SEEU2012

Electronics
20212022/2

Chapter 4 Bipolar Junction Transistor (BJT) DC Analysis

Dr. Nur Najahatul Huda Saris
School of Electrical Engineering,
Faculty of Engineering UNIVERSITI TEKNOLOGI MALAYSIA nurnajahatulhuda@utm.my

Course Learning Outcomes

Apply the basic law and theorems of electronic devices to describe their basic operation.

Apply the basic law, theorems and methods of analysis to solve complex problem related to circuitry.

Work in a team and communicate effectively.

Learning Outcomes

i. Describe the basic structure of a BJT.
ii. Explain and analyze basic BJT bias and operation.
iii. Discuss on the function of a BJT as an amplifier.
iv. Discuss the parameters and characteristic of a BJT and its application in electrical circuit.

What is Transistor?

\square Transistors are solid state devices that is used for amplifying, controlling and generating electrical signal.

PN2222A

Transistors are used widely in electronic equipment such as computers, calculators, radios and communication satellite.

What is Transistor?

Two basic types of transistor is bipolar junction transistor (BJT) and Field Effect Transistor (FET).
Transistor is like 2 diodes connected.

Each region have different doping concentration.
\square Transistor is widely been used as switch and amplifier.

Introduction to BJT

\square BJT is bipolar because both majority and minority carriers take part in the current flow. (a) N-type - electrons as majority carrier
(b) P-type - holes as majority carrier.
$\square 2$ types of BJT: (a) NPN and (b) PNP
\square BJT regions are:

- Emitter (E) - send the carries into the base region and then into the collector.
- Base (B)act as control region. Carriers flow depending on the biased voltage.
- Collector (C) - collects the carries.

Structure \& Symbol of BJT

PNP TYPE

NPN TYPE

NPN Transistor Structure

The emitter is rich in current carriers. It send the carriers into the base region and on to the collector.
The collector collect the carriers.
\square The emitter emits the carriers.
The base act as a control region. It can allow none, some or many carriers to flow from emitter to collector.

BJT Characteristic \& Parameters

$\square \beta_{D C}$ - is the ratio of the DC collector current, I_{C} to the DC base current, (I_{B})
Typical value range from less than 20 to 200 or higher.

$$
\beta_{\mathrm{DC}}=\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{I}_{\mathrm{B}}}
$$

$\square \alpha_{D C}$ - is the ratio of the DC emitter current, I_{E} to the DC collector current, (I_{c}).
The value range from 0.95 to 0.99 but alwavs less than 1 .

$$
\alpha_{\mathrm{DC}}=\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{I}_{\mathrm{E}}} \quad \beta=\left(\frac{\alpha}{1-\alpha}\right)
$$

BJT Behavior:

Current-Voltage Characteristics

\square The behaviour of the transistor can be represented by currentvoltage (I-V) curves (called the characteristic curves of the device).
\square Input Characteristics

- The relation between input current and input voltage for different values of output voltage

OOutput Characteristics

- The relation between output current and output voltage for different values of input current

BJT Basic Operation Region

To produce a desired mode of operation, the two P-N junctions must be correctly biased

- NPN transistor will be used for illustrationThe operation of the PNP is the same as for the NPN except that
- the roles of the electrons and holes
- the bias voltage polarities
- the current directions - are all reversed

A single PN junction has two different types of bias: forward and reverse.
\square Thus, a 2 PN junction device has four types of bias.

BJT Mode of Operation for NPN and PNP

\square Saturation and cut-off operations are important for digital circuits like switching.
\square Active region are important for amplifier application.

Operating regions of BJT

Example - NPN Transistor

Base -Emitter Junction	Base - Collector Junction	Operating Region
Reverse biased	Reverse biased	
Forward biased	Reverse biased	
Forward biased	Forward biased	

WWhat are the two (2) main applications of BJT?

Exercise -

https://padlet.com/nurnajahatulhuda/hba67po8p9ok 8oun

Figure below illustrate a structure of NPN transistor contain collector (C), base (B) and emitter (E). Fill in the blank.

DThe base (B) to emitter (E) junction is normally \qquad biased and the resistance at the junction is \qquad .
DThe collector (C) to base (B) junction is normally \qquad biased and the resistance at the junction is \qquad .
\square The smallest current in NPN bipolar junction transistor is the current.

Collector - Base Characteristic Curve Input Characteristic

The characteristic resembles a family of forward biased diode curves $\square I_{B}$ increases as $V_{C E}$ decreases for a fixed value of $V_{B E}$

Collector Characteristic Curve Output Characteristic

BJT Region Comparison

Active Region	Saturation Region	Cut - Off Region
- B-E junction forward biased	B B-E and C-E junction are forward biased.	B-E and C-E junction are reverse biased.
- C-B junction reverse biased	$\square I_{B}$ and I_{C} are too big but $V_{C E}$ is very small.	$\square I_{B}<\mu A$ but I_{C} is not zero. Avoid this region for undistorted signal.
Can be employed to used as voltage and current amplification	Suitable region to used as logic switch.	\square Suitable region to used as logic switch.

What is Q - Point? (DC Operating Point)

When the BJT only have DC input (no ac input) it will have specific value of I_{C} and V_{CE}.
\square It correspond on the specific point on the DC load line. This point is called Q-point.
$\square I$'s a point on the collector characteristic curve ($I_{C}-V_{C E}$) with constant I_{B}.

Purpose of BJT Biasing

BJT should be biased to determine its operating point or Q point.

To ensure whether it is in active region to be used as amplifier or in saturation or cut-off region to be used as switch.

A good biasing circuit must have Q - point at the center of the DC load line to obtain maximum symmetrical output swing.

Q - Point at the center of DC Load line

Q - Point NOT at the center of DC Load line

BJT DC Load Line

\square A straight line intersecting the vertical axis at approximately $\mathrm{I}_{\mathrm{C}(\text { sat })}$ and the horizontal axis at $\mathrm{V}_{\mathrm{CE}(\text { (off) }}$.

