
Python
Part 1

INTRODUCTION TO

At the end of this lecture, you should learn:

 Environment of Python programming

 Python data structures

 Variables

 Comment

 Input & Output Syntax

Introduction

 Python is a powerful multi-purpose programming language
created by Guido van Rossum.

 It has simple easy-to-use syntax, making it the perfect
language for someone trying to learn computer
programming for the first time.

 The main portal to Python and the Python community is
http://www.python.org.

http://www.python.org/

Introduction

 You can download Python from the Python and the Python
community website for free.

Interact with Python

 Interactive mode: In interactive mode, you type instructions
to Python one line at a time—much the same way that an
operating system (shell) accepts instructions from a
command line.

 You can also write short multiline programs or import code
from text files or from Python's built-in modules.

 To exit Python's interactive mode, press Control-D (on Mac
or UNIX) or Ctrl-Z (on Windows).

Interact with Python

 IDLE: The IDLE includes Python's interactive mode and
more—tools for writing and running programs and for
keeping track of names.

 IDLE is written in Python and shows off Python's
considerable abilities.

Example of IDLE
text editor

Interact with Python

 IDLE stands for Integrated Development and Learning

Environment.

 IDLE is an editing program written entirely in Python by
Guido van Rossum.

 IDLE is installed when you install any recent version of
Python

Example of IDLE –
Output Modules

Interact with Python

 IDLE is a decent IDE for learning as it's lightweight and
simple to use. However, it's not for optimum for larger
projects.

 It integrates editing activity, compiling, debugging and
testing in a single environment

 There are many other IDE for python such as Sublime
Text, PyCharm, Visual Studio Code, Spyder and etc

https://www.sublimetext.com/3
https://www.jetbrains.com/pycharm/download
https://code.visualstudio.com/docs/languages/python
https://www.spyder-ide.org/

Data Structure

 Data structures can be divided into two categories in
computer science:

 primitive and non-primitive data structures.

 The former are the simplest forms of representing data,
whereas the latter are more advanced: they contain the
primitive data structures within more complex data
structures for special purposes.

Primitive Data Structures

Primitive Data Structures

It contain pure, simple values of a
data.

Integers Float Boolean

Primitive Data Structures

 Integers
 You can use an integer represent numeric data, and

more specifically, whole numbers from negative infinity to
infinity, like 4, 5, or -1.

 Float
 "Float" stands for 'floating point number'. You can use it

for rational numbers, usually ending with a decimal
figure, such as 1.11 or 3.14.

• Any number you enter in Python will be interpreted as
a number.

• Python will consider any number written without
decimals as an integer (as in 138) and any number
written with decimals as a float (as in 138.0).

Primitive Data Structures

 Boolean
 This built-in data type that can take up the values: True

and False, which often makes them interchangeable with
the integers 1 and 0. Booleans are useful in conditional
and comparison expressions.

Non-Primitive Data Structures

 Non-primitive types are the
sophisticated members of the data
structure family. They don't just
store a value, but rather a collection
of values in various formats.

 In the traditional computer science
world, the non-primitive data
structures are divided into:

Arrays

Lists

String

Non-Primitive Data Structures

 Strings
Strings are collections of alphabets, words or

other characters. In Python, you can create
strings by enclosing a sequence of characters
within a pair of single or double quotes. For
example: 'cake', "cookie", etc.

Non-Primitive Data Structures

 Array
 Collection of basic data types of the same data type.
 In Python, arrays are supported by the array module and

need to be imported before you start initializing and
using them.

 Code example
import array as tatasusunan

a = tatasusunan.array("I",[3,6,9])

type(a)

Non-Primitive Data Structures

 Lists
 Lists in Python are used to store collection of

heterogeneous items. These are mutable, which means
that you can change their content without changing their
identity.

 You can recognize lists by their square brackets [and]
that hold elements, separated by a comma ,. Lists are
built into Python: you do not need to invoke them
separately.

Non-Primitive Data Structures

Variables
 Variable is a reserve memory space to hold a values. It is

helpful to think of variables as a container that holds data
which can be changed later throughout programming.

 You do not need to declare variables before using them in
Python, or declare their type. Every variable in Python is an
object.

 Python uses the term name instead of variable.

 The declaration happens automatically when you assign a
value to a variable. The equal sign (=) is used to assign
values to variables.

