Photocatalytic CO2 reduction with H2 as reductant over copper and indium co-doped TiO2 nanocatalysts in a monolith photoreactor

Abstract:

The photocatalytic CO2 reduction with H2 over copper (Cu) and indium (In) co-doped TiO2 nanocatalysts in a monolith photoreactor has been investigated. The catalysts, prepared via modified sol–gel method, were dip-coated onto the monolith channels. The structure and properties of nanocatalysts with various metal and co-metal doping levels were characterized by XRD, SEM, TEM, N2 adsorption–desorption, XPS, and UV–vis spectroscopy. The anatase-phase mesoporous TiO2, with Cu and In deposited as Cu+ and In3+ ions over TiO2, suppressed photogenerated electron–hole pair recombination. CO was the major photoreduction product with a maximum yield rate of 6540 μmol g−1 h−1 at 99.27% selectivity and 9.57% CO2 conversion over 1.0 wt% Cu–3.5 wt% In co-doped TiO2 at 120 °C and CO2/H2 ratio of 1.5. The photoactivity of Cu–In co-doped TiO2 monolithic catalyst for CO production was 3.23 times higher than a single ion (In)-doped TiO2 and 113 times higher than un-doped TiO2. The performance of the monolith photoreactor for CO production over Cu–In co-doped TiO2 catalyst was 12-fold higher than the cell-type photoreactor. More importantly, the quantum efficiency of the monolith photoreactor was significantly improved over Cu–In co-doped TiO2 nanocatalyst using H2 as a reductant. The stability of the monolithic Cu–In co-doped TiO2 catalyst for CO partially reduced after the third run, but retained for hydrocarbons.

  1. Muhammad Tahir and Nor Aishah Saidina Amin (2015) Photocatalytic CO2 reduction with H2 as reductant over copper and indium co-doped TiO2 nanocatalysts in a monolith photoreactor Applied Catalysis A: General, 493, 90-102. DOI: https://doi.org/10.1016/j.apcata.2014.12.053
This entry was posted in 2015. Bookmark the permalink.