- $I_{C(s a t)}$ occurs when transistor operating in saturation region

$$
I_{C_{s a t}}=\left.\frac{V_{C C}}{R_{C}}\right|_{V_{C E}=0}
$$

- $V_{\text {CE(off) }}$ occurs when transistor operating in cut-off region

$$
V_{C E_{(\text {off })}}=V_{C C}-\left.I_{C} R_{C}\right|_{I_{C}=0}
$$

To make sure that the chosen Q -point is useful for amplifier application, the Q-point, it is best located at the canter of the DC load line where:

$$
\mathrm{I}_{\mathrm{CQ}}=\frac{1}{2} \mathrm{I}_{\mathrm{C}(\mathrm{SAT})} \text { and } \mathrm{V}_{\mathrm{CEQ}}=\frac{1}{2} \mathrm{~V}_{\mathrm{CC}}
$$

Exercise
Referring to the output characteristic shown, identify the operation region if :
(a) $\mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{CE}}=15 \mathrm{~V}$
(b) $\mathrm{I}_{\mathrm{C}}=2.5 \mathrm{~mA} \quad \mathrm{I}_{\mathrm{B}}=35 \mu \mathrm{~A}$
(c) $\quad \mathrm{I}_{\mathrm{B}}=10 \mu \mathrm{~A} \quad \mathrm{~V}_{\mathrm{CE}}=8 \mathrm{~V}$
(d) $\mathrm{I}_{\mathrm{B}}=20 \mu \mathrm{~A} \quad \mathrm{~V}_{\mathrm{CE}}=0.2 \mathrm{~V}$

Main Types of BJT Biasing Circuit

Fixed Base Bias Circuit

Fixed Base Bias with emitter resistor
(Emitter stabilized bias circuit)

Voltage-Divider Bias Circuit

BJT Circuit Analysis: Fixed Bias Circuit

This is common emitter (CE) configuration
\square Solve the circuit using HVK
$\square 1{ }^{\text {st }}$ step: Locate capacitors and replace them with an open circuit
 which;

- BE loop
- CE loop

$1^{\text {st }}$ step: Locate capacitors and replace them with an open circuit

$\underline{2}^{\text {nd }}$ step: Locate 2 main loops

BE Loop Analysis

\square From HVK;

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{B}} \mathrm{R}_{\mathrm{B}}-\mathrm{V}_{\mathrm{BE}}=0 \\
& \therefore \mathrm{I}_{\mathrm{B}}=\frac{\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{BE}}}{\mathrm{R}_{\mathrm{B}}}
\end{aligned}
$$

CE Loop Analysis

- From HVK;

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}-\mathrm{V}_{\mathrm{CE}}=0 \\
& \therefore \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}
\end{aligned}
$$

- As we known;
- Substituting (A) with (B)

$$
\begin{aligned}
& I_{C}=\beta I_{B} \\
& \mathrm{I}_{\mathrm{C}}=\beta_{\mathrm{DC}}\left(\frac{\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{BE}}}{\mathrm{R}_{\mathrm{B}}}\right)
\end{aligned}
$$

BJT Circuit Analysis: Fixed Bias Circuit

- Taking the Kirchhoff voltage law (KVL) around the $B-E$ loop yield the following equation:

$$
\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{B}} \mathrm{R}_{\mathrm{B}}-\mathrm{V}_{\mathrm{BE}}=0
$$

- Solving for I_{B}

$$
\mathrm{I}_{\mathrm{B}}=\frac{\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{BE}}}{\mathrm{R}_{\mathrm{B}}}
$$

- The collector current I_{C} is then given by

$$
\mathrm{I}_{\mathrm{C}}=\beta \mathrm{I}_{\mathrm{B}}=\beta\left(\frac{\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{BE}}}{\mathrm{R}_{\mathrm{B}}}\right)
$$

- The voltage at the base, collector and emitter can be calculated using

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}} \\
& \hline \mathrm{~V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{B}} \mathrm{R}_{\mathrm{B}}
\end{aligned}
$$

- I_{C} is directly dependent on β. This is unfavourable since β varies with temperature and I_{C}. When I_{C} is changing, it cause $V_{C E}$ to change. This will change the Q - point of the transistor and make the fixed base biasing circuit very unstable.

Example : Fixed Biasing Circuit

Draw the $D C$ load line and find $I_{B Q}, I_{C Q}, V_{C E Q}, V_{C Q}, V_{E Q}$ and $V_{B Q}$.
Comment on the location of the Q - point.

$$
\begin{aligned}
& \text { Using C - E Loop: } \\
& \mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{B}} \mathrm{R}_{\mathrm{B}}-\mathrm{V}_{\mathrm{BE}}=0 \\
& \mathrm{I}_{\mathrm{B}}=\mathrm{I}_{\mathrm{BQ}}=\frac{\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{BE}}}{\mathrm{R}_{\mathrm{B}}}=\frac{8-0.7}{360 \mathrm{k}}=\underline{20.28 \mu \mathrm{~A}} \\
& \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{CQ}}=\beta \mathrm{I}_{\mathrm{B}}=(100) 20.28 \mu=\underline{2.03 \mathrm{~mA}} \\
& \text { Using C }-\mathrm{E} \text { Loop: } \\
& \mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}-\mathrm{V}_{\mathrm{CE}}=0 \ldots \ldots \ldots \ldots \ldots \ldots .(\mathrm{A}) \\
& \mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CEQ}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{CQ}} \mathrm{R}_{\mathrm{C}}=8-(2.03 \mathrm{~m} \times 2 \mathrm{k})=3.94 \mathrm{~V} \\
& \text { when } \mathrm{I}_{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CE} \text { (CUT-OFF) }}=\mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V} \\
& \text { when } \mathrm{V}_{\mathrm{CE}}=0, \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C}(\text { SAT })}=\frac{\mathrm{V}_{\mathrm{CC}}}{\mathrm{R}_{\mathrm{C}}+\mathrm{R}_{\mathrm{E}}}=\frac{8}{2 \mathrm{k}}=4 \mathrm{~mA} \\
& \hline
\end{aligned}
$$

[^0]
Example : Fixed Bias Circuit

\square Find $I_{C}, I_{B}, V_{C E}, V_{B}, V_{C}, V_{B C}$? (Silicon transistor) Construct the DC load line

■ Answers;

$$
\mathrm{IC}=2.35 \mathrm{~mA}
$$

$$
\mathrm{IB}=47.08 \mu \mathrm{~A}
$$

$$
\mathrm{VCE}=6.83 \mathrm{~V}
$$

$$
V B=0.7 V
$$

$$
\mathrm{VC}=6.83 \mathrm{~V}
$$

$$
V B C=-6.13 V
$$

step 1: open all capacitors and redraw the circuit.
step 2 :
B - E Loop KVL

$$
\begin{aligned}
12-\mathrm{I}_{\mathrm{B}} \mathrm{R}_{\mathrm{B}}-\mathrm{V}_{\mathrm{BE}} & =0 \\
\mathrm{I}_{\mathrm{B}} & =\frac{12-\mathrm{V}_{\mathrm{BE}}}{\mathrm{R}_{\mathrm{B}}}=\frac{12-0.7}{240 \mathrm{k}}=\underline{47.1 \mu \mathrm{~A}} \sqrt{ }
\end{aligned}
$$

using relation $\quad \mathrm{I}_{\mathrm{E}}=(1+\beta) \mathrm{I}_{\mathrm{B}}$ and $\mathrm{I}_{\mathrm{E}} \approx \mathrm{I}_{\mathrm{C}}$

$$
\mathrm{I}_{\mathrm{E}} \approx \mathrm{I}_{\mathrm{C}}=(1+50) \times 47.1 \mu=\underline{2.40 \mathrm{~mA}} \sqrt{ }
$$

step 3
C-E Loop KVL

$$
\begin{aligned}
12-\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}-\mathrm{V}_{\mathrm{CE}} & =0 \\
\mathrm{~V}_{\mathrm{CE}} & =12-\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}=12-(2.40 \mathrm{~m} \times 2.2 \mathrm{k})=\underline{6.72 \mathrm{~V}}
\end{aligned}
$$

