Abstract :
As the world’s second-largest palm oil producer and exporter, Malaysia could capitalize on its oil palm biomass waste for power generation. The emission factors from this renewable energy source are far lower than those from fossil fuels. This study applies an integrated carbon accounting and mitigation (INCAM) model to calculate the amount of CO2 emissions from three Malaysian biomass power plants. CO2 emissions released from biomass plants utilizing empty fruit bunch (EFB) and palm oil mill effluent (POME) as alternative fuels for powering steam and gas turbines were determined using the INCAM model. Each section emitting CO2 in the power plant—called a “carbon accounting center,” or CAC—was measured for its carbon profile (CP) and carbon index (CI) from each center. The carbon performance indicators (CPI) included electricity, fuel and water consumption, and solid waste and waste-water generation. The carbon emission index (CEI) and carbon emission profile(CEP), based on total monthly carbon production, were determined across the CPIs. We developed various innovative strategies that resulted in a 20 to 90 percent reduction of CO2 emissions. The implementation of reduction strategies significantly reduced the CO2 emission levels. Based on the model, utilization of EFB and POME in the facilities could significantly reduce CO2 emissions.
- Amin Talebian-Kiakalaieh and Nor Aishah Saidina Amin (2017).Reduction of CO2 emission by INCAM model in Malaysia biomass power plants during the year 2016. Waste Management DOI: https://doi.org/10.1016/j.wasman.2017.11.019