SEEU2012

Electronics
20212022/2

Chapter 4 Bipolar Junction Transistor (BJT) AC Analysis

Dr. Nur Najahatul Huda Saris
School of Electrical Engineering,
Faculty of Engineering UNIVERSITI TEKNOLOGI MALAYSIA nurnajahatulhuda@utm.my

Course Learning Outcomes

Apply the basic law and theorems of electronic devices to describe their basic operation.

Apply the basic law, theorems and methods of analysis to solve complex problem related to circuitry.

Work in a team and communicate effectively.

Small Signal Circuit Analysis

to determine the initial operating values of I_{C}, I_{B} and $V_{C E}(Q-$ point). The Q-point which is in the middle of the DC load line is

to determine the values of input impedance $\left(Z_{i}\right)$, output impedance $\left(Z_{0}\right)$, voltage gain $\left(A_{v}\right)$ and current gain $\left(A_{i}\right)$

For the purpose of analysing AC operations, the transistor can be replaced with a small signal equivalent circuit model when it is operating in the active region (having linear attributes)

AC Analysis

Function Of Capacitors In Amplifiers

DC Analysis

\square Set AC source to zero.
Replace the coupling capacitors and bypass capacitor with open circuits.

AC Analysis

\square Set DC source to zero (ground)
\square Replace the coupling capacitors and bypass capacitors with short circuit
\square Analyze the AC operation

AC Equivalent Models

\square Linear transistor can be replaced by AC equivalent model.
\square Transistor AC equivalent models are:

- Parameter-h Model
- r_{e} Model
- Parameter-y Model
- Hybrid- π Model

Transistor AC Models

The simplified Hybrid- π are shown in relation to the transistor model

An important Hybrid $-\pi$ is r_{π}. It appears as a small AC resistance between the Base and Emitter

Hybrid - π Model

$$
\beta=\mathrm{h}_{\mathrm{fe}} \quad r_{o}=\frac{1}{h_{o e}}=\frac{V_{A}}{I_{C}} \quad g_{m}=\frac{I_{C}}{V_{T}} \quad r_{\pi}=\frac{\beta}{g_{m}}
$$

\square In the Current Controlled Current Source (CCCS) model $=\beta \mathrm{i}_{\mathrm{b}}$
\square In the Voltage Controlled Current Source (VCCS) model $=g_{m} v_{\pi}$
Internal output impedance, r_{o} is very high \& can be neglected(open circuit)Equivalent voltage temperature, $\mathrm{V}_{\mathrm{T}}=26 \mathrm{mV}$ at room temperature $\left(25^{\circ} \mathrm{C}\right)$
\square EarlyVoltage, $\mathrm{V}_{\mathrm{A}} \cong 200 \mathrm{~V}$

Hybrid - π Model

Hybrid - π Model

EQUATION TO REMEMBER!

$$
\beta=\mathrm{h}_{\mathrm{fe}} \quad r_{o}=\frac{1}{h_{o e}}=\frac{V_{A}}{I_{C}} \quad g_{m}=\frac{I_{C}}{V_{T}} \quad r_{\pi}=\frac{\beta}{g_{m}}
$$

Transistor Configuration

\square Transistor configuration - is a connection of transistor to get variety operation.
$\square 3$ types of transistor configuration:

- Common Collector (CC).
- Common Base (CB).
- Common Emitter (CE).
\square Common means the circuit has a single reference for both the input voltage to the transistor and the output voltage

	Common Emitter	Common Collector	Common Base
Input terminal	Base	Base	Emitter
Output Terminal	Collector	Emitter	Collector
Common (Gnd)	Emitter	Collector	Base

Transistor Configuration

Example

Determine the configuration of the following BJT circuit?

Exercise

Determine the configuration of the following BJT circuit?

Exercise

Determine the configuration of the following BJT circuit?

(D)

Common Emitter

\square Input-Applied to BASE
\square Output - From COLLECTOR
\square High Voltage Gain, A_{V} and high Current Gain, A_{i}
\square Phase shift between input and output is 180°

Common Emitter: Fixed Bias Without By Pass Capacitor

CE Amplifier

DC source grounded and capacitors are shorted
\square Set all DC source to zero/ground
\square Replace the coupling capacitors and bypass capacitors with short circuit
\square Rearrange circuit to make it simple and draw the AC equivalent circuit.

