

SEEU2012 Electronics 20212022/2

Chapter 4 Bipolar Junction Transistor (BJT) AC Analysis

Dr. Nur Najahatul Huda Saris School of Electrical Engineering, Faculty of Engineering UNIVERSITI TEKNOLOGI MALAYSIA nurnajahatulhuda@utm.my

innovative • entrepreneurial • global

Course Learning Outcomes

Apply the basic law and theorems of electronic devices to describe their basic operation.

Apply the basic law, theorems and methods of analysis to solve complex problem related to circuitry.

3

Work in a team and communicate effectively.

Small Signal Circuit Analysis

All DC supply is removed – <u>replaced</u> with zero potential (ground)

Reactance becomes low & capacitors can be considered short circuit

Determine the following quantities

- Input impedance, Z_i
- Output impedance, Z_o
- Voltage gain, A_v
- Current gain, A_i
- Power gain, A_p

Function Of Capacitors In Amplifiers

DC Analysis

- □ Set AC source to zero.
- Replace the coupling capacitors and bypass capacitor with open circuits.

AC Analysis

□ Set DC source to zero (ground)

□ Replace the coupling capacitors and bypass capacitors with short circuit

□ Analyze the AC operation

AC Equivalent Models

- Linear transistor can be replaced by AC equivalent model.
- Transistor AC equivalent models are:
 - Parameter-h Model
 - r_e Model
 - Parameter-y Model

Hybrid- π Model

Transistor AC Models

The simplified Hybrid-π are shown in relation to the transistor model

An important Hybrid- π is r_{π} . It appears as a small AC resistance between the Base and Emitter

Hybrid - π Model

- Internal output impedance , r_o is very high & can be neglected(open circuit)
- \Box Equivalent voltage temperature, $V_T = 26 \text{ mV}$ at room temperature (25°C)
- EarlyVoltage , $V_A \cong 200V$

innovative • entrepreneurial • global

Hybrid - π Model

Hybrid - π Model

EQUATION TO REMEMBER!

$$\beta = h_{fe} \qquad r_o = \frac{1}{h_{oe}} = \frac{V_A}{I_C} \qquad g_m = \frac{I_C}{V_T} \qquad r_\pi = \frac{\beta}{g_m}$$

Transistor Configuration

□ Transistor configuration – is a connection of transistor to get variety operation.

□ 3 types of transistor configuration:

- Common Collector (CC).
- Common Base (CB).
- Common Emitter (CE).

Common means the circuit has a single reference for both the input voltage to the transistor and the output voltage

	Common Emitter	Common Collector	Common Base
Input terminal	Base	Base	Emitter
Output Terminal	Collector	Emitter	Collector
Common (Gnd)	Emitter	Collector	Base

Transistor Configuration

innovative ${\ensuremath{\bullet}}$ entrepreneurial ${\ensuremath{\bullet}}$ global

Determine the configuration of the following BJT circuit?

Determine the configuration of the following BJT circuit?

Determine the configuration of the following BJT circuit?

Common Emitter

- □ Input Applied to BASE
- Output From COLLECTOR
- □ High Voltage Gain, A_v and high Current Gain, A_i
- Phase shift between input and output is 180°

Common Emitter: Fixed Bias Without By Pass

- □ Set all DC source to <u>zero/ground</u>
- Replace the coupling capacitors and bypass capacitors with short circuit
 Rearrange circuit to make it simple and draw the AC equivalent circuit.

Common Emitter: Fixed Bias

Common Emitter : Fixed Bias

Voltage gain:

Current gain:

ANY PHASE SHIFT?

Common Emitter : Fixed Bias (Exercise)

Common Emitter : Fixed Bias (Solution)

- 1) Draw the DC equivalent circuit ground all DC supply and short all capacitors.
- 2) Draw the AC equivalent circuit

Common Emitter: Voltage Divider Bias

 R_{S}

Vs

Ź

 R_1

Z

 $R_2 \neq$

Voltage Divider Bias

CE Amplifier

DC source grounded and capacitors are shorted

 $R_{E} \neq$

Ŧ

 $\neq R_c$

 $R_{L} \neq$

Common Emitter: Voltage Divider Bias

Draw the AC equivalent circuit for the following voltage divider bias circuit:

Common Emitter: Voltage Divider Bias Example

Determine the values of Z_i , Z_o , $A_{v(oc)}$, A_v , A_{vs} , A_i and A_{is} for the amplifier circuit below. Given V_A =200V and I_C = 2.37mA

Solution

$$A_{vs} = \frac{V_{out}}{V_{s}} = A_{v} \left(\frac{Z_{i}}{R_{s} + Z_{i}}\right) = (-265) \left(\frac{647\Omega}{600\Omega + 647\Omega}\right) = -137.5$$

Current gain:

$$A_{\rm i} = \frac{i_{\rm out}}{i_{\rm in}} = A_{\rm v(oc)} \left(\frac{Z_{\rm i}}{Z_{\rm o} + R_{\rm L}}\right) = (-373) \left(\frac{647\Omega}{4.09\,k\Omega + 10\,k\Omega}\right) = -17.13$$

$$A_{\rm is} = \frac{i_{\rm out}}{i_{\rm s}} = A_{\rm l} \left(\frac{R_{\rm s}}{R_{\rm s} + Z_{\rm i}}\right) = (-17.13) \left(\frac{600\,\Omega}{600\,\Omega + 647\,\Omega}\right) = -8.24$$

