TUTORIAL CHAPTER 4 (SEEU2012)

1. Explain briefly why the operating point (Q-point) of a BJT small-signal amplifier circuit is chosen to be located at the centre of the load line.
2. Referring to the values of voltage V_{BE} and voltage V_{BC} of the silicon npn $B J$ for each biasing condition in Table QA.2, state whether the BJT is operates in active, saturation or cut-off region.

Table QA. 2

$\mathbf{V}_{\mathbf{B E}(\mathbf{V})}$	$\mathbf{V}_{\mathbf{B C}}(\mathbf{V})$	Operation region
0.3	0.7	
0.7	-1	
0.7	0.65	

3. Referring to Figure QA.3, assume the BJT is operated in active region.

Figure QA. 3
a. When the value of base resistor RB is increased, current I_{C} \qquad .
b. When the value of collector resistor RC is decreased, current I_{C} \qquad and voltage V_{CE} \qquad .
4. Referring to the amplifier circuit shown in Figure QB.1, given the BJT parameters: $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}, \beta=\mathrm{h}_{\mathrm{FE}}=\mathrm{h}_{\mathrm{fe}}=140, \mathrm{~V}_{\mathrm{T}}=26 \mathrm{mV}$ and $\mathrm{r}_{\mathrm{o}}=\infty$.
a. By doing DC analysis, prove the collector current $\mathrm{IC}=0.76 \mathrm{~mA}$.
b. Draw and label the small-signal hybrid- π ac equivalent circuit at mid-frequency range.
c. Calculate the values of parameters g_{m} and r_{π}.

Answer: $\mathrm{g}_{\mathrm{m}}=29.23 \mathrm{mS}$ and $\mathrm{r}_{\boldsymbol{r}}=4.79 \mathrm{k} \Omega$.
d. Calculate the input impedance, Z_{i}.

Answer: $3.86 \mathrm{k} \Omega$
e. Calculate the output impedance, Z_{o}.

Answer: 10 k Ω
f. Calculate the voltage gain, $\mathrm{Av}_{\mathrm{v}}=\mathrm{V}_{\mathrm{O}} / \mathrm{V}_{\mathrm{i}}$ at mid-frequency range.

Answer: -26.57
5. One of the important aspects in designing biasing circuit is the stability of the Q - point. If you want to design a small-signal amplifier using BJT, would you choose a circuit with an emitter resistor, RE? State a reason for your choices.
6. The Q - point is best located in the active region. Explain the behaviour of the collector current, IC and VCE when the BJT is operating in the active, saturation and cut - off region.
7. Referring to the BJT DC circuit in Figure Q.1B. Given $\mathrm{V}_{\mathrm{BE}}(\mathrm{ON})=0.65 \mathrm{~V}$ and $\beta=100$.

a. Find the Q - point, $\mathrm{V}_{\mathrm{CEQ}}$ and I_{CQ}.

Answer: $I_{B Q}=15 \mu A$, $I_{C Q}=1.5 \mathrm{~mA}$ and $V_{C E}=3.3 \mathrm{~V}$.
b. Determine the value for $\mathrm{I}_{\mathrm{C}(\mathrm{SAT})}$ and $\mathrm{V}_{\mathrm{CE}(\mathrm{Cut}-\mathrm{OfF})}$. Then draw the DC load line and show the position of the Q - point. State if the biasing circuit is suitable to use in small signal amplification.
Answer: $\mathrm{I}_{\mathrm{C}(\text { sat })}=\mathbf{2 . 0 7} \mathbf{m A}$ and $\mathrm{V}_{\mathrm{CE}}=\mathbf{1 2} \mathrm{V}$.
8. A bipolar junction transistor (BJT) amplifier circuit as in Figure below has the following specifications: $\beta=140, \mathrm{~V}_{\mathrm{BE}}=0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=26 \mathrm{mV}$ and $\mathrm{r}_{\mathrm{O}}=\infty$.

a. Show that $\mathrm{I}_{\mathrm{CQ}}=4.2 \mathrm{~mA}$.
b. Calculate $\mathrm{V}_{\text {CEQ }}$ and V_{c}.

