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Abstract The unity product graph of a ring R is a graph
which is obtained by setting the set of unit elements of R as the
vertex set. The two distinct vertices ri and rj are joined by an
edge if and only if ri ·rj = e. The subgraphs of a unity product
graph which are obtained by the vertex and edge deletions are
said to be its induced and spanning subgraphs, respectively.
A subset C of the vertex set of induced (spanning) subgraph
of a unity product graph is called perfect code if the closed
neighbourhood of c, S1(c) forms a partition of the vertex set
as c runs through C. In this paper, we determine the perfect
codes in the induced and spanning subgraphs of the unity
product graphs associated with some commutative rings R
with identity. As a result, we characterize the rings R in such
a way that the spanning subgraphs admit a perfect code of
order cardinality of the vertex set. In addition, we establish
some sharp lower and upper bounds for the order of C to be a
perfect code admitted by the induced and spanning subgraphs
of the unity product graphs.

Keywords Commutative Ring, Unity Product Graph,
Induced Subgraph, Spanning Subgraph, Perfect Code

1 Introduction
All graphs studied in this research are simple and undirected.

Let Γ = (V,E) be a graph. A graph S is called a subgraph of
Γ, written S ⊆ Γ, if V (S) ⊆ V (Γ) and E(S) ⊆ E(Γ). A
subgraph of Γ is called spanning if it is obtained only by edge
deletions and is called induced if it is obtained only by vertex
deletions.

Associating simple and undirected graphs with rings has

been thoroughly studied, for instance, the well-known zero di-
visor graph has a very long background in the past research
on graphs of rings. The research on combinatorial structure
(graph) associated with algebraic structures (ring) has first been
proposed in [1]. It has further been investigated by Anderson
and Livingston in [2]. In 2010, another combinatorial struc-
ture, named unit graph for a ring was introduced by [3] and its
properties such as domination number [4], planarity [5], girth
[6], diameter [7] and Hamiltonian [8] were further investigated.

Given Γ = (V,E). For every x ∈ V (Γ), the closed neigh-
bourhood of the vertex x is denoted by S1(x) and is defined
as S1(x) = {y ∈ V (Γ) : d(x, y) ≤ 1}. For the given Γ,
every C ⊆ V (Γ) is called a code. A code C is said to be
perfect if S1(x) ∩ S1(y) = ∅ for all distinct x, y ∈ Cand⋃

S1(x) = V (Γ) for all x ∈ C. The study of perfect codes
in various graphs [9, 10, 11, 12, 13] is evolved from the re-
search in [14], which in turn has roots in the theory of cod-
ing [15]. This concept forms an interesting branch of com-
binatorics which can be linked with group theory, ring theory
and module theory among others. In recent years, the research
of perfect codes in algebraic graphs got much attention and
this notion have been extensively investigated in Cayley graphs
of groups [16, 17, 18, 19], power and power reduced power
graphs of groups [20, 21]. However, there are limited number
of researches concentrating on investigating the perfect codes
in graphs of rings (see, [22, 23]).

In this paper, the perfect codes in the induced and span-
ning subgraphs of unity product graphs of commutative rings
with identity are studied. We characterize all commutative
rings whose induced and spanning subgraphs of unity product
graphs admit a perfect code of order cardinality of the vertex
set. Moreover, we establish some sharp lower and the upper
bounds for the order of C to be a perfect code in induced and
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spanning subgraphs of the unity product graphs.

2 Perfect Codes in Spanning Sub-
graphs of Unity Product Graphs

In this section, some results are established on determining
the perfect codes in spanning subgraphs of the unity product
graphs associated with some commutative rings with identity.

Proposition 2.1. Let Γs(R) be a spanning subgraph of Γ
′
(R)

and C a perfect code in Γs(R), then C = U(R) if and only if
any of the following hold:
(1) R ∼= Z2,
(2) R ∼= Z2 × Z2 × Z2 × · · · × Z2,
(3) R ∼= Z2 × Z2 × Z2 × · · · .
(4) R ∼= Zk, where k > 2 is a divisor of 24.
(5) R is a reduced ring of Char(R) = 0 with |U(R)| = 2.

