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ABSTRACT— In the field of algebra, the application of probability theory in ring theory has been widely 

studied by various researchers. In this paper, a type of probability in finite rings, namely the zero product 

probability is determined for some ring of 2 2  matrices with a single nonzero entry. To obtain the zero 

product probability, the exact order of the annihilator of a ring R needs to be first determined. The 

annihilator of R is defined as the set of pairs of elements, where the product of elements in each pair is the 

zero element of R. The general formula for the exact order is established using the linear congruence method 

as well as Euler’s phi-function. The zero product probability of R is then found by dividing the exact order 

of the annihilator by the square of the order of R. Besides that, a subset of the annihilator, which is the 

square-annihilator that only focuses on the square attributes of the annihilator is also determined for the 

same ring. The exact order of the square-annihilator is then used to find the squared-zero product probability 

of R. 
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1. INTRODUCTION 

The study of ring theory has long become a topic of interest for various researchers in the field of algebra. 

Many interesting subjects of a ring have been studied as of today, including the studies on ideals, zero 

divisors, and annihilators of a ring. In this paper, our focus is to study the zero product property of a finite 

ring of matrices. This zero product property of a ring has opened up various studies in finite rings, one of 

them being the zero divisor graph, introduced by [1] in 1988. The zero divisor graph is a graph where its 

vertices are the zero divisors of a finite ring, and two vertices are adjacent if and only if their product is zero 

[2]. Much research was done on the zero divisor graph to explore its interesting features. Eventually, the 

studies done on the zero divisor graph helped [3] to gain an idea in introducing the zero product probability, 

which is the probability that two elements of a finite ring have product zero. 

 

In determining the zero product probability of a finite ring, the annihilator of the ring plays an important 

role. An annihilator is defined as the set of pairs of elements of a ring R where the product of the elements 

in a pair is the zero element of R [3]. In other words, the annihilator of a finite ring highlights the zero 

product property of the ring. 

 

In this paper, the exact order of the annihilator is determined for some ring of matrices of dimension two 

and then the zero product probability of the ring is determined. Besides that, a new type of annihilator of 

finite rings is introduced, namely the square-annihilator. Eventually, a new type of probability in finite rings 

is defined based on the definition of the square-annihilator, namely the squared-zero product probability. 



N. Zaid, N. H. Sarmin and S. M. S. Khasraw, 2023                                                                                KZYJC 

 

2320 

 

This paper consists of four main sections. The first section is the introduction, followed by some literature 

review on the probabilities related to finite rings which are given in the second section. Then, the third 

section presents the research methodology used in determining the results of this study, including the 

Euler’s phi-function. Lastly, the fourth section presents the results obtained in this study. 

 

2. Some Probabilities Associated with Finite Rings 

Recent years have seen a significant increase in studies on probabilities related to finite rings. It was started 

back in 1976 when [4] determined the probability that two random elements of a ring commute for 

noncommutative rings. The probability is written as 
2

|{ | }|
( ) ,

| |

x R xr rx
P R

R

 
 where x and r are the 

elements of the noncommutative ring R.  

 

Much later in 2014, [5] precisely defined the commuting probability of a finite ring R given as 

2

|{( , ) | }|
Pr( ) ,

| |

x y R R xy yx
R

R

  
  where R is a finite ring and |R| denotes the cardinality of R. 

 

Another study of commuting probability in rings has been done by [6] in 2017. In the study, the commuting 

probability is generalized as the relative commuting probability of the subring S in a finite ring R and the 

mathematical formula is given by: 
|{( , ) | }|

Pr( , ) .
| |

s r S R sr rs
S R

S R

  



 

 

Then, [7] formally defined it as the relative commutativity degree of finite rings which is the probability that 

a randomly chosen pair of elements one from a subset S of a ring R and the other from R commute. The 

relative commutativity degree of a finite ring can be mathematically written as

|{( , ) | }|
Pr( , ) ,

| || |

x y S R xy yx
S R

S R

  
 where S is a subring of a finite ring R. 