Common Emitter: Fixed Bias

Common Emitter : Fixed Bias

Voltage gain:

$$
\begin{aligned}
& A_{v s}=\frac{v_{o}}{v_{s}} \\
& v_{o}=-g_{m} v_{\pi}\left(R_{C} \| R_{L}\right) \\
& v_{\pi}=v_{i}=\frac{Z_{i}}{Z_{i}+R_{S}} v_{s} \\
& A=\frac{v_{o}}{v_{\pi}} \times \frac{v_{\pi}}{v_{i}} \times \frac{v_{i}}{v_{s}}
\end{aligned}
$$

$$
A_{v s}=-g_{m}\left(R_{C} \| R_{L}\right) \frac{Z_{i}}{Z_{i}+R_{S}}
$$

Current gain:

$$
A_{i}=\frac{i_{o}}{i_{i}}
$$

$$
i_{o}=\frac{R_{C}}{R_{C}+R_{L}}\left(-g_{m} v_{\pi}\right)
$$

$$
v_{\pi}=v_{i}=i_{i} Z_{i}
$$

$$
A_{i}=\frac{i_{o}}{v_{\pi}} \times \frac{v_{\pi}}{v_{i}} \times \frac{v_{i}}{i_{i}}
$$

$$
A_{i}=-\frac{R_{C}}{R_{C}+R_{L}} g_{m} Z_{i}
$$

Common Emitter : Fixed Bias (Exercise)

Common Emitter : Fixed Bias (Solution)

1) Draw the DC equivalent circuit - ground all DC supply and short all capacitors.
2) Draw the AC equivalent circuit

Common Emitter: Voltage Divider Bias

\square Voltage Divider Bias

Common Emitter: Voltage Divider Bias

Exercise

Draw the AC equivalent circuit for the following voltage divider bias circuit:

Common Emitter: Voltage Divider Bias Example

Determine the values of $Z_{\mathrm{i}}, Z_{\mathrm{o}}, A_{\mathrm{v}(\mathrm{oc})}, A_{\mathrm{v}}, A_{\mathrm{vs},}, A_{\mathrm{i}}$ and $A_{\text {is }}$ for the amplifier circuit below. Given $V_{A}=200 \mathrm{~V}$ and $I_{C}=2.37 \mathrm{~mA}$

Solution

Input impedance: $\quad Z_{\mathrm{i}}=R_{1}\left\|R_{2}\right\| r_{\pi}=8.2 \mathrm{k} \Omega|1.5 \mathrm{k} \Omega| 1.32 \mathrm{k} \Omega=647 \Omega$
Output impedance: $\quad Z_{\mathrm{o}}=r_{\mathrm{o}}\left\|R_{\mathrm{C}}=84.4 \mathrm{k} \Omega\right\| 4.3 \mathrm{k} \Omega=4.09 \mathrm{k} \Omega$
Voltage gain: $\quad A_{v(\text { oc })}=\frac{v_{\text {out }}}{v_{\text {in }}}=-g_{\mathrm{m}}\left(r_{\mathrm{o}} \| R_{\mathrm{C}}\right)=-(91.2 \mathrm{mS})(4.09 \mathrm{k} \Omega)=-373$

$$
A_{v}=\frac{v_{\text {out }}}{v_{\text {in }}}=A_{\text {voc) }}\left(\frac{R_{\mathrm{L}}}{Z_{\mathrm{o}}+R_{\mathrm{L}}}\right)=(-373)\left(\frac{10 \mathrm{k} \Omega}{4.09 \mathrm{k} \Omega+10 \mathrm{k} \Omega}\right)=-265
$$

$$
A_{\text {vs }}=\frac{v_{\text {out }}}{v_{\mathrm{s}}}=A_{v}\left(\frac{Z_{\mathrm{i}}}{R_{\mathrm{s}}+Z_{\mathrm{i}}}\right)=(-265)\left(\frac{647 \Omega}{600 \Omega+647 \Omega}\right)=-137.5
$$