From the circuit, $\mathrm{V}_{\mathrm{E}}=0 \mathrm{~V} .{ }^{\sqrt{ }}$
it is known that $V_{\text {BE }}=0.7 \mathrm{~V}$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{BE}}=\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{E}} \\
& \therefore \mathrm{~V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{BE}}=\underline{0.7 \mathrm{~V}}
\end{aligned}
$$

at the collector (C) terminal :

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{E}} \quad \text { and } \mathrm{V}_{\mathrm{E}}=0 \mathrm{~V} \\
& \therefore \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{CE}}=\underline{6.72 \mathrm{~V}}
\end{aligned}
$$

at the base (B) terminal :

$$
\begin{aligned}
& V_{B C}=V_{B}-V_{C} \\
& V_{B C}=V_{B}-V_{C}=0.7-6.72=\underline{-6.02 V}
\end{aligned}
$$

Exercise : Fixed Bias Circuit

For the biasing circuit shown, determine the Q - point ($\mathrm{I}_{\mathrm{CQ}}, \mathrm{V}_{\mathrm{CEQ}}$) and confirm its operation region. Construct the DC load line and evaluate the location of the Q - point. Given $\beta=100$. Redo if β is changed to 129 .

Load Line Analysis - Fixed Bias Circuit

- We investigate how the actual Q-point is determined.
- Referring to the figure below (output loop), a straight line can be drawn at the output characteristics curve. This line is called the load line.
- This line connects each separate Q-point.
- At any point along the load line, values of $\mathrm{I}_{\mathrm{B}}, \mathrm{I}_{\mathrm{C}}$ and V_{CE} can be picked from the graph.
- The process to plot the load line are as follows:

Load Line Analysis - Fixed Bias Circuit

- Step 1:

Apply KVL at output loop, $V_{C E}=V_{C C}-I_{C} R_{C}$ (1)
Choose $I_{C}=0 \mathrm{~mA}$. Substitute into (1), we get

$$
V_{C E}=V_{C C}(2) \rightarrow \text { intersects the x-axis }
$$

- Step 2:

Choose $\mathrm{V}_{\mathrm{CE}}=0 \mathrm{~V}$ and substitute into (1), we get

$$
\mathrm{I}_{\mathrm{C}}=\mathrm{V}_{\mathrm{CC}} / \mathrm{R}_{\mathrm{C}}(3) \rightarrow \text { intersects the } y \text {-axis }
$$

- Step 3:

Joining these two points defined by step (2) \& (3), we get a straight line that can be drawn as in the next figure.

Load Line Analysis - Fixed Bias Circuit

Example

Given the load line in the figure below, define the Q-point \& determine the required values of $V_{C C}, R_{C}$ and R_{B} for a fixed bias configuration. (Given I_{BQ} at $17 \mu \mathrm{~A}$)

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{C}}=\frac{\mathrm{V}_{\mathrm{cc}}}{\mathrm{R}_{\mathrm{c}}} \\
& \mathrm{R}_{\mathrm{C}}=\underline{\underline{2.67 \mathrm{k} \Omega}} \\
& \text { at } \mathrm{Q}-\mathrm{point} ; \mathrm{I}_{\mathrm{B}}
\end{aligned}=17 \mu \mathrm{~A} \mathrm{C} .
$$

Disadvantages of Fixed Biasing

\square Unstable - because it is too dependent on β and produce change of Qpoint
\square For improved bias stability , add emitter resistor to dc bias.

Fixed Bias with emitter resistor (Emitter Stabilized Bias)

- An emitter resistor, R_{E} is added to improve stability
- Solve the circuit using HVK
- $1^{\text {st }}$ step: Locate capacitors and replace them with an open circuit
- $2^{\text {nd }}$ step: Locate 2 main loops which;
$>$ BE loop
>CE loop

$1^{\text {st }}$ step: Locate capacitors and replace them with an open circuit

$\mathbf{2}^{\text {nd }}$ step: Locate 2 main loops

Fixed Base Bias with Emitter Resister

BE Loop Analysis

■ From HVK;

$$
V_{C C}-I_{B} R_{B}-V_{B E}-I_{E} R_{E}=0
$$

Recall; $I_{E}=(\beta+1) I_{B}$
Substitute for le

$$
\begin{aligned}
& V_{C C}-I_{B} R_{B}-V_{B E}-(\beta+1) I_{B} R_{E}=0 \\
& \therefore I_{B}=\frac{V_{C C}-V_{B E}}{R_{B}+(\beta+1) R_{E}}
\end{aligned}
$$

CE Loop Analysis

■ From HVK;

$$
V_{C C}-I_{C} R_{C}-V_{C E}-I_{E} R_{E}=0
$$

- Assume;
$I_{E} \approx I_{C}$
- Therefore;

$$
\therefore V_{C E}=V_{C C}-I_{C}\left(R_{C}+R_{E}\right)
$$

Example Emitter Stabilized Bias

\square Find $\mathrm{I}_{\mathrm{CQ}}, \mathrm{I}_{\mathrm{BQ}}, \mathrm{V}_{\mathrm{CEQ}}, \mathrm{V}_{\mathrm{BQ}}, \mathrm{V}_{\mathrm{CQ}}, \mathrm{V}_{\mathrm{EQ}}$ \& $\mathrm{V}_{\mathrm{BCO}}$? (Silicon transistor);

■ Answers;

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{CQ}}=2.01 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{BQ}}=40.1 \mu \mathrm{~A} \\
& \mathrm{~V}_{\mathrm{CEQ}}=13.97 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{BQ}}=2.71 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{EQ}}=2.01 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{CQ}}=15.98 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{BCQ}}=-13.27 \mathrm{~V}
\end{aligned}
$$

step 1: open all capacitors and redraw the circuit.
step 2 :
B-E Loop KVL
$20-I_{B} R_{B}-V_{B E}-I_{E} R_{E}=0$
using relation $\quad I_{E}=(1+\beta) I_{B}$
$20-I_{B} R_{B}-V_{B E}-R_{E}(1+\beta) I_{B}=0$

$$
\mathrm{I}_{\mathrm{B}}=\frac{20-\mathrm{V}_{\mathrm{BE}}}{\mathrm{R}_{\mathrm{B}}+\mathrm{R}_{\mathrm{E}}(1+\beta)}=\frac{20-0.7}{430 \mathrm{k}+1 \mathrm{k}(1+50)}=40.1 \mu \mathrm{~A}
$$