 

For many years, researchers were mainly focusing on the commuting probability of finite rings. In 2019, [8] 

studied another type of probability called the probability of product in the ring of integers 
n
, where the 

aim was to obtain a desirable product in finite commutative rings, specifically .n
 The probability, denoted 

as ( ),m nP  is the probability that the product of two randomly chosen elements of n , say ,x y  is ,m  

where m  is fixed. The probability is written as 
|{( , ) | }|

( ) .
| |

n n
m n

n n

x y x y m
P

   



 

 

From the study, [8] had found several interesting results which includes the resemblance of the probability 

with the Chinese Remainder Theorem for some cases when m  is fixed as 0 or 1. In general, the authors 

found that the computation of the probability in 
n
 is mainly related to the greatest common divisor, 

gcd( , )x n  of any element x  in .n
 

 

Another probability associated to the product of ring elements had been introduced by [3]. The author 

defined the probability that the product of two randomly chosen elements in a finite ring is zero. The study 

was done on finite commutative rings with identity 1. The definition of the probability is given in the 

following. 

 

Definition 2.1 [3] Let R be a finite commutative ring. The probability that two elements chosen at random 
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(with replacement) from a ring R have product zero, 
|{( , ) | 0}|

( ) .
| |

x y R R xy yx
P R

R R

   



 

 

Then, [9] extended the probability that two elements of a finite ring have product zero, focusing on 

noncommutative ring. Following the study, the probability is then named as the zero product probability. 

The definition of the zero product probability of noncommutative rings is given as follows: 

 

Definition 2.2 [9] Let R be a noncommutative ring. Then, the zero product probability of R, 

|{( , ) | 0}|
( ) .

| |

x y R R xy
P R

R R

  



 

 

In this paper, our focus is to determine the zero product probability of the ring of 2 2  matrices over 

integers modulo 
np  with a single nonzero entry, where p is prime and n is any positive integer. The 

methods of obtaining the zero product probability is given in the next section. 

 

3. Research Methodology 

The results in this paper are divided into two main parts which are determining the general formulas for the 

order of the annihilator and square-annihilator of some finite ring of matrices, as well as finding the general 

formula in computing the zero product probability and squared-zero product probability of the ring. 

 

Firstly, the general formula for computing the order of the annihilator of the ring of 2×2 matrices over 

integers modulo 
np  with a single nonzero entry, denoted as R, is determined using the definition of the 

annihilator. Since the ring considered is a noncommutative ring, the definition of the annihilator of a 

noncommutative ring is provided as follows: 

 

Definition 3.1 Let R be a noncommutative ring. Then, the annihilator of R is the set of ordered pairs 

( , )x y R R   such that 0.xy   Mathematically, the set is written as:  ( ) ( , ) | 0 .Ann R x y R R xy     

 

To form the general formula, a linear system is formed based on the product of the matrices. The linear 

system is then solved using the linear congruence method, where the number of possible solutions of the 

system is obtained. The number of possible solutions is the order of the annihilator for each form. The 

following theorem states the method of determining the number of solutions of a linear congruence, by 

using the greatest common divisor of two constants. 

 

Theorem 3.1 [10] The linear congruence  (mod )ax b n  has a solution if and only if | ,d b  where 

gcd( , ).d a n  If | ,d b  then the congruence has d mutually incongruent solutions modulo n. 

 

Also, to solve the linear congruence system, the Euler’s phi-function plays a significant role in determining 

the number of solutions of the congruence. The Euler’s phi-function is provided as follows: 

 

Definition 3.2 [10] The Euler’s phi-function, denoted as ( ),n  is the number of positive integers less than 

or equal to n that are relatively prime to n, for 1.n   

 

The following theorem gives the formula to directly calculate the value of ( )n  for prime-power integers. 
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Theorem 3.2 [10] Let p is a prime and k is any positive integer, then   1 1
1 .k k k kp p p p

p
   

    
 

 

 

Next, the general formula for the zero product probability of R is formed using the Definition 2.2. To form 

the general formula, the results on the order of the annihilator which have been found earlier are used.  

 

Apart from that, a new type of annihilator is defined on finite rings, namely the squared-annihilator. The 

definition of the square-annihilator of a finite ring is given as follows: 

 

Definition 3.3 Let R be a finite ring. Then, the square-annihilator of R is the set of ordered pairs 

( , )x x R R   such that 0.xx   Mathematically, the set is written as:  ( ) ( , ) | 0 .sqAnn R x x R R xx     

 

To find the exact order of the square-annihilator of R, the same method as finding the exact order of the 

annihilator of R is used. 

 

Next, based on the definition of the squared-annihilator of R, a new type of probability, namely the squared-

zero product probability is found for R. The definition of the squared-zero product probability is given 

below. 

