symmetric 

group of order six, S3 is found to be a complete graph with 
five vertices. Then, the properties of the graph are 
determined where the diameter is one, the dominating 
number is one, and the chromatic number is five. The 
perfect codes are {(12)}, {(13)}, {(23)}, {(123)}, {(132)}. 
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