using relation $I_{E}=(1+\beta) I_{B}$ and $I_{E} \approx I_{C}$

$$
\mathrm{I}_{\mathrm{E}} \approx \mathrm{I}_{\mathrm{C}}=(1+50) \times 40.1 \mu=\underline{2.05 \mathrm{~mA}}
$$

step 3
C-E Loop KVL

$$
\begin{aligned}
20-I_{C} R_{C}-I_{E} R_{E} & V_{C E}=0 \\
V_{C E} & =20-I_{C} R_{C}-I_{E} R_{E} \\
& =20-(2.05 \mathrm{~m} \times 2 \mathrm{k})-(2.05 \mathrm{~m} \times 1 \mathrm{k})=13.85 \mathrm{~V}
\end{aligned}
$$

it is known that $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$
and

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{BE}}=\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{E}} \quad \text { and } \mathrm{V}_{\mathrm{E}}=\mathrm{I}_{\mathrm{E}} \mathrm{R}_{\mathrm{E}} \\
& \therefore \mathrm{~V}_{\mathrm{E}}=\mathrm{I}_{\mathrm{E}} \mathrm{R}_{\mathrm{E}}=2.05 \mathrm{~m} \times 1 \mathrm{k}=\underline{2.05 \mathrm{~V}} \\
& \therefore \mathrm{~V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{BE}}+\mathrm{V}_{\mathrm{E}}=0.7+2.05=\underline{2.75 \mathrm{~V}} \\
& \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{E}} \\
& \therefore \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{CE}}+\mathrm{V}_{\mathrm{E}}=13.85+2.05=\underline{15.9 \mathrm{~V}} \\
& \mathrm{~V}_{\mathrm{BC}}=\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{C}}=2.75-15.9=\underline{-13.15 \mathrm{~V}}
\end{aligned}
$$

from
this BJT is biased in FORWARD ACTIVE

Load Line Analysis - Emitter (Stabilized Bias) Circuit

- For $V_{C E}=0$, the transistor will be in saturation region
- Taking the transistor's saturation equation: $I_{C_{s a t}}=\frac{V_{C C}}{R_{C}+R_{E}}$
- For $I_{C}=0: \quad I_{C} \approx I_{E}$

$$
\begin{aligned}
& I_{C}=\frac{V_{C C}-V_{C E}}{R_{C}+R_{E}}=0 \\
& \therefore V_{C E}=V_{C C}
\end{aligned}
$$

Load Line Analysis - Emitter (Stabilized Bias) Circuit

So, the load-line becomes:

Exercise : Emitter Stabilized Bias

Find $\mathrm{I}_{\mathrm{CQ}}, \mathrm{I}_{\mathrm{BQ}}, \mathrm{V}_{\mathrm{CEQ}}, \mathrm{V}_{\mathrm{BQ}}, \mathrm{V}_{\mathrm{CQ}}, \mathrm{V}_{\mathrm{EQ}} \& \mathrm{~V}_{\mathrm{BCQ}}$? (Silicon transistor). Construct the DC load line and determine the transistor operation region

Exercise Test 2 2013/2014/2

A BJT amplifier circuit in Figure Q2(a) has the following specifications: $I_{B Q}=30 \mu \mathrm{~A}$ and $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$.
(i) Determine Q-point ($\mathrm{I}_{\mathrm{CQ}}, \mathrm{V}_{\text {CEQ }}$) of the circuit using the output characteristic graph in Figure Q2(b) [Ans: $I_{C Q}=4.2 \mathrm{~mA}: \mathrm{V}_{\mathrm{CEQ}}=11.5 \mathrm{~V}$]
(ii) Calculate β at the Q-point [Ans: $\beta=140$]
(iii) Calculate R_{B} [Ans: 692k]
(iv) What is the effect on the Q-point of the circuit, when R_{B} is decreased?
[Ans: I_{B} will increase and thus the Q-point will move upwards]

Exercise

Determine $I_{B Q}, I_{C Q}, V_{C E Q}, V_{B}, V_{C}, V_{E}$. Given $\beta=h F E=100$ and $V_{B E}=0.7 \mathrm{~V}$. Sketch the DC load line of the circuit.
[Ans: $\mathrm{I}_{\mathrm{BQ}}=29.18 \mathrm{uA}, \mathrm{I}_{\mathrm{CQ}}=2.92 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CEQ}}=8.61 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=5.12 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=12.99 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=$ 4.38V]

Voltage Divider Bias Circuit

\square Provides good Q-point stability with a single polarity supply voltage
\square Solve the circuit using HVK
$\square 1^{\text {st }}$ step: Locate capacitors and replace them with an open circuit
$\square \underline{2^{\text {nd }}}$ step: Simplified circuit using Thevenin Theorem
$\square 3^{\text {rd }}$ step: Locate 2 main loops which; -BE loop
-CE loop

Voltage Divider Bias Approximation Analysis

For approximation analysis we can assume

$$
V_{T H}=V_{B}
$$

but the following condition must satisfy:

$$
\beta R_{E} \geq 10 R_{2}
$$

$1^{\text {st }}$ step: Locate capacitors and replace them with an open circuit

$\mathbf{2}^{\text {nd }}$ step: : Simplified circuit using Thevenin Theorem

Voltage Divider Bias Circuit

From Thevenin Theorem;

$$
\begin{aligned}
R_{T H} & =R_{1} / / R_{2}=\frac{R_{1} \times R_{2}}{R_{1}+R_{2}} \\
V_{T H} & =\frac{R_{2}}{R_{1}+R_{2}} V_{C C}
\end{aligned}
$$

$3^{\text {rd }}$ step: Locate 2 main loops

BE Loop Analysis

- From HVK;
$V_{T H}-I_{B} R_{T H}-V_{B E}-I_{E} R_{E}=0$
Recall; $I_{E}=(\beta+1) I_{B}$
Subtitute for IE

$$
\begin{aligned}
& V_{T H}-I_{B} R_{T H}-V_{B E}-(\beta+1) I_{B} R_{E}=0 \\
& \therefore I_{B}=\frac{V_{T H}-V_{B E}}{R_{\text {RTH }}+(\beta+1) R_{E}}
\end{aligned}
$$

CE Loop Analysis

Voltage Divider Bias Circuit

- From HVK;

$$
V_{C C}-I_{C} R_{C}-V_{C E}-I_{E} R_{E}=0
$$

- Assume;
$I_{E} \approx I_{C}$
■ Therefore;

$$
\therefore V_{C E}=V_{C C}-I_{C}\left(R_{C}+R_{E}\right)
$$

Example Voltage Divider Bias Circuit: Single Supply

\square Find $\mathrm{R}_{T H}, \mathrm{~V}_{\mathrm{TH}}, \mathrm{I}_{\mathrm{CQ}}, \mathrm{I}_{\mathrm{BQ}}, \mathrm{V}_{\mathrm{CEQ}}, \mathrm{V}_{\mathrm{BQ}}, \mathrm{V}_{\mathrm{CQ}}, \mathrm{V}_{\mathrm{EQ}} \& \mathrm{~V}_{\mathrm{BCQ}}$? (Silicon transistor). Construct the DC load line

