# SOIL COMPACTION

Field Compaction



# **Field Compaction**

- Most of the compaction in the field is done with rollers. The four most common types of rollers are:-
- Smooth-wheel rollers (or smooth-drum rollers)
- Pneumatic rubber-tired rollers
- Sheep foot rollers
- Vibratory rollers

# Drum rollers



#### **Pneumatic rollers**



#### Sheep foot Rollers



#### **Specifications for Field Compaction**

- In most specifications for earthwork, the contractor is instructed to achieve a compacted field dry unit weight of 90 to 98% of the maximum dry unit weight determined in the laboratory by either the standard or modified Proctor test.
- This is specification for relative compaction, which can be expressed as

$$R (\%) = \underline{\gamma}_{d(field)} \times 100$$
$$\gamma_{d(max-lab)}$$

# **Measurement of Field Compaction**

- Most common methods are
  - Nuclear Method
  - Sand Cone method
  - Rubber Balloon method







**Field Density Testing Method** 

|               | Sand Cone                                                                                          | Balloon Dens meter                                                    | Shelby Tube                                                   | Nuclear Gauge                                                                  |
|---------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------|
|               |                                                                                                    |                                                                       |                                                               |                                                                                |
| Advantages    | * Large sample<br>* Accurate                                                                       | * Large sample<br>* Direct reading obtained<br>* Open graded material | * Fast<br>* Deep sample<br>* Under pipe haunches              | * Fast<br>* Easy to redo<br>* More tests (statistical reliability)             |
| Disadvantages | * Many steps<br>* Large area required<br>* Slow<br>* Halt Equipment<br>* Tempting to accept flukes | * Slow<br>* Balloon breakage<br>* Awkward                             | * Small Sample<br>* No gravel<br>* Sample not always retained | * No sample<br>* Radiation<br>* Moisture suspect<br>* Encourages amateurs      |
| Errors        | * Void under plate<br>* Sand bulking<br>* Sand compacted<br>* Soil pumping                         | * Surface not level<br>* Soil pumping<br>* Void under plate           | * Overdrive<br>* Rocks in path<br>* Plastic soil              | * Miscalibrated<br>* Rocks in path<br>* Surface prep required<br>* Backscatter |
| Cost          | *Low                                                                                               | * Moderate                                                            | *Low                                                          | * High                                                                         |

#### Sand Cone



#### Sand Cone



### Sand Cone Method

- The sand cone device consists of a glass or plastic jar with a metal cone attached at its top.
- The jar is filled with very uniform dry Ottawa sand.
- The weight of the jar, the cone, and the sand filling the jar is determined, (W<sub>1</sub>).
- In the field, a small hole is excavated from the area where the soil has been compacted.
- If the weight of the moist soil excavated from the hole (W<sub>2</sub>) is determined and the moisture content of the excavated soil is known, the dry weight of the soil (W<sub>3</sub>) can be obtained as:

# Sand Cone Method (Cont.)

$$W_3 = \frac{W_2}{1 + \frac{W(\%)}{100}}$$

- After that, the cone with sand-filled jar attached to it's inverted and placed over the hole and allowed the sand to flow out into the hole.
- The weight of the jar, the cone, and the remaining sand in the jar is determined (W<sub>4</sub>) so

$$W_5 = W_1 - W_4$$

W<sub>5</sub>-weight of sand to fill the hole and cone

# Sand Cone Method (Cont.)

The volume of the hole excavated can now be determined as

$$V = \frac{W_s - W_c}{\gamma_{d(sund)}}$$

 $W_c$  = weight of sand to fill in cone only

Y<sub>d(sand)</sub> = dry unit weight of Ottawa sand used

• The dry unit weight of compaction made in field can now be determined as:

$$\gamma_{d} = \frac{dry\_weight\_of\_soil\_excavated\_from\_the\_hole}{volume\_of\_the\_hole} = \frac{W_{3}}{V}$$

# Example

Determine the dry unit weight of compaction in the field

Dry unit weight of Ottawa sand = 104 kg/m<sup>3</sup>

Weight of Ottawa sand to fill the cone = 0.258 kg

- Weight of jar + cone + sand (before use) = 13.21 kg
- Weight of jar + cone + sand (after use) = 6.2 kg
- Weight of moist soil from hole = 7.3 kg
- Moisture content of moist soil = 11.6%

### Example

<u>Solution :</u>

- The weight of the sand needed to fill the hole and cone is = 13.21 –
  6.2 = 7.01 kg
- The weight of the sand used to fill the hole is
  = 7.01 0.258 = 6.752 kg
- The volume of the hole, V = 6.752/104 = 0.0649 m<sup>3</sup>
- Dry weight of soil from the field is W<sub>3</sub>=W<sub>2</sub>/(1+w(%)
  = 7.3/ (1+11.6/100) = 6.54 kg
- Hence the dry unit weight of compaction is  $Y_d = W_3/V$ = 6.54/0.0649 = 100.77 kg/m<sup>3</sup>

### Rubber Balloon Method

- The procedure same with sand cone method
- But, the volume of the hole is determined by a rubber balloon filled with water from a calibrated vessel from which the volume can be read directly.



### Nuclear Method

- The instrument measure weight of the wet soil per unit volume and also the weight of water present in a unit volume of soil
- The dry unit weight of compacted soil can determined by subtracting the weight of water from the moist unit weight of soil.

