

10. NETWORK MANAGEMENT

School of Education Faculty of Social Sciences and Humanities

- A good Network Infrastructure Design is a foundation of your computer system environment you would like to build on it.
- No matter how good you design your computer system if the Network Infrastructure Design is poor, the system will not run efficiently due to network congestion.

- A network has a limitation capacity in transmitting the data.
- As the number of network devices increases, congestion increases which affects the network performance.
- Therefore, a good Network Infrastructure Design is very essential in reducing network congestion and maintaining the network in top performance.

- The main purpose of Network Infrastructure
 Design is to reduce network congestion and
 increase performance through network
 segmentation.
- There are three areas in Network Infrastructure Design you need to pay attention to.
 - 1. Ethernet Network Infrastructure Design
 - 2. Segmentation
 - 3. Selecting a network solution

Ethernet Network Infrastructure Design

- Ethernet in the Network Infrastructure Design depends on the LAN cable type used.
- You can use hubs or repeaters to connect multiple segments in a star topology.
- However there are limits to the number of segments and repeaters that you can connect in this manner.

OPENCOURSEWARE

Network Infrastructure Design

Ethernet Network Infrastructure Design

- Fast Ethernet and Gigabit Ethernet are variations of Ethernet standard.
- Fast Ethernet standards which operate at 100 Mbps, and uses either twisted pair or fiber-optic cabl
- Gigabit Ethernet operates at 1,000 Mbps (1 Gigabit). By using the same Category 5 twisted pair cable as Ethernet

Ethernet Network Infrastructure Design

- Ethernet that use twisted pair cable must adhere to the following Network Infrastructure Design rules:
 - Can have a maximum of 5 segments which is cables connecting two hubs.
 - Each device on the Network can be separated by no more than 4 repeaters or hubs.

Network Infrastructure Design segmentation

 The need of segmentation in Network Infrastructure Design when the network grows is to reduce congestion and extend the overall network size.

Network Infrastructure Design segmentation

- By having segmentation in Network Infrastructure Design we can have the following benefits:
 - Overcome architecture limitations
 - Reduce network congestion
 - Connect multiple networks
 - Connect dissimilar networks

Selecting a network solution

- The segmentation in your Network Infrastructure Design is very useful in isolating the traffic to a segment, or to prevent unwanted traffic from crossing over to other segment, or to slow WAN links.
- It is recommended to use intelligent switches which support Virtual LANs (VLAN) that allow the network to be easily segmented for management and/or security reasons.

- Network Management can be defined as monitoring, testing, configuring and troubleshooting network components to meet a set of requirements defined by an organisation.
- The network management system uses hardware, software and humans

- The functions performed by a network management are divided into five broad categories:
 - 1. Configuration Management
 - 2. Fault Management
 - 3. Performance Management
 - 4. Security Management
 - 5. Accounting Management

Configuration Management

- Deals with the status of each entity in the network and its relation to other entities.
- A large network is usually made up of hundreds of entities that are physically connected to each other.
- These entities have an initial configuration when the network is set up, but it can change with time.

Fault Management

- The fault is defined as the abnormal condition in the system.
- The Fault Management deals with the proper operation of the individual components of a complex network.
- There are two types of fault management.
 - 1. Reactive fault management
 - 2. Proactive fault management

1. Reactive Fault Management

 Responsible for detecting, isolating, correcting and recording faults.

2. Proactive Fault Management

 Tries to prevent fault from occurring where it is possible to predict and prevent the failure.

- Monitors and controls the network to ensure that it is running as efficiently as possible.
- The performance of the system depends upon
 - 1. Capacity
 - 2. Traffic
 - 3. Throughput
 - 4. Response

Network Management Concept of Network Management

- Capacity: Every network has a limit capacity.
- The performance management system must ensure that it is not used above this capacity.

- Traffic: Traffic can be measured in two ways.
 - **1. Internal traffic** (measured by the number of packets or bytes travelling inside the network).
 - **2. External traffic** (measured by the exchange of packets or bytes outside the network)

- **Throughput**: Monitors the throughput to make sure that it is not reduced to unacceptable levels.
- Response time: Measured from the time a user requests a service to the time the service is granted.

Security Management

Responsible for controlling access to the network based on the predefined policy.

Accounting Management

- The control of users' access to network resources through charges.
- Under accounting management, individual users, departments, divisions or projects are charged for the service they receive from the network