Answers;

$$
\begin{aligned}
& \mathrm{RTH}=3.55 \mathrm{k} \Omega \\
& \mathrm{VTH}=2 \mathrm{~V} \\
& \mathrm{ICQ}=0.85 \mathrm{~mA} \\
& \mathrm{IBQ}=6.05 \mu \mathrm{~A} \\
& \mathrm{VCEQ}=12.9 \mathrm{~V} \\
& \mathrm{VBQ}=1.978 \mathrm{~V} \\
& \mathrm{VEQ}=1.275 \mathrm{~V} \\
& \mathrm{VCQ}=13.5 \mathrm{~V}
\end{aligned}
$$

step 2 : calculate V_{th} and R_{th}

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{th}}=\frac{3.9 \mathrm{k}}{3.9 \mathrm{k}+39 \mathrm{k}} \times 22=2 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{th}}=\frac{3.9 \mathrm{k} \times 39 \mathrm{k}}{3.9 \mathrm{k}+39 \mathrm{k}}=3.55 \mathrm{k} \Omega
\end{aligned}
$$

then redraw the circuit.
step 3:
B-E Loop KVL
$\mathrm{V}_{\mathrm{TH}}-\mathrm{I}_{\mathrm{B}} \mathrm{R}_{\mathrm{TH}}-\mathrm{V}_{\mathrm{BE}}-\mathrm{I}_{\mathrm{E}} \mathrm{R}_{\mathrm{E}}=0$
$2-I_{B}(3.55 k)-0.7-I_{E}(1.5 k)=0$
using relation $I_{E}=(1+\beta) I_{B}$
$2-I_{B}(3.55 k)-0.7-I_{B}(1+\beta)(1.5 k)=0$

$$
\mathrm{I}_{\mathrm{B}}=\frac{2-0.7}{3.55 \mathrm{k}+1.5 \mathrm{k}(1+140)}=6.05 \mu \mathrm{~A}
$$

using relation $\quad \mathrm{I}_{\mathrm{E}}=(1+\beta) \mathrm{I}_{\mathrm{B}}$ and $\mathrm{I}_{\mathrm{E}} \approx \mathrm{I}_{\mathrm{C}}$

$$
\mathrm{I}_{\mathrm{E}} \approx \mathrm{I}_{\mathrm{C}}=(1+140) \times 6.05 \mu=\underline{0.85 \mathrm{~mA}}
$$

C-E Loop KVL

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}-\mathrm{V}_{\mathrm{CE}}-\mathrm{I}_{\mathrm{E}} \mathrm{R}_{\mathrm{E}}=0 \\
& \quad \quad \quad \operatorname{assume} \mathrm{I}_{\mathrm{C}} \approx \mathrm{I}_{\mathrm{E}} \\
& \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}-\mathrm{I}_{\mathrm{E}} \mathrm{R}_{\mathrm{E}}=22-10 \mathrm{k}(0.85 \mathrm{~m})-1.5 \mathrm{k}(0.85 \mathrm{~m}) \\
& \mathrm{V}_{\mathrm{CE}}=\underline{12.19 \mathrm{~V}}
\end{aligned}
$$

it is known that $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$

$$
\text { and } \begin{aligned}
& \mathrm{V}_{\mathrm{BE}}=\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{E}} \quad \text { and } \mathrm{V}_{\mathrm{E}}=\mathrm{I}_{\mathrm{E}} \mathrm{R}_{\mathrm{E}} \\
& \therefore \mathrm{~V}_{\mathrm{E}}=\mathrm{I}_{\mathrm{E}} \mathrm{R}_{\mathrm{E}}=0.85 \mathrm{~m} \times 1.5 \mathrm{k}=\underline{1.28 \mathrm{~V}} \\
& \therefore \mathrm{~V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{BE}}+\mathrm{V}_{\mathrm{E}}=0.7+1.28=\underline{1.98 \mathrm{~V}} \approx \mathrm{~V}_{\mathrm{TH}} \\
\text { from } \quad & \mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{E}} \\
\therefore & \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{CE}}+\mathrm{V}_{\mathrm{E}}=12.19+1.28=\underline{13.51 \mathrm{~V}} \\
& \mathrm{~V}_{\mathrm{BC}}=\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{C}}=0.7-13.51=\underline{-12.81 \mathrm{~V}}
\end{aligned}
$$

this BJT is biased in FORWARD ACTIVE

Example Voltage Divider Bias with 2 supply

Determine $I_{B Q}, I_{C Q}, V_{C E Q}, V_{B Q}, V_{C Q}, V_{E Q}$. Given $\beta=h_{F E}=120$ and $V_{B E}=0.7 \mathrm{~V}$. [Ans: $I_{\mathrm{BQ}}=35.35 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{CQ}}=4.24 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CEQ}}=20.92 \mathrm{~V}, \mathrm{~V}_{\mathrm{BQ}}=-11.6 \mathrm{~V}$, $\mathrm{V}_{\mathrm{CQ}}=8.55 \mathrm{~V}, \mathrm{~V}_{\mathrm{EQ}}=-12.37 \mathrm{~V}$]

Solution

step 1: open all capacitors and draw the DC equivalent circuit

 step 2: calculate V_{th} and $\mathrm{R}_{\text {th }}$$$
\begin{aligned}
& \mathrm{V}_{\mathrm{th}}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \times\left(+\mathrm{V}_{\mathrm{CC}}\right)+\frac{\mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \times\left(-\mathrm{V}_{\mathrm{CC}}\right) \\
& \mathrm{V}_{\mathrm{th}}=\frac{2.2 \mathrm{k}}{2.2 \mathrm{k}+8.2 \mathrm{k}} \times(+20)+\frac{8.2 \mathrm{k}}{2.2 \mathrm{k}+8.2 \mathrm{k}} \times(-20)=\underline{-11.54 \mathrm{~V}} \\
& \mathrm{R}_{\mathrm{th}}=\frac{2.2 \mathrm{k} \times 8.2 \mathrm{k}}{2.2 \mathrm{k}+8.2 \mathrm{k}}=1.73 \mathrm{k} \Omega
\end{aligned}
$$