 

Definition 3.4 Let R be a finite ring. Then, the squared-zero product probability of R is: 

|{( , ) | 0}|
( ) .

| |
sq

x x R R xx
P R

R R

  



 

 

4. Results and Discussions 

This section presents the results of this study, which includes the order of the annihilator, the order of the 

square-annihilator, the zero product probability as well as the squared-zero product probability of R. 

 

4.1 The Order of the Annihilator of R 

In this subsection, the order of the annihilator of R, denoted as ( ),Ann R  is computed and its general formula 

is found by using the Euler’s phi-function, as stated in the following theorem. 

 

Theorem 4.1 Given a ring 1 2

1 2 3 4

3 4

, , , {0}np

y y
S y y y y

y y

   
    

   

 and the ring 

0
{0}

0 0
np

x
R x

   
    

   

 is a subset of S. Then, the order of the annihilator of R, 
4 1 3 1| ( ) | .n nAnn R p p    

 

Proof. First, the number of possible elements X R  and Y S  where 
0 0

0 0
XY

 
  
 

 is determined by using the 

following matrix multiplication. 

 

 
1 2

3 4

0 0 0
(mod ).

0 0 0 0

n
y yx

p
y y

    
    

    
 

This gives the following linear congruences. 
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  1 0 (mod )nxy p  (4.1) 

 
2 0 (mod ),nxy p  (4.2) 

where 
3y  and 

4y  can be any element in .np
 

 

To solve the congruences, the proof is divided into n cases, which are when 2 2gcd( , ) 1, , , , ,n nx p p p p    

1.np 
 

 

Case 1: When gcd( , ) 1.nx p   

Based on Theorem 3.2, it is found that there are 1n np p   possible values of x  where gcd( , ) 1.nx p    

Hence, the number of possible elements of X, 1| | .n nX p p    Next, to find | |,Y  based on Theorem 3.1, the 

number of solution for the entries 
1y  and 

2y  is 1 2| | | | gcd( , ) 1.ny y x p    Then, based on Congruence 4.1 

and Congruence 4.2, 3 4| | | | .ny y p   Thus, for this case, the order of the annihilator, 

1 3 3 1| ( ) | | || | ( )(1)(1)( )( ) .n n n n n nAnn R X Y p p p p p p       

 

Case 2: When gcd( , ) .nx p p  

Based on Theorem 3.2, 
1 2| | .n nX p p    Next, to find | |,Y  based on Theorem 3.1, the number of solution 

for the entries 1y  and 2y  is 1 2| | | | gcd( , ) .ny y x p p    Meanwhile, based on Congruence 4.1 and 

Congruence 4.2, 3 4| | | | .ny y p   Thus, for this case, the order of the annihilator, 

1 2| ( ) | ( )( )( )( )( )n n n nAnn R p p p p p p  
3 1 3 .n np p   

 

For the next cases, namely Case 3, Case 4, ,  Case 1,n  the proof follows where the number of possible 

elements in X is found based on Theorem 3.2, while the number of solutions for the entries 1y  and 2y  is the 

greatest common divisor of x  and .np  The calculations for Case 1n  is provided in the following. 

 

Case 1n : When 
2gcd( , ) .n nx p p   

Based on Theorem 3.2, 2| | .X p p   Next, to find | |,Y  based on Theorem 3.1, the number of solution for 

the entries 1y  and 2y  is 
2

1 2| | | | gcd( , ) .n ny y x p p     Meanwhile, based on Congruence 4.1 and Congruence 

4.2, 3 4| | | | .ny y p   Thus, for this case, the order of the annihilator, 

2 2 2| ( ) | ( )( )( )( )( )n n n nAnn R p p p p p p   4 2 4 3.n np p    

 

This then leads to the last case, illustrated in the following. 

 

Case n : When 
1gcd( , ) .n nx p p   

Based on Theorem 3.2, | | 1.X p   Next, to find | |,Y  based on Theorem 3.1, the number of solution for 

the entries 1y  and 2y  is 
1

1 2| | | | gcd( , ) .n ny y x p p     Meanwhile, based on Congruence 4.1 and Congruence 

4.2, 3 4| | | | .ny y p   Thus, for this case, the order of the annihilator of R, 

1 1| ( ) | ( 1)( )( )( )( )n n n nAnn R p p p p p   4 1 4 2.n np p    
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Now combining all cases from Case 1 until Case n, the order of the annihilator,  

 
3 3 1 3 1 3 3 1 4 3 4 2 4 3 4 1 4 2| ( ) | .n n n n n n n n n nAnn R p p p p p p p p p p                   

 

By telescoping sum, 

 
4 1 4 2 4 2 4 3 4 3 3 1 3 1 3 3 3 1| ( ) | ( ) ( ) ( ) ( )n n n n n n n n n nAnn R p p p p p p p p p p                   

                             
4 1 3 1.n np p      

 

4.2 The Order of the Square-Annihilator of R 

In this subsection, the order of the square-annihilator of R, denoted as ( ),sqAnn R  is computed and its 

general formula is found as stated in the following theorem. 