Answer: $\mathrm{V}_{\mathrm{CE}}=11.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{C}}=13.92 \mathrm{~V}$.
c. Draw the hybrid- π ac equivalent circuit at mid-frequency.
d. Calculate $\mathrm{g}_{\mathrm{m}}, \mathrm{r}_{\pi}$, input impedance $\left(\mathrm{Z}_{\mathrm{i}}\right)$ and output impedance $\left(\mathrm{Z}_{\mathrm{o}}\right)$. Answer: $\mathrm{g}_{\mathrm{m}}=161.5 \mathrm{mS}, \mathrm{r}_{\pi}=866.7 \Omega, \mathrm{Z}_{\mathrm{i}}=\mathbf{0 . 8 7} \mathrm{k} \Omega$ and $\mathrm{Z}_{\mathrm{o}}=2.4 \mathrm{k} \Omega$
e. Determine $\mathrm{A}_{\mathrm{vs}}=\mathrm{v}_{0} / \mathrm{v}_{\mathrm{s}}$.

Answer: -241.7
9. State the suitable application for BJT that works in (i) active and (ii) saturation regions.
10. A BJT amplifier circuit in figure below has the following specifications: $\mathrm{hFE}=\mathrm{hfe}=\beta$ $=350$, $\mathrm{VT}=26 \mathrm{mV}$, and $\mathrm{rO}=\infty$.

a. By doing DC analysis, prove that current $\mathrm{ICQ}=5 \mathrm{~mA}$.
b. Draw and label the small-signal hybrid- π AC equivalent circuit at midfrequency range.
c. Calculate the value of parameter gm and $\mathrm{r} \pi$.

Answer: $\mathrm{g}_{\mathrm{m}}=\mathbf{1 9 2 . 3 1 ~ \mathrm { mS }}$ and $\mathrm{r}_{\boldsymbol{\pi}}=1.82 \mathrm{k} \Omega$.
d. Calculate the input impedance, Zi .

Answer: 1.62k .

e. Calculate the output impedance, Z_{o}.

Answer: 700 .
f. Calculate the voltage gain, $\mathrm{Av}=\mathrm{VO} / \mathrm{Vi}$.

Answer: -99.72
g. If the input voltage $\mathrm{Vi}=0.01 \sin (100 \pi \mathrm{t})(\mathrm{V})$, draw and label the output voltage, Vo.
11. Figure below represents a common emitter amplifier circuit. Assume the BJT is in the active region. The parameters of the BJT amplifier circuit are: $\beta=100, \mathrm{~V}_{\mathrm{BE}}=0.7 \mathrm{~V}$, $\mathrm{V}_{\mathrm{T}}=26 \mathrm{mV}$ and $\mathrm{I}_{\mathrm{EQ}}=2.31 \mathrm{~mA}$.

a. Draw the AC equivalent circuit at mid - frequency using Hybrid-pi model at mid- frequency band.
b. Calculate the value of $\mathrm{r} \pi$ and gm .

Answer: $\mathrm{g}_{\mathrm{m}}=\mathbf{8 8 . 8} \mathbf{~ m S}$ and $\mathrm{r}_{\boldsymbol{\pi}}=\mathbf{1 . 1 2 6} \mathrm{k} \Omega$.
c. The input impedance, Zi is $1.07 \mathrm{k} \Omega$, determine the value of resistor RB and the output impedance, Zo.
Answer: 3.3k .
d. From the AC equivalent circuit, derive an expression for the open circuit voltage gain, $\mathrm{Av}=\mathrm{Vo} / \mathrm{Vi}$, then calculate the value.
Answer: -57
e. The source resistance, Rs is very small compared to input impedance, Zi resulting source voltage, $\mathrm{VS}=\mathrm{Vi}$. If $\mathrm{Vs}=0.15 \sin (\omega \mathrm{t}) \mathrm{V}$ with frequency 50 Hz , determine the output voltage Vo. Then draw and the output waveform.
Answer: -8.6 $\sin (\omega t)$ V
f. Determine the minimum peak amplitude of the source voltage, $\mathrm{Vs}(\mathrm{p})$ to avoid the output signal, Vo from clipping.
Answer: 0.32V