Variables

 The operand to the left of the = operator is the name of the
variable and the operand to the right of the = operator is the
value stored in the variable. For example −

counter = 100

miles = 1000.0

name = "John"

print counter

print miles

print name

Variables

Variable naming rules

 Never start with number
 Used underscore (_) for spacing
 never use space between character
 Never use special symbol (eg : % $ | & ^ > < : } * / ^ %)
 Case sensitive. num is different from NUM and nUm.
 Never use reserved work (eg : FALSE, TRUE)
 It's a Good Idea to use meaningful names. Uniquely on

the scope
 Avoid using the lowercase letter ‘l’, uppercase ‘O’, and

uppercase ‘I’. Because the l and the I look a lot like each
other and the number 1. And O looks a lot like 0.

Variables

 Python has a set of keywords that are reserved words that
cannot be used as variable names, function names, or any
other identifiers

and

as

assert

break

class

continue

def

del

elif

else

except

FALSE

finallyfor

from global

if

import

in

is lambda

None

nonlocal

not

or

pass

raise

return

TRUE

try

while

with yield

Constants

 A constant is a type of variable whose value cannot be
changed. It is helpful to think of constants as containers that
hold information which cannot be changed later.

 Non technically, you can think of constant as a bag to store
some books and those books cannot be replaced once
placed inside the bag.

Comments

 Comments
 Writable in any part of the program
 It will not result in any action by the computer (compilers

do not process comments)
 Used to make the program easier to be read and

understand. Also used to explain any part of the program
as well as documentation.

 Written after # as you can observe below:

counter = 100 # An integer assignment
kod = “SPPP 2102” # kod subjek

Statements

 Instructions that a Python interpreter can execute are called
statements. For example, a = 1 is an assignment statement.

 Each line in Python is a single statement
 We can make a statement extend over multiple lines with

the line continuation character (\). For example:
a = 1 + 2 + 3 + \

4 + 5 + 6 + \

7 + 8 + 9
 We could also put multiple statements in a single line using

semicolons, as follows
a = 1; b = 2; c = 3

Input / Output

 input() and print() are widely used for standard input and
output operations respectively.

 We use the print() function to output data to the standard
output device (screen).

 Example :
print (“ Malaysia “)

 You can print out “Malaysia” 9 times with the * operator:
 print(“Malaysia" * 9)

Input / Output

 To take the input from user, we have the input() function to
allow this.

 The syntax for input() is
input([prompt])

 where prompt is the string we wish to display on the screen.
>>> num = input('Enter a number: ')

>>> nama = input(“Masukkan nama subjek : “)

Escape Characters

 In order to format output, you can use an escape character.
 Escape characters all start with the backslash key (\)

combined with another character within a string to format
the given string a certain way.
Escape
Sequence Description Example Result

\\ Backslash (\) print("\\") \

\' Single quote (') print('\'') '

\" Double quote (") print("\"") "
\a ASCII Bell (BEL) print("\a") **Bell sound

\n ASCII Linefeed (LF) print("Hello \n
World!")

Hello
World!

\t ASCII Horizontal Tab
(TAB) print("Hello \t

World!")
Hello World!

Convert Data Types

Converting Integers to Floats
 Python’s method float() will convert integers to floats. To use

this function, add an integer inside of the parentheses:
float(57)

 In this case, 57 will be converted to 57.0.

Converting Floats to Integers
 You can add a floating-point number inside of the

parentheses to convert it to an integer:
int(390.8)

 In this case, 390.8 will be converted to 390.

Convert Data Types

Converting Numbers to Strings
 We can convert numbers to strings through using the str()

method.
str(12)

 We can’t print out string and integer values at the same
time. We’ll have to convert the variable lines to be a string
value:
user = “Marlissa"

age = 17

print(“Happy “+ str(age) + " Birthday, Dear") + user)

Convert Data Types

Converting Strings to Numbers

 Strings can be converted to numbers by using the int() and
float() methods.

int(‘12’)

float(“1234.55”)

Current_year = ‘2019’
Birth_year = ‘1980’
Age = Current_year - Birth_year
print(Age)

You will received error f
or this code. What can

we do?

Try me

name= input(“What is your name?”)

Greeting = “Hello ” + " " + name

print(Greeting)

one = 1
two = 2
three = one + two
print(three)

firstname = input(“First Name : “)
lastname = input(“Surname : “)

Fullname= firstname + “ “ + lastname
print(Fullname)

2020SEKOLAH PENDIDIKAN,
FAKULTI SAINS SOSIAL DAN KEMUANUSIAAN, UTM

That’s all

