Chapter 1
 General Principles

Mechanics : A branch of the physical science that is concerned with the state of rest or motion of bodies subjected to the action of forces.

\square Statics deals with equilibrium of a body that is
> either at rest
$>$ or moves with constant velocity.
\square Dynamics deals with accelerated motion of a body.

\square Fundamentals Concepts

I. Idealizations

1. Particle
> has a mass
> size can be neglected
2. Rigid Body
> a combination of a large number of particles
3. Concentrated Force
> represents the effect of a loading which is assumed to act at a point on a body.

II. Basic Quantities

1. Length

- locate the position of a point in space

2. Mass

- measure of a quantity of matter

3. Time

- succession of events

4. Force

- a "push" or "pull" exerted by one body on another
- characterized by its magnitude, direction \& point of application.

III. Newton's Three Laws of Motion

- First Law
"A particle originally at rest, or moving in a straight line with constant velocity, will remain in this state provided that the particle is not subjected to an unbalanced force"

Equilibrium

- Second Law

"A particle acted upon by an unbalanced force \mathbf{F} experiences an acceleration a that has the same direction as the force and a magnitude that is directly proportional to the force"

$$
\mathbf{F}=\mathrm{m} \mathbf{a}
$$

Accelerated motion

- Third Law

"The mutual forces of action and reaction between two particles are equal and, opposite and collinear"

Action - reaction

IV. Newton's Law of Gravitational Attraction

where
$F=$ force of gravitation between two particles

$\mathrm{G}=$ universal constant of gravitation
$\mathrm{m}_{1}, \mathrm{~m}_{2}=$ mass of each of the two particles
$r=$ distance between the two particles

V. Weight

Let $\quad \mathrm{m}_{1}=\mathrm{M}_{\mathrm{e}}=$ mass of the earth

$$
\begin{aligned}
& \mathrm{m}_{2}=\mathrm{m}=\text { mass of a particle on the earth's surface } \\
& \mathrm{r}=R=\text { distance between the earth's center and the particle }
\end{aligned}
$$

Then the gravitational force between the earth and the particle, is termed the weight (W) of the particle

$$
W=G \frac{M_{e} m}{R^{2}}
$$

or

$$
W=m g
$$

where

$$
g=G M_{e} / R^{2}
$$

\square Units of Measurement

- SI system specifies length in meters (m), time in seconds (s) and mass in kilograms (kg)
- The unit of force, called a newton (N), is derived from $\mathbf{F}=$ ma

Name	Length	Time	Mass	Force
International Systems of Units (SI)	Meter (m)	Second (s)	Kilogram (kg)	Newton (N)
				$\left(\frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{s}^{2}}\right)$

Note:

- At the standard location,

$$
\mathrm{g}=9.80665 \mathrm{~m} / \mathrm{s}^{2}
$$

- For calculations, we use

$$
\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}
$$

- Thus, from $\mathrm{W}=\mathrm{mg}$, a body of mass 1 kg has a weight of

$$
\mathrm{W}=(1)(9.81)=9.81 \mathrm{~N}
$$

Prefixes

TABLE 1-2 Prefixes

	Exponential Form	Prefix	SI Symbol
Multiple			
1000000000	10^{9}	giga	G
1000000	10^{6}	mega	M
1000	10^{3}	kilo	k
Submultiple			
0.001	10^{-3}	milli	m
0.000001	10^{-6}	micro	μ
0.000000001	10^{-9}	nano	n

