## **■ EXAMPLE 12.4**

Calculate the BOD and hydraulic loadings and BOD removal efficiency of a single-stage high-rate trickling filter based on the following data:

depth of media = 
$$2.1 \text{ m}$$

## Solution

raw-wastewater flow = 
$$280 \text{ gpm} = 1530 \text{ m}^3/\text{d}$$

recirculation flow = 
$$0.50 \times 1530 = 765 \text{ m}^3/\text{d}$$

BOD load = 
$$1530 \text{ m}^3/\text{d} \times 130 \text{ mg/l} \times \frac{\text{kg/m}^3}{1000 \text{ mg/l}} = 200 \text{ kg/d}$$

surface area of filter = 
$$\pi(12.5)^2/4 = 122 \text{ m}^2$$

volume of media = 
$$122 \times 2.1 = 256 \text{ m}^3$$

BOD loading = 
$$\frac{200,000 \text{ g}}{256 \text{ m}^3}$$
 = 781 g/m<sup>3</sup>·d = 48.8 lb/1000 ft<sup>3</sup>/day

hydraulic loading = 
$$\frac{1530 \text{ m}^3 + 765 \text{ m}^3}{122 \text{ m}^2}$$
 =  $18.8 \text{ m}^3/\text{m}^2$  =  $0.32 \text{ gpm/ft}^2$ 

By Eqs. 12.43 and 12.42,

$$F = \frac{1 + 0.5}{(1 + 0.1 \times 0.5)^2} = 1.36$$

$$E = \frac{100}{1 + 0.0561(48.8/1.36)^{0.5}} = 75\%$$

TF-3