Proof. (1)-(3) If R is isomorphic to either R ∼= Z2 or
R ∼= Z2 × Z2 × Z2 × · · · × Z2 or R ∼= Z2 × Z2 × Z2 × · · · ,
then U(R) = {e} and thus Γ

′
(R) = K1. Hence, Γs(R)

is also a K1, because V (Γ
′
(R)) = V (Γs(R)). Since,

V (Γs(R)) = {e}, it follows that S1(e) = V (Γs(R)). There-
fore, C = U(R) = {e}, which is trivial.
(4) If R ∼= Zk, k > 2 and k|24, then every elements of
U(R) is self-inverse. Since V (Γ

′
(R)) = U(R), it follows

that Γ
′
(R) is a K̄r graph, where r = |U(R)|. Similarly,

since V (Γ
′
(R)) = V (Γs(R)), this implies that Γs(R) is

also a K̄r graph. Let V (Γs(R)) = {a1, a2, a3, · · · , ar},
then the closed neighbourhoods of ai ∈ V (Γs(R)) yield that
S1(ai) ∩ S1(aj) = ∅ for all ai ̸= aj , ai, aj ∈ V (Γs(R)) and⋃r

k=1 S1(ai) = V (Γs(R)). Hence, C = U(R). (5) Assume
R is a reduced ring of Char(R) = 0 with |U(R)| = 2, then
V (Γs(R) = V (Γ

′
(R) = {e,−e}. Since e · (−e) ̸= e, it

follows that Γs(R) = 2K1. To show C = U(R) is the perfect
code in Γs(R), it follows from the proof of part(4).
Conversely if C = U(R), thus S1(ai) = {ai} for all ai ∈ C.
Hence, based on S1(ai) the spanning subgraph Γs(R) is
either a K1 or a K̄r graph, which implies R is isomorphic
to either R ∼= Z2 or R ∼= Z2 × Z2 × Z2 × · · · × Z2 or
R ∼= Z2 ×Z2 ×Z2 × · · · or R ∼= Zk, where k > 2 is a divisor
of 24 or R is a reduced ring of Char(R) = 0 with |U(R)| = 2.

Theorem 2.1. Let Γs(R) be a spanning subgraph of Γ
′
(R)

and C a perfect code in Γs(R). Then, 2m−2+2 ≤ |C| ≤ 2m−1

if R ∼= Z2m for m ≥ 3.

Proof. If R ∼= Z2m , m ≥ 3, then |U(R)| = 2m−1. Since, R
contains four elements which are self-inverses, it follows that
Γ

′
(R) =

⋃2m−2−2
i=1 K2 ∪ K̄4. Suppose that Γs(R) is the span-

ning subgraph of Γ
′
(R), thus V (Γs(R)) = V (Γ

′
(R)). By

deleting 2m−2 − 2 edges of Γ
′
(R), then 2m−2 − 2 + 1 =

2m−2 − 1 distinct spanning subgraphs including Γ
′
(R) are ob-

tained. By deleting one edge of Γ
′
(R) at each stage, the edges

of Γ
′
(R) will be deleted in 2m−2 − 2 stages. This yields the

following spanning subgraphs:

Γs
1(R) =

2m−2−2⋃
i=1

K2 ∪ K̄4 = Γ
′
(R) (1)

Γs
2(R) =

2m−2−3⋃
i=1

K2 ∪ K̄6 (2)

Γs
3(R) =

2m−2−4⋃
i=1

K2 ∪ K̄8 (3)

...
Γs
(r)(R) =K̄2m−1 (r),

where r = 2m−2 − 1. According to (1), (2), · · · , (r), Γs
1(R)

has the minimum independence number and Γs
(2m−2−1)(R) has

the maximum independence number. Suppose that Γs
1(R) =

Γ
′
(R), thus Γs

1(R) contains 2m−2−2+4 = 2m−2+2 number
of independence vertices. Let C ⊆ Γ

′
(R) be a code, then

C = {rj : rj is an independence number of Γs
1(R)} is an

order 2m−2 + 2 perfect code in Γs
1(R) since it satisfies the

conditions S1(rj) ∩ S1(rk) = ∅ for all distinct rj , rk ∈ C

and
⋃2m−2+2

j=1 S1(rj) = V (Γs(R)) for all rj ∈ C. Hence,
|C| ≥ 2m−2 + 2, and therefore, we got a lower bound for |C|.