step 3:
B-E Loop KVL

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{TH}}-\mathrm{I}_{\mathrm{B}} \mathrm{R}_{\mathrm{TH}}-\mathrm{V}_{\mathrm{BE}}-\mathrm{I}_{\mathrm{E}} \mathrm{R}_{\mathrm{E}}+\mathrm{V}_{\mathrm{EE}}=0 \\
& \text { using relation } \mathrm{I}_{\mathrm{E}}=(1+\beta) \mathrm{I}_{\mathrm{B}} \\
& \mathrm{~V}_{\mathrm{TH}}-\mathrm{I}_{\mathrm{B}} \mathrm{R}_{\mathrm{TH}}-\mathrm{V}_{\mathrm{BE}}-(1+\beta) \mathrm{I}_{\mathrm{B}} \mathrm{R}_{\mathrm{E}}+\mathrm{V}_{\mathrm{EE}}=0 \\
& -11.54-\mathrm{I}_{\mathrm{B}}(1.73 \mathrm{k})-0.7-(1+120) \mathrm{I}_{\mathrm{B}}(1.8 \mathrm{k})+20=0 \\
& \qquad \mathrm{I}_{\mathrm{B}}=\mathrm{I}_{\mathrm{BQ}}=\frac{20-11.54-0.7}{1.73 \mathrm{k}+1.8 \mathrm{k}(1+120)}=\underline{35.35 \mu \mathrm{~A}} \\
& \text { using relation } \quad \mathrm{I}_{\mathrm{E}}=(1+\beta) \mathrm{I}_{\mathrm{B}} \text { and } \mathrm{I}_{\mathrm{E}} \approx \mathrm{I}_{\mathrm{C}} \\
& \quad \mathrm{I}_{\mathrm{E}} \approx \mathrm{I}_{\mathrm{C}} \approx \mathrm{I}_{\mathrm{CQ}}=(1+120) \times 35.35 \mu=\underline{4.28 \mathrm{~mA}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C-E Loop KVL } \\
& \begin{array}{l}
\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}-\mathrm{V}_{\mathrm{CE}}-\mathrm{I}_{\mathrm{E}} \mathrm{R}_{\mathrm{E}}+\mathrm{V}_{\mathrm{EE}}=0 \\
\quad \quad \quad \text { assume } \mathrm{I}_{\mathrm{C}} \approx \mathrm{I}_{\mathrm{E}} \\
\mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}-\mathrm{I}_{\mathrm{E}} \mathrm{R}_{\mathrm{E}}+\mathrm{V}_{\mathrm{EE}}=20-2.7 \mathrm{k}(4.28 \mathrm{~m})-1.8 \mathrm{k}(4.28 \mathrm{~m})+20 \\
\mathrm{~V}_{\mathrm{CE}}=\underline{\mathrm{V}_{\mathrm{CEQ}}=20.74 \mathrm{~V}}
\end{array}
\end{aligned}
$$

It is known that $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$

$$
\text { and } \begin{array}{ll}
& \mathrm{V}_{\mathrm{BE}}=\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{E}} \quad \text { and } \mathrm{V}_{\mathrm{E}}=\mathrm{I}_{\mathrm{E}} \mathrm{R}_{\mathrm{E}}-\mathrm{V}_{\mathrm{EE}} \\
& \therefore \mathrm{~V}_{\mathrm{E}}=\mathrm{I}_{\mathrm{E}} \mathrm{R}_{\mathrm{E}}-\mathrm{V}_{\mathrm{EE}}=1.8 \mathrm{k}(4.28 \mathrm{~m})-20=\underline{-12.3 \mathrm{~V}} \\
& \therefore \mathrm{~V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{BE}}+\mathrm{V}_{\mathrm{E}}=0.7-12.3=\underline{-11.6 \mathrm{~V}} \approx \underline{\mathrm{~V}_{\mathrm{TH}}} \\
\text { from } \quad & \mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{C}}-\mathrm{V}_{\mathrm{E}} \\
& \therefore \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{CE}}+\mathrm{V}_{\mathrm{E}}=20.74-12.3=\underline{8.44 \mathrm{~V}}
\end{array}
$$

Exercise FINAL SEU 2012 2010/2011/2

Refer to a small signal amplifier circuit in Figure Q3. The transistor's parameter are:
$\beta_{\mathrm{DC}}=\beta_{\mathrm{AC}}=100, \mathrm{~V}_{\mathrm{BE}}=0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=\mathbf{2 6 m V}$
I. Draw the DC equivalent circuit.
II. Calculate the base and collector current, $I_{B Q}$ and $I_{C Q}$. [Ans: $I_{B Q}=18.7 \mu A$, $\left.I_{C Q}=1.87 \mathrm{~mA}\right]$
III. Calculate the collector to emitter voltage, $\mathrm{V}_{\text {CEQ }}$. [Ans $=\mathrm{V}_{\mathrm{CE}}=6.3 \mathrm{~V}$]
$I V$. Calculate new Q-point ($I_{B Q}$ and $I_{C Q}$) if R_{2} is halved [Ans: $I_{B}=7.7 \mu A, I_{C}=0.77 \mathrm{~mA}$]

Load Line Analysis - Voltage Divider Bias

DFor the load-line analysis, the cutoff region still results the same as the fixed bias and emitter bias configuration:

$$
V_{C E}=\left.V_{C C}\right|_{I_{C}=0}
$$

\square And for the saturation region:

$$
I_{C_{s a t}}=\left.\frac{V_{C C}}{R_{C}+R_{E}}\right|_{V}=0
$$

Exercise Final Exam 2013/2014/2

The dc load line of the circuit and the characteristic is as shown. Based on the figures,
(i) Determine the common emitter current gain, β, and the emitter current, I_{E}. [Ans: $\beta=75, \mathrm{I}_{\mathrm{E}}=5.71 \mathrm{~mA}$]
(ii) Determine R_{B} and R_{C} such that the circuit yields the given Q-point. Given $V_{B E}=$ $0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=6 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{E}}=600 \Omega$. [Ans: $\mathrm{R}_{\mathrm{B}}=\mathbf{2 5 k} \Omega, \mathrm{R}_{\mathrm{C}}=400 \Omega$]

DC Biasing Circuit for PNP BJT

\square All the previous analysis and technique used in NPN BJT can be applied to PNP BJT.
\square This is because the amount of current is the same; $I_{E}=I_{B}+I_{C}$
\square The major different is the direction of current flowing.
\square PNP BJT current flow from emitter to collector.

Example Voltage Divider PNP

Determine $\mathrm{I}_{\mathrm{BQ}}, \mathrm{I}_{\mathrm{CQ}}, \mathrm{V}_{\mathrm{CEQ}}, \mathrm{V}_{\mathrm{B}}, \mathrm{V}_{\mathrm{C}}$ and V_{E}. Given $\beta=120$ and $\mathrm{V}_{\mathrm{EB}}=0.7$.
[Ans: $I_{B Q}=17.4 \mathrm{uA}, \mathrm{I}_{\mathrm{CO}}=2.09 \mathrm{~mA}, \mathrm{~V}_{\text {CEO }}=-10.68, \mathrm{~V}_{\mathrm{B}}=-3 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=-12.98 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{E}}=-$ 2.32V]

Solution
step 1: open all capacitors and draw the DC equivalent circuit.
step 2 : calculate V_{th} and R_{th}