The removal of the bypass capacitor results in:

an increase in the input impedance, Z_i & output impedance, Z_o
 a reduction in its voltage gain, A_V
 innovative • entrepreneurial • global

Input impedance:

 $Z_{i} = R_{B} \| Z_{b}$ $Z_{b} = r_{\pi} + (\beta + 1) R_{E}$

Output impedance (ignore r_{o}):

 $Z_o = R_c$

Voltage gain:

$$\begin{aligned} A_{v(oc)} &= \frac{V_{o}}{V_{i}} = -\frac{g_{m}V_{\pi}R_{C}}{i_{b}Z_{b}} \Big|_{Z_{b}=r_{\pi}+(\beta+1)R_{E}} \\ &= -\frac{g_{m}i_{b}r_{\pi}R_{C}}{i_{b}(r_{\pi}+g_{m}r_{\pi}R_{E})} = -\frac{g_{m}R_{C}}{1+g_{m}R_{E}} \\ A_{v(oc)} &= \frac{V_{o}}{V_{i}} \cong -\frac{R_{C}}{R_{E}} \Big|_{g_{m}R_{E}>>1} \end{aligned}$$

Current gain:

$$\mathsf{A}_{i} = \frac{\mathsf{i}_{o}}{\mathsf{i}_{i}} = -\frac{\mathsf{g}_{m}\mathsf{r}_{\pi}\mathsf{R}_{B}}{\mathsf{R}_{B} + \mathsf{Z}_{b}} = -\frac{\beta\mathsf{R}_{B}}{\mathsf{R}_{B} + \mathsf{Z}_{b}}$$

Current gain from voltage gain:

$$A_{i} = A_{v(\infty)} \left(\frac{Z_{i}}{Z_{o} + R_{L}} \right) = A_{v(\infty)} \left(\frac{Z_{i}}{R_{c}} \right)$$

innovative • entrepreneurial • global

To determine Z_o using imaginary voltage source (alternative approach)

$$i = \frac{R_{\rm E}}{R_{\rm E} + (r_{\pi} + R_{\rm TH'})} \times i_{\rm TEST}$$

$$v_{\pi} = -ir_{\pi} = \frac{-R_{\rm E}r_{\pi}}{R_{\rm E} + r_{\pi} + R_{\rm TH'}} \times i_{\rm TEST}$$

$$v_{\rm TEST} = i_{\rm TEST}r_{\rm O} - g_{\rm m}r_{\rm O} \left[\frac{-R_{\rm E}r_{\pi}}{R_{\rm E} + r_{\pi} + R_{\rm TH'}}\right] \times i_{\rm TEST} + i_{\rm TEST}R_{\rm E}$$

$$= i_{\rm TEST} \left[r_{\rm O} + \frac{g_{\rm m}r_{\rm O}R_{\rm E}r_{\pi}}{R_{\rm E} + r_{\pi} + R_{\rm TH'}} + R_{\rm E}\right]$$

$$\therefore Z_{\rm TEST} = \frac{v_{\rm TEST}}{i_{\rm TEST}} = r_{\rm O} + \frac{g_{\rm m}r_{\rm O}R_{\rm E}r_{\pi}}{R_{\rm E} + r_{\pi} + R_{\rm TH'}} + R_{\rm E}$$

$$\therefore Z_{\rm O} = (Z_{\rm TEST} ||R_{\rm C}) \approx R_{\rm C}$$

UNIVERSITI TEKNOLOGI MALAYSIA

Example of Common Emitter: Unbypassed R_E

Determine the values of Z_i , Z_o , $A_{v(oc)}$, A_v , A_{vs} , A_i , A_{is} and A_p for the amplifier circuit shown below. Given $V_A = \infty$ and $I_C = 2.37$ mA

Example of Common Emitter: Unbypassed R_E

Input impedance:

 $Z_{\rm b} = r_{\pi} + (\beta + 1)R_{\rm E} = 1.32k\Omega + (121)(1k\Omega) = 122.32k\Omega$ $Z_{\rm i} = R_{\rm i} \|R_{\rm 2}\|Z_{\rm b} = 8.2k\Omega\|1.5k\Omega\|122.32k\Omega = 1.26k\Omega$ Output impedance: $Z_{\rm o} = R_{\rm C} = 4.3k\Omega$ Voltage gain: $A_{\rm v(oc)} = \frac{V_{\rm out}}{V_{\rm in}} = -\frac{g_{\rm m}R_{\rm C}}{1+g_{\rm m}R_{\rm E}} = -\frac{(91.2{\rm mS})(4.09k\Omega)}{1+(91.2{\rm mS})(1k\Omega)} = -4.25$

innovative • entrepreneurial • global

Exercise

Draw the small signal ac equivalent circuit. If $+V_{CC} = 12V$, $V_A = \infty$, $V_{BE} = 0.7V$ and $\beta = 80$, calculate the values of :

(a) Input and output impedances

(b) Voltage gain A_V and A_{VS}

Exercise

Given $\beta = h_{fe} = 200$, $V_{BE} = 0.6$ V, $V_{CEQ} = 10$ V, $V_A \rightarrow \infty$, $A_v(dB)$ at middle frequency = 14dB.

- (a) Draw the mid-frequency AC equivalent circuit.
- (b) Determine R_{E1} and R_{E2} .
- (c) Determine the amplifier input impedance, Z_i.
- (d) Ratio of i_L/v_i .

 $R_{E1} = 56.67\Omega; R_{E2} = 7.27k\Omega;$ $Z_i = 2.86k\Omega; i_L/v_i = 4.99mS$