Similarly, let Γs
2m−2−1(R) = K̄2m−1 , then

Γs
2m−2−1(R) contains 2m−1 independence vertices,

that is in this case all the vertices of Γs
2m−2−1(R)

are isolated. Let C ⊆ Γ
′
(R) be a code, thus

C = {rj : rj is an independence number of Γs
(2m−2−1)(R)}

is an order 2m−1 perfect code in Γs
2m−2−1(R) since it satisfies

the conditions S1(rj) ∩ S1(rk) = ∅ for all distinct rj , rk ∈ C

and
⋃2m−1

j=1 S1(rj) = V (Γs(R)) for all rj ∈ C. Hence,
|C| ≤ 2m−1, and therefore, we got an upper bound for |C|.
Therefore, 2m−2 + 2 ≤ |C| ≤ 2m−1.

The results found in Theorem 2.1 can be generalized for any
commutative ring whose associated unity product graph con-
tains only four isolated vertices. This result is stated in Corol-
lary 2.1.

Corollary 2.1. Let Γs(R) be the spanning subgraph of Γ
′
(R)

and C a perfect code in Γs(R). Then, k + 2 ≤ |C| ≤ 2k if
Γ

′
(R) contains four isolated vertices and |V (Γ

′
(R))| = 2k,

for all k ≥ 2.

Theorem 2.2. If Γs(R) is a spanning subgraph of Γ
′
(R) and

C a perfect code in Γs(R). Then, p+1
2 ≤ |C| ≤ p− 1 if R is a

division ring with O(R) = p, p is an odd prime.

Proof. Assume R is a division ring with O(R) = p, where
p ≥ 3 is prime. Then, all non-zero elements of R are units,
i.e. U(R) = {ri : ri ̸= 0}. Since R is a division ring, it
follows that it contains the identity element e such that e·ri ̸= e
for all ri ̸= e. Similarly, R contains the element −e such
that −e · ri ̸= e for all ri ̸= −e. Also, there exist distinct
unique elements ri, rj ∈ V (Γ

′
(R)) \ {e,−e} such that ri ·
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rj = e, meaning that {ri, rj} form an edge of Γ
′
(R). Hence,

Γ
′
(R) =

⋃ p−3
2

i=1 K2 ∪ K̄2. Suppose that Γs(R) is the spanning
subgraph of Γ

′
(R), then V (Γs(R)) = V (Γ

′
(R)). It means that

by deleting p−3
2 edges of Γ

′
(R), we get that p−3

2 + 1 = p−1
2

distinct spanning subgraphs including Γ
′
(R) are obtained. If

we delete one edge of Γ
′
(R) at each stage, then the edges of

Γ
′
(R) can be deleted in p−3

2 stages. This yields the following
spanning subgraphs:

Γs
1(R) =

p−3
2⋃

i=1

K2 ∪ K̄2 = Γ
′
(R) (1)

Γs
2(R) =

p−5
2⋃

i=1

K2 ∪ K̄4 (2)

Γs
3(R) =

p−7
2⋃

i=1

K2 ∪ K̄6 (3)

...

Γs
p−1
2

(R) =K̄p−1 (
p− 1

2
)

Based on Equations (1), (2), · · · , p−1
2 , Γs

1(R) has the
minimum independence number and Γs

( p−1
2 )

(R) has the

maximum independence number. Let Γs
1(R) = Γ

′
(R),

thus Γs
1(R) contains p+1

2 number of independence ver-
tices. Let C ⊆ Γ

′
(R) be a code, thus C = {rk :

rk is an independence number of Γs
1(R)} is an order p+1

2 per-
fect code in Γs

1(R) since it satisfies the conditions S1(rk) ∩
S1(rl) = ∅ for all distinct rk, rl ∈ C and

⋃ p+1
2

k=1 S1(rk) =
V (Γs

1(R)) for all rk ∈ C. Hence, |C| ≥ p+1
2 , and therefore,

we got a lower bound for |C|.
Similarly, let Γs

( p−1
2 )

(R) = K̄p−1, then Γs
( p−1

2 )
(R) contains

p − 1 independence vertices. That is in this case, all the ver-
tices of Γs

( p−1
2 )

(R) are isolated. Let C ⊆ Γ
′
(R) be a code,

thus C = {rk : rk is an independence number of Γs
p−1
2

(R)}
is an order p − 1 perfect code in Γs

( p−1
2 )

(R) since it satisfies

the conditions S1(rk) ∩ S1(rl) = ∅ for all distinct rk, rl ∈ C

and
⋃p−1

k=1 S1(rk) = V (Γs
( p−1

2 )
(R)) for all rk ∈ C. Hence,

|C| ≤ p − 1, and therefore, we got an upper bound for |C|.
Therefore, p+1

2 ≤ |C| ≤ p− 1.