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{th}}=\frac{10 \mathrm{k}}{10 \mathrm{k}+47 \mathrm{k}} \times-18=-3.16 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{th}}=\frac{10 \mathrm{k} \times 47 \mathrm{k}}{10 \mathrm{k}+47 \mathrm{k}}=8.25 \mathrm{k} \Omega
\end{aligned}
$$

then redraw the circuit.
step 3:
E-B Loop KVL
$\mathrm{I}_{\mathrm{E}} \mathrm{R}_{\mathrm{E}}-\mathrm{V}_{\mathrm{EB}} \mathrm{V}_{\text {TH }}-\mathrm{I}_{\mathrm{B}} \mathrm{R}_{\text {TH }}+\mathrm{V}_{\text {TH }}=0$

using relation $I_{E}=(1+\beta) I_{B}$
$\mathrm{I}_{\mathrm{B}}(1+\beta) \mathrm{R}_{\mathrm{E}}-\mathrm{V}_{\mathrm{EB}}-\mathrm{I}_{\mathrm{B}} \mathrm{R}_{\mathrm{TH}}+\mathrm{V}_{\mathrm{TH}}=0$
$\mathrm{I}_{\mathrm{B}}(1+120)(1.1 \mathrm{k})-0.7-\mathrm{I}_{\mathrm{B}}(8.25 \mathrm{k})+3.16=0$

$$
\mathrm{I}_{\mathrm{B}}=\mathrm{I}_{\mathrm{BQ}}=\frac{3.16-0.7}{8.25 \mathrm{k}+1.1 \mathrm{k}(1+120)}=\underline{17.4 \mu \mathrm{~A}}
$$

using relation $I_{E}=(1+\beta) I_{B}$ and $I_{E} \approx I_{C}$

$$
\mathrm{I}_{\mathrm{E}} \approx \mathrm{I}_{\mathrm{C}} \approx \mathrm{I}_{\mathrm{CQ}}=(1+120) \times 17.4 \mu=\underline{2.09 \mathrm{~mA}}
$$

E-C Loop KVL

$$
\begin{aligned}
& -\mathrm{I}_{\mathrm{E}} \mathrm{R}_{\mathrm{E}}-\mathrm{V}_{\mathrm{EC}}-\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}+\mathrm{V}_{\mathrm{CC}}=0 \\
& \quad \quad \operatorname{assume} \mathrm{I}_{\mathrm{C}} \approx \mathrm{I}_{\mathrm{E}} \\
& \mathrm{~V}_{\mathrm{EC}}=\mathrm{I}_{\mathrm{E}} \mathrm{R}_{\mathrm{E}}-\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}+\mathrm{V}_{\mathrm{CC}}=-1.1 \mathrm{k}(2.09 \mathrm{~m})-2.4 \mathrm{k}(2.09 \mathrm{~m})+18 \\
& \mathrm{~V}_{\mathrm{EC}}=\mathrm{V}_{\mathrm{ECQ}}=\underline{10.69 \mathrm{~V}} \quad \therefore \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\text {CEQ }}=\underline{-10.69 \mathrm{~V}}
\end{aligned}
$$

it is known that $\mathrm{V}_{\mathrm{EB}}=0.7 \mathrm{~V}$
and

$$
\mathrm{V}_{\mathrm{EB}}=\mathrm{V}_{\mathrm{E}}-\mathrm{V}_{\mathrm{B}} \quad \text { and } \mathrm{V}_{\mathrm{E}}=-\mathrm{I}_{\mathrm{E}} \mathrm{R}_{\mathrm{E}}
$$

$$
\therefore \mathrm{V}_{\mathrm{E}}=-\mathrm{I}_{\mathrm{E}} \mathrm{R}_{\mathrm{E}}=-2.09 \mathrm{~m} \times 1.1 \mathrm{k}=-\underline{2.3 \mathrm{~V}}
$$

$$
\therefore \mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{E}}-\mathrm{V}_{\mathrm{EB}}=-2.3-0.7=-3 \mathrm{~V}
$$

from

$$
\begin{aligned}
\mathrm{V}_{\mathrm{EC}} & =\mathrm{V}_{\mathrm{E}}-\mathrm{V}_{\mathrm{C}} \\
\therefore \mathrm{~V}_{\mathrm{C}} & =\mathrm{V}_{\mathrm{E}}-\mathrm{V}_{\mathrm{EC}}=-2.3-10.69=-\underline{12.99 \mathrm{~V}}
\end{aligned}
$$

Example Fixed Bias with 2 supply

Determine $I_{B Q}, I_{C Q}, V_{C E Q}, V_{B}, V_{C}, V_{E}$. Given $\beta=h_{F E}=100$ and $V_{E B}=0.7 \mathrm{~V}$.
[Ans: $I_{B O}=10.49 \mathrm{uA}, \mathrm{I}_{\mathrm{CO}}=1.05 \mathrm{~mA}, \mathrm{~V}_{\text {CEO }}=-13.96 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=0.2 \mathrm{~V} \mathrm{~V}_{\mathrm{C}}=-12.86 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{E}}=0.93 \mathrm{~V}$]

Solution

step 1: open all capacitors and draw the DC equivalent circuit.
step 2:
E-B Loop KVL

$$
20-I_{E} R_{E}-V_{E B}-I_{B} R_{B}=0
$$

using relation $I_{E}=(1+\beta) I_{B}$
$20-(1+\beta) I_{B} R_{E}-V_{\text {EB }}-I_{B} R_{B}=0$

$$
\mathrm{I}_{\mathrm{B}}=\frac{20-\mathrm{V}_{\mathrm{EB}}}{\mathrm{R}_{\mathrm{B}}+\mathrm{R}_{\mathrm{E}}(1+\beta)}=\frac{20-0.7}{22 \mathrm{k}+18 \mathrm{k}(1+100)}=\underline{10.49 \mu \mathrm{~A}}
$$

using relation $\mathrm{I}_{\mathrm{E}} \approx \mathrm{I}_{\mathrm{C}}$

$$
\mathrm{I}_{\mathrm{E}} \approx \mathrm{I}_{\mathrm{C}}=(1+100) \times 10.49 \mu=\underline{1.06 \mathrm{~mA}}
$$

E-C Loop KVL

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{EE}}-\mathrm{I}_{\mathrm{E}} \mathrm{R}_{\mathrm{E}}-\mathrm{V}_{\mathrm{EC}}-\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}+\mathrm{V}_{\mathrm{CC}}=0 \\
& 20-18 \mathrm{k}(1.06)-\mathrm{V}_{\mathrm{EC}}-6.8 \mathrm{k}(1.06)+20=0 \\
& \quad \mathrm{~V}_{\mathrm{EC}}=20-18 \mathrm{k}(1.06)-6.8 \mathrm{k}(1.06)+20 \\
& \quad \mathrm{~V}_{\mathrm{EC}}=\mathrm{V}_{\mathrm{ECQ}}=\underline{13.73 \mathrm{~V}} \\
& \therefore \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CEQ}}=\underline{-13.73 \mathrm{~V}}
\end{aligned}
$$

