SKAA 1713 SOIL MECHANICS

Prepared by: Dr. Hetty

Mohr Coulomb failure criterion with Mohr circle of stress

$$\left[c'Cot\phi'+\left(\frac{\sigma_1'+\sigma_3'}{2}\right)\right]Sin\phi'=\left(\frac{\sigma_1'-\sigma_3'}{2}\right)$$

$$(\sigma_1' - \sigma_3') = (\sigma_1' + \sigma_3') Sin \phi' + 2c' Cos \phi$$

$$\sigma_{1}'(1 - Sin\phi') = \sigma_{3}'(1 + Sin\phi') + 2c'Cos\phi'$$

$$\sigma_{1}' = \sigma_{3}'\frac{(1 + Sin\phi')}{(1 - Sin\phi')} + 2c'\frac{Cos\phi'}{(1 - Sin\phi')}$$

$$\sigma_{1}' = \sigma_{3}'Tan^{2}\left(45 + \frac{\phi'}{2}\right) + 2c'Tan\left(45 + \frac{\phi'}{2}\right)$$

Field conditions

Before construction

After and during construction

DIRECT SHEAR TEST

Schematic diagram of the direct shear apparatus

Direct shear test is most suitable for <u>consolidated drained</u> tests specially on granular soils (e.g.: sand) or stiff clays

Preparation of a sand specimen

Components of the shear box

Preparation of a sand specimen

Preparation of a sand specimen

Pressure plate

Leveling the top surface of specimen

Specimen preparation completed

2009/8/24

Step 1: Apply a vertical load to the specimen and wait for consolidation

Step 1: Apply a vertical load to the specimen and wait for consolidation Step 2: Lower box is subjected to a horizontal displacement at a constant rate

Analysis of test results

 $\tau = \text{Shear stress} = \frac{\text{Shear resistance developed at the sliding surface (S)}}{\text{Area of cross section of the sample}}$

Note: Cross-sectional area of the sample changes with the horizontal displacement

Direct shear tests on sands

How to determine strength parameters c and ϕ

Stress-strain relationship

Direct shear tests on sands

Some important facts on strength parameters c and ϕ of sand

Direct shear tests on clays

In case of clay, *horizontal displacement* should be applied at a very slow rate to allow dissipation of pore water pressure (therefore, one test would take several days to finish)

Failure envelopes for clay from drained direct shear tests

Interface tests on direct shear apparatus

In many foundation design problems and retaining wall problems, it is required to determine the angle of internal friction between soil and the structural material (concrete, steel or wood)

$$\tau_f = c_a + \sigma' \tan \delta$$

Where, $c_a = adhesion$, $\delta = angle of internal friction$

Advantages of direct shear apparatus

- Due to the smaller thickness of the sample, rapid drainage can be achieved
- **Can be used to determine interface strength parameters**
- Clay samples can be oriented along the plane of weakness or an identified failure plane

Disadvantages of direct shear apparatus

- **Failure occurs along a predetermined failure plane**
- □ Area of the sliding surface changes as the test progresses
- Non-uniform distribution of shear stress along the failure surface

Example

A direct shear test when conducted on a remolded sample of sand, gave the following observations at the time of failure; Normal force = 288 N; shear force = 173 N. The cross sectional area of the sample = 36cm².

Determine the angle of frictional. Solved in 2 ways, namely graphically and analytically

UNCONFINED COMPRESSIVE STRENGTH (UCS) TEST

Unconfined Compression Test (UCS Test)

Confining pressure is zero in the UCS test

Unconfined Compression Test (UC Test)

Note: Theoritically $q_u = c_u$, However in the actual case $q_u < c_u$ due to premature failure of the sample

Lets continue later....

TRIAXIAL TEST

Specimen preparation (undisturbed sample)

Edges of the sample are carefully trimmed

Setting up the sample in the triaxial cell

Specimen preparation (undisturbed sample)

Cell is completely filled with water

Specimen preparation (undisturbed sample)

Proving ring to measure the deviator load

Dial gauge to measure vertical displacement

In some tests

Consists of 3 stages:

- 1. Saturation
- 2. Consolidation

Main stages

3. Shearing

Saturation & use of back pressure

- 1. Reason for saturation
- 2. Principle of saturation
- 3. Maintaining saturation
- 4. Advantages of saturation

Typical values for parameter B

Typical relationship between B and degree of saturation.