The obtained results in Theorem 2.2 can be generalized for
any commutative ring whose associated unity product graph
contains only two isolated vertices. This result is given in the
following corollary.

Corollary 2.2. Let Γs(R) be the spanning subgraph of Γ
′
(R)

and C a perfect code in Γs(R). Then, k + 1 ≤ |C| ≤ 2k if
Γ

′
(R) contains two isolated vertices and |V (Γ

′
(R))| = 2k, for

all k ≥ 1.

3 Perfect Codes in Induced Subgraphs
of Unity Product Graphs

In this section, some results are established on determining
the perfect codes in induced subgraphs of the unity product
graphs associated with some commutative rings with identity.

Proposition 3.1. Let Γi(R) be a connected induced subgraph
of Γ

′
(R) and C a perfect code in Γi(R). Then, C is trivial.

Proof. Assume Γ
′
(R) is the unity product graph of R, thus

V (Γ
′
(R)) = U(R) and E(Γ

′
(R)) = {{ri, rj} : ri · rj =

e for all ri ̸= rj}. Based on the vertex adjacency of Γ
′
(R),

the only connected induced subgraph of Γ
′
(R) is K2. Let r1

and r2 be the endpoints vertices of Γi(R), it follows that an
independence vertex set of Γi(R) is C = {r1}. Consequently,
C is a trivial perfect code, since S1(r1) = V (Γi(R)).

Theorem 3.1. Let Γi(R) be an induced subgraph of Γ
′
(R)

which contains no isolated vertices and C a perfect code in
Γi(R). Then, 1 ≤ |C| ≤ p−3

2 if R is a division ring with
O(R) = p, p ≥ 5 is prime.

Proof. Assume Γ
′
(R) is the unity product graph as-

sociated with a division ring R with O(R) = p,
where p ≥ 5 is prime, thus V (Γ

′
(R)) = U(R) and

E(Γ
′
(R)) = {{ri, rj} : ri · rj = e for all ri ̸= rj}. Based on

the vertex adjacency of Γ
′
(R), then Γ

′
(R) =

⋃ p−3
2

i=1 K2 ∪ K̄2.
Since Γi(R) contains no isolated vertices, it follows that

Γi(R) =
⋃ p−3

2
i=1 K2. For p ≥ 5, we list all induced subgraphs

as follows:

Γi
1(R) =K2. (1)

Γi
2(R) =

2⋃
m=1

K2. (2)

Γi
4(R) =

4⋃
m=1

K2. (4)

...

Γi
p−3
2

(R) =

p−3
2⋃

m=1

K2. (
p− 3

2
)

Let Γi
1(R) = K2, thus Γi

1(R) contains one independence num-
ber. Suppose C ⊆ V (Γi

1(R)) is a code, then C = {rk :
rk is an independence number of Γi

1(R)} is an order 1 perfect
in Γi

1(R), since S1(rk) = V (Γi
1(R)) for rk ∈ C. This forms

the lower bound for C, i.e. |C| ≥ 1.

Similarly, let Γi
p−3
2

(R) =
⋃ p−3

2
m=1 K2, thus Γi

p−3
2

(R) con-

tains p−3
2 independence number. Suppose that C = {rk :

rk is an independence number of Γi
p−3
2

(R)}, thus the closed

neighbourhood of the vertices rk ∈ C with radius 1, S1(rk),
partitions the vertex set V (Γi

p−3
2

(R)) into p−3
2 disjoint sets,
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meaning that S1(rk) ∩ S1(rl) = ∅ for all rk ̸= rl, rk, rl ∈ C

and
⋃ p−3

2

k=1 S1(rk) = V (Γi
p−3
2

(R)) for all rk ∈ C. Hence, C

is an p−3
2 order perfect code, which forms the upper bound for

C, i.e. |C| ≤ p−3
2 .