We know $\Rightarrow V_{E B}=V_{E}-V_{B} \quad$ and $V_{E}=-I_{E} R_{E}+V_{E E}$
Therefore $\quad V_{E}=-I_{E} R_{E}+V_{E E}=(-1.06 m) 18 k+20=\underline{0.92 V}$

$$
\begin{aligned}
\therefore V_{B} & =V_{E}-V_{E B}=0.92-0.7=\underline{0.22 V} \\
\text { and } V_{C} & =V_{E}-V_{E C}=0.92-13.73=\underline{-12.81 \mathrm{~V}}
\end{aligned}
$$

Exercise : Design

Determine all the resistors R_{E}, R_{C}, R_{2} and R_{1} values in designing the fixed bias with emitter-stabilized circuit as below. Given $\beta_{\text {min }}=h_{\text {FE(min })}=80$ and $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CEO}}=8 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{CQ}}=10 \mathrm{~mA}$. Assume $\mathrm{V}_{\mathrm{E}}=(1 / 10) \mathrm{V}_{\mathrm{CC}}$ and $\beta \mathrm{R}_{\mathrm{E}}=10 \mathrm{R}_{2}$. [Ans: $\mathrm{R}_{\mathrm{E}}=197.53 \Omega, \mathrm{RC}=1 \mathrm{k} \Omega, \mathrm{R}_{1}=10.12 \mathrm{k} \Omega, \mathrm{R}_{2}=1.58 \mathrm{k} \Omega$]

Exercise

Calculate the value for $R_{C}, R_{B}, V_{C E}$ and β for a fixed bias circuit if $V_{C C}=24 V, I_{B}$ $=20 \mu \mathrm{~A}$ dan $\mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA}$. Transistor must properly biased to achieve maximum symmetrical output swing for the voltage and current. Given $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$.

Example

Transistor Specification \& Data Sheet

Answer the following questions by referring to the partial transistor data sheet for transistor 2N3904.
a) What is the maximum collector to emitter voltage?
b) How much continuous collector current can the 2N3904 handle?
c) How much power can 2N3904 dissipate if the ambient temperature is $25^{\circ} \mathrm{C}$?
d) What is the minimum and maximum β ?

Absolute Maximum Ratings ${ }^{(1),(2)}$
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\mathrm{CEO}}$	Collector-Emitter Voltage	40	V
$\mathrm{~V}_{\mathrm{CBO}}$	Collector-Base Voltage	60	V
$\mathrm{~V}_{\mathrm{EBO}}$	Emitter-Base Voltage	6.0	V
I_{C}	Collector Current - Continuous	200	mA
$\mathrm{~T}_{\mathrm{J}, \mathrm{T}} \mathrm{STG}$	Operating and Storage Junction Temperature Range	-55 to 150	${ }^{\circ} \mathrm{C}$

Notes:

1. These ratings are based on a maximum junction temperature of $150^{\circ} \mathrm{C}$.
2. These are steady-state limits. Fairchild Semiconductor should be consulted on applications involving pulsed or low-duty cycle operations.

Thermal Characteristics

Values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter		Maximum		
		2N3904	MMBT3904 $^{(3)}$	PZT3904 ${ }^{(4)}$	
P_{D}	Total Device Dissipation	625	350	1,000	mW
	Derate Above $25^{\circ} \mathrm{C}$	5.0	2.8	8.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {өJC }}$	Thermal Resistance, Junction to Case	83.3			${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJA }}$	Thermal Resistance, Junction to Ambient	200	357	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Notes:

3. Device is mounted on FR-4 PCB 1.6 inch $X 1.6$ inch $X 0.06$ inch
4. Device is mounted on FR-4 PCB $36 \mathrm{~mm} \times 18 \mathrm{~mm} \times 1.5 \mathrm{~mm}$, mounting pad for the collector lead minimum $6 \mathrm{~cm}^{2}$.

Data Sheet for BJT

Electrical Characteristics

Values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Max.	Unit
OFF CHARACTERISTICS					
$\mathrm{V}_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$	40		V
$\mathrm{V}_{\text {(BR)CBO }}$	Collector-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$	60		V
$\mathrm{V}_{\text {(BR)EBO }}$	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$	6.0		V
$\mathrm{I}_{\text {BL }}$	Base Cut-Off Current	$\mathrm{V}_{\mathrm{CE}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{EB}}=3 \mathrm{~V}$		50	nA
$\mathrm{I}_{\text {CEX }}$	Collector Cut-Off Current	$\mathrm{V}_{\mathrm{CE}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{EB}}=3 \mathrm{~V}$		50	nA
ON CHARACTERISTICS ${ }^{(5)}$					
$h_{\text {FE }}$	DC Current Gain	$\mathrm{I}_{\mathrm{C}}=0.1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=1.0 \mathrm{~V}$	40		
		$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=1.0 \mathrm{~V}$	70		
		$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=1.0 \mathrm{~V}$	100	300	
		$\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=1.0 \mathrm{~V}$	60		
		$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=1.0 \mathrm{~V}$	30		
$\mathrm{V}_{\text {CE }}$ (sat)	Collector-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1.0 \mathrm{~mA}$		0.2	V
		$\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=5.0 \mathrm{~mA}$		0.3	
$\mathrm{V}_{\text {BE }}$ (sat)	Base-Emitter Saturation Voltage	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1.0 \mathrm{~mA}$	0.65	0.85	V
		$\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=5.0 \mathrm{~mA}$		0.95	
SMALL SIGNAL CHARACTERISTICS					
f_{T}	Current Gain - Bandwidth Product	$\begin{aligned} & l_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=20 \mathrm{~V}, \\ & \mathrm{f}=100 \mathrm{MHz} \end{aligned}$	300		MHz
$\mathrm{C}_{\text {obo }}$	Output Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{CB}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \\ & \mathrm{f}=100 \mathrm{kHz} \end{aligned}$		4.0	pF
$\mathrm{C}_{\text {ibo }}$	Input Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{EB}}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0, \\ & \mathrm{f}=100 \mathrm{kHz} \end{aligned}$		8.0	pF
NF	Noise Figure	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{S}}=1.0 \mathrm{k} \Omega, \\ & \mathrm{f}=10 \mathrm{~Hz} \text { to } 15.7 \mathrm{kHz} \end{aligned}$		5.0	dB
SWITCHING CHARACTERISTICS					
t_{d}	Delay Time	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}=0.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B} 1}=1.0 \mathrm{~mA} \end{aligned}$		35	ns
t_{r}	Rise Time			35	ns
$\mathrm{t}_{\text {s }}$	Storage Time	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=1.0 \mathrm{~mA} \end{aligned}$		200	ns
t_{f}	Fall Time			50	ns

Note:
5. Pulse test: pulse width $\leq 300 \mu \mathrm{~s}$, duty cycle $\leq 2.0 \%$.

[^0]: ${ }^{* *}$ The Q - point is in the active region. Therefore this biasing circuit
 is suitable to be used in amplifier.