Current gain:

$$
\begin{gathered}
A_{\mathrm{i}}=\frac{i_{\text {out }}}{i_{\text {in }}}=A_{\mathrm{v}(\mathrm{oc})}\left(\frac{Z_{\mathrm{i}}}{Z_{\mathrm{o}}+R_{\mathrm{L}}}\right)=(-373)\left(\frac{647 \Omega}{4.09 \mathrm{k} \Omega+10 \mathrm{k} \Omega}\right)=-17.13 \\
A_{\mathrm{is}}=\frac{i_{\text {out }}}{i_{\mathrm{s}}}=A\left(\frac{R_{\mathrm{s}}}{R_{\mathrm{s}}+Z_{\mathrm{i}}}\right)=(-17.13)\left(\frac{600 \Omega}{600 \Omega+647 \Omega}\right)=-8.24
\end{gathered}
$$

Common Emitter: Unbypassed R_{E}

The removal of the bypass capacitor results in:
\square an increase in the input impedance, Z_{i} \& output impedance, $Z_{\text {o }}$
\square a reduction in its voltage gain, A_{v}

Common Emitter: Unbypassed R_{E}

Input impedance:
$Z_{\mathrm{i}}=R_{\mathrm{B}} \| Z_{\mathrm{b}}$
$Z_{\mathrm{b}}=r_{\pi}+(\beta+1) R_{\mathrm{E}}$
Output impedance (ignore r_{0}): $Z_{o}=R_{C}$

Voltage gain:

$$
\begin{aligned}
& A_{v(0 c)}=\frac{v_{0}}{v_{\mathrm{i}}}=-\left.\frac{g_{\mathrm{m}} v_{\pi} R_{\mathrm{C}}}{i_{\mathrm{b}} Z_{\mathrm{b}}}\right|_{z_{\mathrm{b}}=r_{\mathrm{a}}+(\beta+1) R_{\mathrm{E}}} \\
& =-\frac{g_{\mathrm{m}} i_{\mathrm{b}} r_{\pi} R_{\mathrm{C}}}{i_{\mathrm{b}}\left(r_{\pi}+g_{\mathrm{m}} r_{\pi} R_{\mathrm{E}}\right)}=-\frac{g_{\mathrm{m}} R_{\mathrm{C}}}{1+g_{\mathrm{m}} R_{\mathrm{E}}} \\
& A_{\mathrm{V}(0 \mathrm{C})}=\frac{v_{\mathrm{o}}}{v_{\mathrm{i}}} \cong-\left.\frac{R_{\mathrm{C}}}{R_{\mathrm{E}}}\right|_{g_{\mathrm{m}} R_{\mathrm{E}} \gg 1}
\end{aligned}
$$

Current gain:

$$
A_{i}=\frac{i_{o}}{i_{i}}=-\frac{g_{m} r_{\pi} R_{B}}{R_{B}+Z_{b}}=-\frac{\beta R_{B}}{R_{B}+Z_{b}}
$$

Current gain from voltage gain:

$$
A_{i}=A_{v(c)}\left(\frac{Z_{i}}{Z_{o}+R_{L}}\right)=A_{v(c)}\left(\frac{Z_{i}}{R_{c}}\right)
$$

Common Emitter: Unbypassed R_{E}

To determine Z_{o} using imaginary voltage source (alternative approach)

$$
\begin{aligned}
Z_{\text {TEST }} & =\frac{v_{\text {TEST }}}{i_{\text {TEST }}} \\
v_{\text {TEST }} & \approx\left(i_{\text {TEST }}-g_{\mathrm{m}} v_{\pi}\right) r_{\mathrm{O}}+i_{\text {TEST }} R_{\mathrm{E}} \\
& \approx i_{\text {TEST }} r_{\mathrm{O}}-g_{\mathrm{m}} v_{\pi} r_{\mathrm{O}}+i_{\text {TEST }} R_{\mathrm{E}}
\end{aligned}
$$

