5.4 Two- and Three-Force Members

T Two-Force Members

- When forces are applied at only two points on a member, the member is called a two-force member
- Only force magnitude must be determined.

- For any two-force member to be in equilibrium, the two forces acting on the member must have
> the same magnitude,
> act in opposite directions,
> have the same line of action, directed along the line joining the two points where these forces act.

- Three-Force Members

- If a member is subjected to only three forces, it is called a three-force member.
- The three forces in a three-force member form a concurrent or parallel force system.

If $\mathbf{F}_{1} \& \mathbf{F}_{2}$ intersect at O, the line of action of \mathbf{F}_{3} must also pass through
O so that the forces satisfy

$$
\sum \mathbf{M}_{O}=\mathbf{0}
$$

The location of the point of intersection of the three parallel forces will approach infinity.

Example 5.13

Given :

- The lever $A B C$ is pin-supported at A and connected to a short link $B D$.
- The weight of the members are negligible.

Find :

Determine the force of the pin on the lever at A.

Solution

Method I

Free-Body Diagram

- Link BD

Since $B D$ is a two-force member, the resultant force at $D \& B$
> are equal \& opposite.
> lie on same line that passes through B \& D.

- Lever $A B C$ is a three-force member
$>$ The lines of action of the forces at $A, B \& C$ must intersect at O.
- From trigonometry

$$
\theta=\tan ^{-1}\left(\frac{0.7}{0.4}\right)=60.3^{\circ}
$$

Equations of Equilibrium

$$
\begin{align*}
& +\sum F_{x}=0: \quad F_{A} \cos 60.3^{\circ}-F \cos 45^{\circ}+400 \mathrm{~N}=0 \tag{1}\\
& +\uparrow \sum F_{y}=0: \quad F_{A} \sin 60.3^{\circ}-F \sin 45^{\circ}=0 \tag{2}
\end{align*}
$$

- $\mathrm{Eq}(1) \times \sin 45^{\circ}-\mathrm{Eq}(2) \times \cos 45^{\circ}$:
$F_{A}\left(\sin 45^{\circ} \cos 60.3^{\circ}-\cos 45^{\circ} \sin 60.3^{\circ}\right)+400 \sin 45^{\circ} \mathrm{N}=0$

$$
\Rightarrow \quad F_{A}=1071.9 \mathrm{~N}=1.07 \mathrm{kN}
$$

- Substituting F_{A} into Eq. (2), we get

$$
\begin{aligned}
F & =F_{A} \frac{\sin 60.3^{\circ}}{\sin 45^{\circ}}=1071.9 \frac{\sin 60.3^{\circ}}{\sin 45^{\circ}} \\
\Rightarrow F & =1316.8 \mathrm{~N}=1.32 \mathrm{kN}
\end{aligned}
$$

Method II

Free-Body Diagram

- Link BD

Since BD is a two-force member, the resultant force at $D \& B$ must >be equal \& opposite.
>lie on same line that passes through $B \& D$.

- Level ABC
- Point A is pin-supported. Therefore, the reaction at A has $x \&$ y components.

Equations of Equilibrium

$$
\begin{align*}
& \rightarrow \sum F_{x}=0: \quad A_{x}-F \cos 45^{\circ}+400 \mathrm{~N}=0 \tag{1}\\
& +\uparrow \sum F_{y}=0: \quad A_{y}-F \sin 45^{\circ}=0 \tag{2}\\
& J^{+}+\sum M_{A}=0 \\
& \quad-400(0.7)+\left(F \cos 45^{\circ}\right)(0.2)+\left(F \sin 45^{\circ}\right)(0.1)=0 \\
& \quad \Rightarrow F=1319.9 \mathrm{~N}=1.32 \mathrm{kN}
\end{align*}
$$

- Substituting F into Eqs. (1) \& (2), we get

$$
\begin{gathered}
A_{x}=533.33 \mathrm{~N} \\
A_{y}=933.33 \mathrm{~N}
\end{gathered}
$$

- Magnitude of the resultant force at A

$$
\begin{aligned}
F_{A} & =\sqrt{\left(A_{x}\right)^{2}+\left(A_{y}\right)^{2}} \\
& =\sqrt{(533.33)^{2}+(933.33)^{2}} \mathrm{~N} \\
& =1.07 \mathrm{kN}
\end{aligned}
$$

- Direction of the resultant force at A

$$
\begin{aligned}
\theta & =\tan ^{-1}\left(\frac{A_{y}}{A_{x}}\right) \\
& =\tan ^{-1}\left(\frac{933.33}{533.33}\right) \\
& =60.3^{\circ}
\end{aligned}
$$

EQUILIBRIUM IN THREE DIMENSIONS

5.5 Free-Body Diagrams

- As in the 2-D case, the first step in solving 3-D equilibrium problems is to draw a free-body diagram.

