Department/ Faculty:	DEPARTMENT GEOTECHNICS AND TRANSPORTATION, FACULTY OF CIVIL ENGINEERING	Page:	1 of 3	
Course code:	MKAJ 1013	Academ	ic Session/Semester:	20172018 / 02
Course name:	ADVANCED SOIL MECHANICS	Pre/co and cod	requisite (course name le, if applicable):	
Credit hours:	3			

Lampiran 1

COURSE INFORMATION

Course synopsis	Transportation, which will provide: the knowledge on the application and principles of soil mechanics. It considers the following topics: soil and clay mineralogy, strength behaviour of cohesionless and cohesive soils. Mohr-Coulomb failure criterion, peak stresses, effective stress ratio, residual stress and critical state soil mechanics. Principles of the laboratory measurement. Consolidation theory and pore pressure parameters. Difference between 1-D and 3-D Consolidation theory. Field Settlement. Soil-water characteristic curve for unsaturated soils and its applications.								
Course coordinator (if applicable)	Dr. Nor Zurairahetty Binti Mohd Yunus								
Course lecturer(s)	Name	Office	Contact no.	E-mail					
	Dr. Nor Zurairahetty Binti Mohd Yunus	M47- 124	07-5532446	nzurairahetty@utm. my					
	Datin Fauziah Binti Kasim D04-11907-5531586 fauziahkasim@utm.m								

Mapping of the Course Learning Outcomes (CLO) to the Programme Learning Outcomes (PLO), Teaching & Learning (T&L) methods and Assessment methods:

No.	CLO	PLO (ICGPA CODE)	Weight (%)	*Taxonomies and **generic skills*	T&L methods	***Assessment methods
1	Students able to explain and analyse the response of soil in terms of stresses, deformation and settlement analysis, the consolidation theory and pore pressure parameters. Differences between 1-D and 3-D consolidation theories.	PLO1	25 %	C4	Lecture, Exercise and Problem Solving, Independent Study	PR, F
2	Students able to apply principles of laboratory instrumentation with respect to loading, stress-strain, pore- water pressure and displacement and/or volume change.	PLO1	25 %	С3	Lecture, Exercise and Problem Solving, Independent Study	T, F

Department/ Faculty:	DEPARTMENT GEOTECHNICS AND TRANSPORTATION, FACULTY OF CIVIL ENGINEERING	Page:	1 of 3	
Course code:	MKAJ 1013	Academ	ic Session/Semester:	20172018 / 02
Course name:	ADVANCED SOIL MECHANICS	Pre/co i and cod	equisite (course name e, if applicable):	
Credit hours:	3			

3	Student able to analyse and apply the response of soil in terms of strength behavior of cohesionless and cohesive soils through Mohr-Coulomb failure criterion, peak stresses, effective stress ratio and residual stress.	PLO3	20 %	C4	Lecture, Case study, Exercise and Problem Solving, Independent Study	Τ, Ε		
4	Students able to analyse soil response through the Critical State Soil Mechanics and apply in various situation to create alternatives on the analysis of soil behavior.	PLO3	20%	C6	Lecture, Project, Exercise and Problem Solving, Independent Study	PR, F		
5	Students able to apply research skills through comprehensive literature review in solving Geotechnical Engineering project.	PLO2	10%	C3	Project, Exercise and Problem Solving, Independent Study	PR		
Refer achiev	Refer *Taxonomies of Learning and **UTM's Graduate Attributes, where applicable for measurement of outcomes achievement							
~~ * -	- Test; Q – Quiz; HW – Homewo	rк; PR – Proj	ect; Pr – Preser	itation; F – Final Exa	am etc.			

**T – Test; Q – Quiz; HW – Homework; PR – Project; Pr – Presentation; F – Final Exam etc.

Details on Innovative T&L practices:

No.	Туре	Implementation
1.	Lecture,	Week 1 till Week 14
2.	Exercise and Problem Solving,	Week 1 till Week 7
3.	Independent Study	Week 1 till Week 15
4.	Project	Week 11

Weekly Schedule:

Week 1	Students able to explain and analyse the response of soil in terms of stresses, deformation and settlement analysis, the consolidation theory and pore pressure parameters. Review on Terzaghi's effective stress and 1-dimensional consolidation. Settlement (Immediate, Consolidation, Secondary Compression)
Week 2	Introduction to Multi-Dimensional Consolidation; Conservation Mass & Equilibrium of Energy; Changes of total stress with time.
Week 3	Difference between 1-D and 3-D consolidation theories. Parameters to be solved in 3-D consolidation. and Mandel-Crier effects in 3-D consolidation process. Relevant journal papers are discussed.