 

Theorem 4.2 Given a ring 
0

{0} .
0 0

np

x
R x

   
    

   

 Then, the order of the square-annihilator of R,  

 

2

1

2

1;    when  is even,
| ( ) |

1;  when  is odd. 

n

sq n

p n
Ann R

p n





 
 

 

 

Proof. To obtain the possible elements {0},np
x   the following matrix multiplication is considered. 

 
0 0 0 0

(mod ),
0 0 0 0 0 0

n
x x

p
     

     
     

 

which is then written as 
2 0 (mod ).nx p  When n is even, n can be written as 2m, where m is any positive 

integer. Eventually, 
2 ( )( ).n m m mp p p p   Hence, when n is even, 

np  is a perfect square. Solving for ,x   

                                                          
2 0 (mod )mx p  

 

1  times

,2 ,3 , ,( 1) .
m

m m m m m

p

x p p p p p



   

Thus, when n is even, 2| ( ) | 1 1.
n

m

sqAnn R p p     

 

Meanwhile, when n is odd, it can be written as 2 1.m  Eventually, based on the fundamental theorem of 

arithmetic, 
np  can be represented as a product of prime numbers: 

2 1 ( )( )( ).n m m mp p p p p   Solving for 

,x  the calculations are divided into two forms. The first form is 
2 0(mod ),x p  which has no solution in 

{0}.np
  Then, the second form is 

2 0 (mod ),mx p  which results in 

1  

,2 ,3 , ,( 1) .
m

m m m m m

p times

x p p p p p



   

 

Therefore, the order of the square-annihilator when n is odd, 

1 1
1

1 2 2| ( ) | 1 1 1.
n n

m

sqAnn R p p p
 


         

 

4.3 The Zero Product Probabilities of R 

In this subsection, the zero product probability and squared-zero product probability of R are determined by 

using their definitions. 
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Theorem 4.3 Given a finite ring 
0

{0} .
0 0

np

x
R x

   
    

   

 Then, the zero product probability of R, 

 
4 9 3 9( ) .n nP R p p    

 

Proof. Based on Theorem 4.1, the number of the annihilators of R, 
4 1 3 1| ( ) | .n nAnn R p p    Therefore, 

based on Definition 2.2, the zero product probability of R, 
4 1 3 1

4 9 3 9

2 4 2

| ( ) |
( ) .

| | ( )

n n
n nAnn R p p

P R p p
R p

 
 

     

 

 

Theorem 4.4 Given a ring 
0

{0} .
0 0

np

x
R x

   
    

   

 Then, the squared-zero product probability of R, 

 

2

8

1

2

8

1
;    when  is even,

( )

1
;    when  is odd.

n

sq n

p
n

p
P R

p
n

p







 
 



 

 

Proof. According to Theorem 4.2, when n is even, the order of the square-annihilator of R is 2 1.
n

p   

Meanwhile, when n is odd, the order of the square-annihilator of R is 
1

2 1.
n

p


  Therefore, by Definition 3.4, 

the squared-zero product probability of R is 
2

8

1
n

p

p


 when n is even and 

1

2

8

1
n

p

p




 when n is odd.       

 

5. Conclusion 

In this paper, a new type of annihilator of a finite ring, namely the square-annihilator is introduced. Then, 

the exact order of the annihilator and square-annihilator are determined for the ring of 2 2  matrices over 

integers modulo 
np  with a single nonzero entry, where p is prime and n is any positive integer. The exact 

orders are stated in theorems and have been proved using Euler’s phi-function. These results are then used to 

establish the general formula of the zero product probability and the squared-zero product probability of the 

ring, using their definitions. In addition, for future studies, other forms of matrices such as the diagonal 

matrix, the upper triangular matrix and the lower triangular matrix can be studied for their annihilator, 

square-annihilator, zero product probability and squared-zero product probability. 
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