Chapter 1 General Principles

Mechanics : A branch of the physical science that is concerned with the state of rest or motion of bodies subjected to the action of forces.

□ **Statics** deals with equilibrium of a body that is

➤ either at <u>rest</u>

➤ or moves with <u>constant velocity</u>.

Dynamics deals with *accelerated motion* of a body.

Fundamentals Concepts

I. Idealizations

1. Particle

- has a mass
- size can be neglected

2. Rigid Body

 a combination of a large number of particles

3. Concentrated Force

 represents the effect of a loading which is assumed to act at a point on a body.

II. Basic Quantities

- 1. Length
 - locate the position of a point in space

2. Mass

- measure of a quantity of matter

3. Time

- succession of events

4. Force

- a "push" or "pull" exerted by one body on another
- characterized by its magnitude, direction & point of application.

III. Newton's Three Laws of Motion

First Law

"A particle originally at rest, or moving in a straight line with constant velocity, will remain in this state provided that the particle is not subjected to an unbalanced force"

"A particle acted upon by an *unbalanced force* **F** experiences an acceleration **a** that has the same direction as the force and a magnitude that is directly proportional to the force"

 $\mathbf{F} = \mathbf{m} \mathbf{a}$

"The mutual forces of action and reaction between two particles are equal and, opposite and collinear"

IV. Newton's Law of Gravitational Attraction

$$F = G \frac{m_1 m_2}{r^2}$$

where

- F = force of gravitation between two particles
- G = universal constant of gravitation
- $m_1, m_2 = mass of each of the two particles$
- r = distance between the two particles

V. Weight

Let
$$m_1 = M_e = mass of the earth$$

 $m_2 = m = mass of a particle on the earth's surface$

r = R = distance between the earth's center and the particle

Then the gravitational force between the earth and the particle, is termed the weight (W) of the particle

$$W = G \frac{M_e m}{R^2}$$

or

$$W = mg$$

where

$$g = GM_e / R^2$$

Units of Measurement

- SI system specifies length in meters (m), time in seconds (s) and mass in kilograms (kg)
- The unit of force, called a newton (N), is derived from $\mathbf{F} = \mathbf{m}\mathbf{a}$

Name	Length	Time	Mass	Force
International Systems of Units (SI)	Meter (m)	Second (s)	Kilogram (kg)	Newton (N) $\left(\frac{kg.m}{s^2}\right)$

Note:

• At the standard location,

 $g = 9.806 \ 65 \ m/s^2$

For calculations, we use $g = 9.81 \text{ m/s}^2$

• Thus, from W = mg, a body of mass 1 kg has a weight of W = (1) (9.81) = 9.81 N

Prefixes

TABLE 1-2	Prefixes		
	Exponential Form	Prefix	SI Symbol
Multiple			
$1\ 000\ 000\ 000$	109	giga	G
1 000 000	10 ⁶	mega	Μ
1 000	10^{3}	kilo	k
Submultiple			
0.001	10-3	milli	m
0.000 001	10 ⁻⁶	micro	μ
0.000 000 001	10-9	папо	n