Common Emitter: Unbypassed R_{E}

$$
\begin{aligned}
i & =\frac{R_{\mathrm{E}}}{R_{\mathrm{E}}+\left(r_{\pi}+R_{\text {TH }}\right)} \times i_{\text {TEST }} \\
v_{\pi} & =-i r_{\pi}=\frac{-R_{\mathrm{E}} r_{\pi}}{R_{\mathrm{E}}+r_{\pi}+R_{\text {TH }}} \times i_{\text {TEST }} \\
v_{\text {TEST }} & =i_{\text {TEST }} r_{\mathrm{O}}-g_{\mathrm{m}} r_{\mathrm{O}}\left[\frac{-R_{\mathrm{E}} r_{\pi}}{R_{\mathrm{E}}+r_{\pi}+R_{\text {TH }}}\right] \times i_{\text {TEST }}+i_{\text {TEST }} R_{\mathrm{E}} \\
& =i_{\text {TEST }}\left[r_{\mathrm{O}}+\frac{g_{\mathrm{m}} r_{\mathrm{O}} R_{\mathrm{E}} r_{\pi}}{R_{\mathrm{E}}+r_{\pi}+R_{\text {TH' }}}+R_{\mathrm{E}}\right] \\
& \therefore Z_{\text {TEST }}=\frac{v_{\text {TEST }}}{i_{\text {TEST }}}=r_{\mathrm{O}}+\frac{g_{\mathrm{m}} r_{0} R_{\mathrm{E}} r_{\pi}}{R_{\mathrm{E}}+r_{\pi}+R_{\text {TH }}}+R_{\mathrm{E}} \\
& \therefore Z_{\mathrm{O}}=\left(Z_{\text {TEST }} \| R_{\mathrm{C}}\right) \approx R_{\mathrm{C}}
\end{aligned}
$$

Example of Common Emitter: Unbypassed R_{E}

Determine the values of $Z_{\mathrm{i}}, Z_{\mathrm{o}^{\prime}}, A_{\mathrm{v}(\mathrm{oc})}, A_{\mathrm{v}}, A_{\mathrm{vs}}, A_{\mathrm{i}}, A_{\mathrm{is}}$ and A_{p} for the amplifier circuit shown below. Given $V_{A}=\infty$ and $I_{C}=2.37 \mathrm{~mA}$

Example of Common Emitter: Unbypassed R_{E}

Input impedance:

$$
\begin{aligned}
& Z_{\mathrm{b}}=r_{\pi}+(\beta+1) R_{\mathrm{E}}=1.32 \mathrm{k} \Omega+(121)(1 \mathrm{k} \Omega)=122.32 \mathrm{k} \Omega \\
& \quad Z_{\mathrm{i}}=R_{1}\left\|R_{2}\right\| Z_{\mathrm{b}}=8.2 \mathrm{k} \Omega\|1.5 \mathrm{k} \Omega\| 122.32 \mathrm{k} \Omega=1.26 \mathrm{k} \Omega
\end{aligned}
$$

Output impedance: $\quad Z_{\mathrm{o}}=R_{\mathrm{C}}=4.3 \mathrm{k} \Omega$
Voltage gain: $A_{v(0 c)}=\frac{v_{\text {out }}}{v_{\text {in }}}=-\frac{g_{\mathrm{m}} R_{\mathrm{C}}}{1+g_{\mathrm{m}} R_{\mathrm{E}}}=-\frac{(91.2 \mathrm{mS})(4.09 \mathrm{k} \Omega)}{1+(91.2 \mathrm{mS})(1 \mathrm{k} \Omega)}=-4.25$

Exercise

Draw the small signal ac equivalent circuit. If $+\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=\infty, \mathrm{V}_{\mathrm{BE}}=$ 0.7 V and $\beta=80$, calculate the values of :
(a) Input and output impedances
(b) Voltage gain A_{V} and $A_{v s}$

Exercise

Given $\beta=h_{\text {fe }}=200, \mathrm{~V}_{\mathrm{BE}}=0.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CEQ}}$ $=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}} \rightarrow \infty, \mathrm{A}_{\mathrm{v}}(\mathrm{dB})$ at middle frequency $=14 \mathrm{~dB}$.
(a) Draw the mid-frequency AC equivalent circuit.
(b) Determine $\mathrm{R}_{\mathrm{E} 1}$ and $\mathrm{R}_{\mathrm{E} 2}$.
(c) Determine the amplifier input impedance, Z_{i}.
(d) Ratio of i_{L} / v_{i}.

$$
\begin{aligned}
& R_{E 1}=56.67 \Omega ; R_{E 2}=7.27 \mathrm{k} \Omega \\
& Z_{i}=2.86 \mathrm{k} \Omega ; i_{L} / v_{i}=4.99 \mathrm{mS}
\end{aligned}
$$

