Example 1-2

Find the normality of the following solutions:

1. 36.5 mg HCl/liter, with respect to the reaction

2. 49 mg H₃PO₄/liter, with respect to the reaction

$$H_3PO_4 \rightleftharpoons 2H^+ + HPO_4^{2-}$$

3. 45 mg CO_3^2 -/liter, with respect to the reaction

$$CO_3^{2-} + H_2O \rightleftharpoons HCO_3^{-} + OH^{-}$$

4. 45 mg CO_3^{2-} /liter, with respect to the reaction

$$CO_3^{2-} + 2H^+ \rightleftharpoons H_2CO_3$$

Solution

1. One H* reacts per HCl. Therefore, we find

Gram equivalent weight =
$$\frac{\text{gram molecular weight}}{1 \text{ eq/mole}} = \frac{36.5 \text{ g/mole}}{1 \text{ eq/mole}}$$

= $36.5 \text{ g/eq} = 36.5 \text{ mg/meq}$
Normality = $\frac{36.5 \text{ mg/liter}}{36.5 \text{ mg/meq}} = 1 \text{ meq/liter}$

2 2H react per H₃PO₄. Therefore,

$$Gram \ equivalent \ weight = \frac{gram \ molecular \ weight}{2 \ eq/mole} = \frac{98 \ g/mole}{2 \ eq/mole}$$

$$= 49 \ g/eq = 49 \ mg/meq$$

$$Normality = \frac{49 \ mg/liter}{49 \ mg/meq} = 1 \ meq/liter$$

3. One OH- results from this reaction. Thus

$$Gram \ equivalent \ weight = \frac{gram \ molecular \ weight}{l \ eq/mole}$$

$$= 60 \ g/eq = 60 \ mg/meq$$

$$Normality = \frac{45 \ mg/liter}{60 \ mg/meq} = 0.75 \ meq/liter$$

4. Two H+ react with each CO₃2-. Thus

$$\begin{aligned} \text{Gram equivalent} &= \frac{\text{gram molecular weight}}{2 \text{ eq/mole}} = \frac{60 \text{ g}}{2 \text{ eq/mole}} \\ &= 30 \text{ g/eq} = 30 \text{ mg/meq} \\ \text{Normality} &= \frac{45 \text{ mg/liter}}{30 \text{ mg/meq}} = 1.5 \text{ meq/liter} \end{aligned}$$