Solid Blockage Correction

Corrections for Coefficient of Lift

From Barlow [1],

$$C_{l} = C_{lu}(1 - \sigma - 2\varepsilon)$$

Where C_1 = Corrected lift coeeficient

 $C_{lu} = Uncorrected lift coefficient$

$$\sigma = \frac{\pi^2}{48} \times \left(\frac{c}{h}\right)^2$$
 with c = Chord length of the aerofoil
h = Tunnel height

 ε = Total blockage

 $\varepsilon = \varepsilon_{sb} + \varepsilon_{wb}$

with ε_{sb} = Solid blockage correction

 ε_{wb} = Wake blockage correction

A **solid blockage** correction for 2-D aerofoil is:

$$\varepsilon_{sb} = \Lambda \sigma$$
 with $\Lambda = A$ body shape factor

The body shape factor, Λ for NACA 4415 can be derived from **Figure 2** [1].

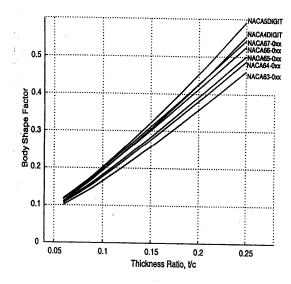


Figure 2 : Values for Λ

^{*} However for this data processing, only ε_{sb} will be considered.