■ Only external forces are required to be shown on the FBD.

- The most important external forces are support reactions.
$>$ A force is developed by a support that restricts the translation of its attached member.
$>$ A couple moment is developed when rotation of the attached member is prevented

TABLE 5-2	Supports for Rigid Bodies Subjected to Three-Dimensional Force Systems	
Types of Connection	Reaction	Number of Uninowrs

Three unknowns. The reactions are three rectangular force components.
ball and socket
(5)

Four unknowns. The reactions are two force and two couple-moment components which act perpendicular to the shaft. Note: The couple moments are generally not applied if the body is supported elsewhere. See the examples.

TABLE 5-2 Continued		
Types of Connection	Reaction	Number of Unknowns

(6)

Five unknowns. The reactions are two force and three couple-moment components. Note: The couple moments are generally not applied if the body is supported elsewhere. See the examples.
(7)

single thrust bearing

Five unknowns. The reactions are three force and two couple-moment components. Noter The couple moments are generally not applied if the body is supported elsewhere. See the examples.
(8)

single smooth pin

Five unknowns. The reactions are three force and two couple-moment components. Noter. The couple moments are generally not applied if the body is supported elsewhere. See the examples
(9)

Examples : Supports for Rigid Bodies

(a) Journal Bearing

(b) Pin

Pin at A and cable $B C$.

Moment components are developed by the pin on the rod to prevent rotation about the x and z axes.

(c) Hinge

Single hinge

Properly aligned journal bearing at A and hinge at C. Roller at B.

Only force reactions are developed by the bearing and hinge on the plate to prevent rotation about each coordinate axis. No moments at the hinge are developed.

5.6 Equations of Equilibrium in Three Dimensions

V Vector Equations of Equilibrium

- The necessary and sufficient conditions for equilibrium are

$$
\begin{aligned}
& \sum \mathbf{F}=\mathbf{0} \\
& \sum \mathbf{M}_{O}=\mathbf{0}
\end{aligned}
$$

where
$\sum \mathbf{F}=$ vector sum of all the external forces acting on the body.
$\sum \mathbf{M}_{O}=$ vector sum of the couple moments and the moments of all the forces about any point O located either on or off the body.

\square Scalar Equations of Equilibrium

- The external forces and couple moments can be expressed in Cartesian vector form as

$$
\begin{gathered}
\sum \mathbf{F}=\sum F_{x} \mathbf{i}+\sum F_{y} \mathbf{j}+\sum F_{z} \mathbf{k}=\mathbf{0} \\
\sum \mathbf{M}_{\mathrm{O}}=\sum \mathbf{M}_{x} \mathbf{i}+\sum \mathbf{M}_{y} \mathbf{j}+\sum \mathbf{M}_{z} \mathbf{k}=\mathbf{0}
\end{gathered}
$$

- Since the \mathbf{i}, \mathbf{j}, and \mathbf{k} components are independent from one another, the above equations are satisfied provided

$$
\begin{aligned}
& \sum F_{x}=0 \\
& \sum F_{y}=0 \\
& \sum F_{z}=0
\end{aligned} \quad \text { and } \quad \begin{aligned}
& \sum M_{x}=0 \\
& \sum M_{y}=0 \\
& \sum M_{z}=0
\end{aligned}
$$

Note: These 6 scalar equilibrium equations may be used to solve at most 6 unknowns on the free-body diagram.

Procedure for Analysis of 3-D Problems

- Free Body Diagram
- "Isolating" the body by drawing its outlined shape.
- Establish an x, y, z coordinate system.
- Show all the forces and couple moments acting on the body.
- Show all the unknown components having a positive sense.
- Indicate the dimensions of the body necessary for computing the moments of forces.

[Equations of Equilibrium

- Apply the six scalar equations of equilibrium or vector equations
- The set of axes chosen for force summation need not be coincided with the set of axes chosen for moment summation.
- Choose the direction of an axis for moment summation such that it intersects the lines of action of as many unknown forces as possible.