Department/ Faculty:	DEPARTMENT GEOTECHNICS AND TRANSPORTATION, FACULTY OF CIVIL ENGINEERING	Page:	1 of 3	
Course code:	MKAJ 1013	Academ	ic Session/Semester:	20172018 / 02
Course name:	ADVANCED SOIL MECHANICS	Pre/co i and cod	requisite (course name le, if applicable):	
Credit hours:	3			

Week 4	Student able to analyse and apply the theory of shear strength response to the soil in terms of strength
	Denavior of conesionless and conesive sons.
Week 5	Students able to apply principles of laboratory instrumentation with respect to loading, stress-strain,
	pore-water pressure and displacement and/or volume change.
Week 6	Student able to analyse and apply the principles of Monr-Coulomb failure criterion, peak stresses,
	effective stress ratio, pore water pressure coefficient, back pressure, stress states and stress paths
Week 7	Continued WEEK 6
	Test 1(15%)
Week 8	Mid-Semester Break
Week 9	CRITICAL STATE SOIL MECHANICS :
	- Critical state soil mechanics (CSSM) theory, critical void ratio, Yield Surface
	- Isotropic consolidation vs 1-D consolidation; Normal Consolidation Line (NCL), Shrinkage Line
	(SL) & 1-D Consolidation line
	- Equivalent consolidation pressure
Week 10	CRITICAL STATE SOIL MECHANICS :
1100K 20	- Stress paths of isotropically consolidated drained triaxial test (CD) – 2D & 3D
	- Stress paths of isotropically consolidated undrained triaxial tests (CU) – 2D & 3D
	- Critical State Line (CSL) & Determination of Critical State Parameters
Week 11	CRITICAL STATE SOIL MECHANICS :
1700K 11	- Roscoe surface, Hvorslev surface, No-tension surface and overall Critical State Boundary
	Surface
	Group Project (20%)
Week 12	CRITICAL STATE SOIL MECHANICS :
	- Relationship between simple soil tests, critical state parameters and soil strengths; examples of
	application
Week 13	CRITICAL STATE SOIL MECHANICS :
	- Application of CSSM with relevant case study; predicting undrained shear strength of normally
	consolidated and overconsolidated clay adjacent to excavation, behind retaining wall & at the slope,
	predicting soil response under a tank foundation, etc.
Week 14	Introduction to Unsaturated Soil Mechanics and its Importance
Week 14	Soil-Water Characteristic Curve (SWCC); Characterisation, Laboratory determination of SWCC
	SWCC Prediction based on grain size distribution
Week 15	Unsaturated Hydraulic conductivity: Steady state and transient boundary conditions and relevant
	examples

Transferable skills (generic skills learned in course of study which can be useful and utilised in other settings):

Department/ Faculty:	DEPARTMENT GEOTECHNICS AND TRANSPORTATION, FACULTY OF CIVIL ENGINEERING	Page:	1 of 3	
Course code:	MKAJ 1013	Academ	ic Session/Semester:	20172018 / 02
Course name:	ADVANCED SOIL MECHANICS	Pre/co i and cod	requisite (course name e, if applicable):	
Credit hours:	3			

Student learning time (SLT) details:

Distribution of student Learning					Teaching and L	TOTAL SLT	
Time (SLT) Course	Guided	Learni Face)	ing		Guided Learning	Independent Learning Non-Face to face	
content outline		, ruce,					
CLO	L	т	Р	0			
	39	3			22	42	
Total SLT	39	3			22	42	106

Continuous Assessment			Percentage	Total SLT		
1	Test	1	15%	1		
2	Assignment	3	15%	5		
3	Project	2	20%	5		
	Final Assessment		Percentage	Total SLT		
1	Final Exam	1&3	50%	3		
Grand Total SLT						

Prepared by:	Certified by:	
Name:	Name:	
Signature:	Signature:	
Date:	Date:	

Department/	DEPARTMENT GEOTECHNICS AND TRANSPORTATION.	Page:	1 of 3	
Faculty:	FACULTY OF CIVIL ENGINEERING			
Course code:	MKAJ 1013	Academ	ic Session/Semester:	20172018 / 02
Course name:	ADVANCED SOIL MECHANICS	Pre/co requisite (course name and code, if applicable):		
Credit hours:	3			