Test Condition	Stage 1	Stage 2
Unconsolidated Undrained (UU)	Apply confining pressure σ_3 while the drainage line from the specimen is kept closed (drainage is not permitted), then the initial pore water pressure (u=u _o) is not equal to zero	Apply an added stress $\Delta \sigma$ at axial direction. The drainage line from the specimen is still kept closed (drainage is not permitted) (u=u_d \neq 0). At failure state $\Delta \sigma = \Delta \sigma_f$; pore water pressure u=u_f=u_o+u_d(f)
Consolidated Undrained (CU)	Apply confining pressure σ_3 while the drainage line from the specimen is opened (drainage is permitted), then the initial pore water pressure (u=u _o) is equal to zero	Apply an added stress $\Delta \sigma$ at axial direction. The drainage line from the specimen is kept closed (drainage is not permitted) (u=u_d \neq 0). At failure state $\Delta \sigma = \Delta \sigma_f$; pore water pressure u=u_f=u_o+u_d(f)=u_d(f)
Consolidated Drained (CD)	Apply confining pressure σ_3 while the drainage line from the specimen is opened (drainage is permitted), then the initial pore water pressure (u=u _o) is equal to zero	Apply an added stress $\Delta \sigma$ at axial direction. The drainage line from the specimen is opened (drainage is permitted) so the pore water pressure (u=u _d) is equal to zero. At failure state $\Delta \sigma = \Delta \sigma_f$; pore water pressure u=u _f =u _o +u _{d(f)} =0

Types of Triaxial Tests

Consolidated- drained test (CD Test)

Consolidated- drained test (CD Test)

Deviator stress (q or $\Delta \sigma_d$) = $\sigma_1 - \sigma_3$

Consolidated- drained test (CD Test)

Volume change of sample during consolidation

Consolidated- drained test (CD Test)

Stress-strain relationship during shearing

CD tests How to determine strength parameters c and ϕ

CD tests

Strength parameters c and ϕ obtained from CD tests

CD tests Failure envelopes

For sand and NC Clay, $c_d = 0$

Therefore, one CD test would be sufficient to determine ϕ_d of sand or NC clay

CD tests Failure envelopes

For OC Clay, $c_d \neq 0$

Some practical applications of CD analysis for clays

1. Embankment constructed very slowly, in layers over a soft clay deposit

Some practical applications of CD analysis for clays

2. Earth dam with steady state seepage

τ = drained shear strength of clay core

Some practical applications of CD analysis for clays

3. Excavation or natural slope in clay

 τ = In situ drained shear strength

Note: CD test simulates the long term condition in the field. Thus, c_d and ϕ_d should be used to evaluate the long term behavior of soils

Volume change of sample during consolidation

Stress-strain relationship during shearing

CU tests How to determine strength parameters c and ϕ

CU tests

Strength parameters c and ϕ obtained from CD tests

CU tests Failure envelopes

For sand and NC Clay, c_{cu} and c' = 0

Therefore, one CU test would be sufficient to determine ϕ_{cu} and $\phi'(=\phi_d)$ of sand or NC clay

Some practical applications of CU analysis for clays

1. Embankment constructed rapidly over a soft clay deposit

Some practical applications of CU analysis for clays

2. Rapid drawdown behind an earth dam

τ = Undrained shear strength of clay core

Some practical applications of CU analysis for clays

3. Rapid construction of an embankment on a natural slope

 τ = In situ undrained shear strength

Note: Total stress parameters from CU test (c_{cu} and ϕ_{cu}) can be used for stability problems where,

Soil have become fully consolidated and are at equilibrium with the existing stress state; Then for some reason additional stresses are applied quickly with no drainage occurring

Data analysis

Initial specimen condition

Specimen condition during shearing

Initial volume of the sample = $A_0 \times H_0$

Volume of the sample during shearing = A × H

Since the test is conducted under undrained condition,

 $A \times H = A_0 \times H_0$

 $\mathsf{A} \times (\mathsf{H}_0 - \Delta \mathsf{H}) = \mathsf{A}_0 \times \mathsf{H}_0$

 $\mathsf{A} \times (\mathsf{1} - \Delta \mathsf{H} / \mathsf{H}_0) = \mathsf{A}_0$

Step 1: Immediately after sampling

Typical values for parameter A

During the increase of major principal stress pore water pressure can become negative in heavily overconsolidated clays due to dilation of specimen

Mohr circle in terms of effective stresses do not depend on the cell pressure.

Therefore, we get only one <u>Mohr circle in terms of effective stress</u> for different cell pressures

Mohr circles in terms of total stresses

Effect of degree of saturation on failure envelope

Some practical applications of UU analysis for clays

1. Embankment constructed rapidly over a soft clay deposit

Some practical applications of UU analysis for clays

2. Large earth dam constructed rapidly with no change in water content of soft clay

τ = Undrained shear strength of clay core

Some practical applications of UU analysis for clays

3. Footing placed rapidly on clay deposit

Note: UU test simulates the <u>short term condition</u> in the field. Thus, c_u can be used to analyze the short term behavior of soils