Theorem 3.2. Let Γi(R) be an induced subgraph of Γ
′
(R)

and C a perfect code in Γi(R). Then, 1 ≤ |C| ≤ k + 1, if
|V (Γ

′
(R))| = 2k, k ≥ 1 and Γ

′
(R) contains two isolated

vertices.

Proof. Suppose Γ
′
(R) contains two isolated vertices, it fol-

lows that Γ
′
(R) contains 2k − 2 non-isolated vertices, since

|V (Γ
′
(R))| = 2k. Since U(R) is an inverse closed set, it

shows that Γ
′
(R) is consisting of 2k−2

2 = k − 1 copies of
K2 with two copies of K1, that is Γ

′
(R) =

⋃k−1
m=1 K2 + 2K1.

Let Γi(R) be an induced subgraph of Γ
′
(R), thus by delet-

ing one endpoint vertex for each K2, an induced subgraph
with a maximum independence number is obtained, which is
Γi(R) = (k+1)K1. Similarly, by deleting k− 2 copies of K2

with two isolated vertices, an induced subgraph with a mini-
mum independence number is obtained, which is Γi(R) = K2.
If Γi(R) = K2, then by Theorem 3.1, |C| = 1, which forms
the lower bound for C. Similarly, if Γi(R) = (k + 1)K1, then
S1(rm) = {rm} for every rm ∈ Γi(R), which satisfies the
conditions S1(rm) ∩ S1(rl) = ∅ for all rm ̸= rl, rm, rl ∈
V (Γi(R)) and

⋃k+1
m=1 S1(rm) = V (Γi(R)). Hence, C =

V (Γi(R)) is an order k+1 perfect code, which forms the upper
bound for C, i.e. |C| ≤ k + 1.

Theorem 3.3. Let Γi(R) be an induced subgraph of Γ
′
(R)

and C a perfect code in Γi(R). Then, 1 ≤ |C| ≤ k + 2, if
|V (Γ

′
(R))| = 2k, k ≥ 2 and Γ

′
(R) contains four isolated

vertices.

Proof. Suppose Γ
′
(R) contains four isolated vertices, thus ac-

cording to V (Γ
′
(R)) the number of non-isolated vertices of

Γ
′
(R) is 2k−4. Since U(R) is an inverse closed set, it follows

that Γ
′
(R) is a graph consisting of 2k−4

2 = k − 2 copies of
K2 with four copies of K1, that is Γ

′
(R) =

⋃k−2
m=1 K2 + 4K1.

Let Γi(R) be the induced subgraph of Γ
′
(R), thus by delet-

ing one endpoint vertex for each K2, an induced subgraph
with a maximum independence number is obtained, which is
Γi(R) = (k+2)K1. Similarly, by deleting k− 3 copies of K2

with four isolated vertices, an induced subgraph with a mini-
mum independence number is obtained, which is Γi(R) = K2.
If Γi(R) = K2, then by Theorem 3.1, |C| = 1, which forms
the lower bound for C. Similarly, if Γi(R) = (k + 2)K1, then
S1(rm) = {rm} for every rm ∈ Γi(R), which satisfies the
conditions S1(rm) ∩ S1(rl) = ∅ for all rm ̸= rl, rm, rl ∈
V (Γi(R)) and

⋃k+2
m=1 S1(rm) = V (Γi(R)). Hence, C =

V (Γi(R)) is an order k+2 perfect code, which forms the upper
bound for C, i.e. |C| ≤ k + 2.

4 Conclusion
In this paper, the perfect codes in the induced and the span-

ning subgraphs of the unity product graphs associated with

some commutative rings R with identity have been deter-
mined. We find that the the spanning subgraphs admit a per-
fect code of order cardinality of the vertex set if R ∼= Z2 or
R ∼= Z2 ×Z2 ×Z2 × · · · ×Z2 or R ∼= Z2 ×Z2 ×Z2 × · · · or
R ∼= Zk, where k > 2 is a divisor of 24. However, for the rings
R which are not as the same forms, we established some sharp
lower and upper bounds for the order of C to be a perfect code
admitted by the induced and spanning subgraphs of the unity
product graphs.
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