Example 5.15

Given :

- The homogenous plate has a mass of 100kg and is subjected to a force and couple moment along its edges.
- It is supported in the horizontal plane by means of a roller at *A*, a ball-and-socket joint at *B*, and a cord at *C*.

Find :

Determine the components of reactions at the supports.

Solution <u>Free-body diagram</u>

- Roller at *A* : reaction is perpendicular to the plate.
- Ball-and-socket joint at B : reaction has x, y, z components.

- *C*: Tension force
- Weight at the centroid of the plate: $W = (100 \text{ kg})(9.81 \text{ m/s}^{-2}) = 981 \text{ N}$

Equations of Equilibrium

$$\Sigma F_{x} = 0; \quad B_{x} = 0$$

$$\Sigma F_{y} = 0; \quad B_{y} = 0$$

$$\Sigma F_{z} = 0; \quad A_{z} + B_{z} + T_{C} - 300 \text{ N} - 981 \text{ N} = 0 \quad (1)$$

$$\Sigma M_{x} = 0; \quad T_{C}(2 \text{ m}) - (981 \text{ N})(1 \text{ m}) + B_{z}(2 \text{ m}) = 0$$
(2)

$$\Sigma M_{y} = 0;$$

$$300 \text{ N}(1.5 \text{m}) + (981 \text{ N}) (1.5 \text{ m}) - B_{z}(3 \text{ m}) - A_{z} (3 \text{ m}) - 200 \text{ N} \cdot \text{m} = 0$$

$$\Rightarrow \quad 1721.5 \text{ N} \cdot \text{m} - B_{z}(3 \text{ m}) - A_{z} (3 \text{ m}) = 0$$
(3)

•
$$2 \times \text{Eq.}(1) - \text{Eq.}(2)$$
:
 $2A_z - 1581 = 0$
 $\Rightarrow A_z = 790.5 \text{ N}$

• Substituting A_z into Eq.(3), we get

 $\Rightarrow B_z = -216.7 \text{ N}$

• Substituting B_z into Eq.(2), we get

 $2T_C - 981 \text{ N} - 2(216.7 \text{ N}) = 0$

$$\Rightarrow T_C = 707.2 \text{ N}$$

Note:

- Since $B_x = 0 \& B_y = 0$, there is no moment about the *z* axis. Therefore, the condition $\sum M_z = 0$ is not used.
- As the supports cannot prevent the plate from turning about the *z* axis, it is said to be partially constrained.

Alternative Method

 This problem can also be solved by replacing Eqs.(2) & (3) with the following 2 equations.

 $\Sigma M_{x'} = 0$: (981 N)(1 m)+ (300 N)(2 m) - $A_z(2 m) = 0$ (4)

$$\Rightarrow A_z = 790.5 \text{ N}$$

 $\Sigma M_{v'} = 0:$

 $-300 \text{ N}(1.5 \text{ m}) - (981 \text{ N}) (1.5 \text{ m}) - 200 \text{ N} \cdot \text{m} + T_C (3 \text{ m}) = 0 \qquad (5)$ $\Rightarrow \quad T_C = 707.2 \text{ N}$

• Substituting $A_z \& T_C$ into Eq.(1), we get

$$B_z = 300 \text{ N} + 981 \text{ N} - A_z - T_C$$

$$\Rightarrow B_z = -216.7 \text{ N}$$

Example 5.17

Given :

• The boom is used to support the 375-N (= 37.5 kg) flowerpot.

Find :

Determine the tension developed in wires *AB* and *AC*.

Solution <u>Free-body diagram</u>

- *O* : *reaction force in x, y, z* directions
- B & C: Tension forces

Express all forces as Cartesian vectors

• Coordinates: A (0, 0.6, 0) m B (0.2, 0, 0.3) m C (-0.2, 0, 0.3) m

• Position vectors:

$$\mathbf{r}_{AB} = (x_B - x_A)\mathbf{i} + (y_B - y_A)\mathbf{j} + (z_B - z_A)\mathbf{k}$$

= (0.2 - 0)\mathbf{i} + (0-0.6)\mathbf{j} + (0.3 - 0)\mathbf{k}
= {0.2\mathbf{i} - 0.6\mathbf{j} + 0.3\mathbf{k} } m
$$r_{AB} = \sqrt{(0.2)^2 + (-0.6)^2 + (0.3)^2} = 0.7 \text{ m}$$

$$\mathbf{r}_{CA} = (x_C - x_A)\mathbf{i} + (y_C - y_A)\mathbf{j} + (z_C - z_A)\mathbf{k}$$

= (-0.2 - 0)\mathbf{i} + (0-0.6)\mathbf{j} + (0.3 - 0)\mathbf{k}
= {-0.2\mathbf{i} - 0.6\mathbf{j} + 0.3\mathbf{k}} m

$$r_{AC} = \sqrt{(-0.2)^2 + (-0.6)^2 + (0.3)^2} = 0.7 \text{ m}$$

• Forces

$$\mathbf{F}_{AB} = F \mathbf{u}_{AB} = F_B \left(\frac{\mathbf{r}_{AB}}{r_{AB}}\right)$$
$$= F_{AB} \left(\frac{0.2\mathbf{i} - 0.6\mathbf{j} + 0.3\mathbf{k}}{0.7}\right)$$
$$= \frac{2}{7} F_{AB} \mathbf{i} - \frac{6}{7} F_{AB} \mathbf{j} + \frac{3}{7} F_{AB} \mathbf{k}$$

$$\mathbf{F}_{AC} = F \mathbf{u}_{AC}$$
$$= F_{AC} \left(\frac{-0.2\mathbf{i} - 0.6\mathbf{j} + 0.3\mathbf{k}}{0.7} \right)$$
$$= -\frac{2}{7} F_{AC} \mathbf{i} - \frac{6}{7} F_{AC} \mathbf{j} + \frac{3}{7} F_{AC} \mathbf{k}$$
$$\mathbf{W} = -375 \ \mathbf{k}$$

$$\sum \mathbf{M}_{O} = \mathbf{0}: \quad \mathbf{r}_{A} \times (\mathbf{F}_{AB} + \mathbf{F}_{AC} + \mathbf{W}) = \mathbf{0}$$

(0.6j)× $\left[\left(\frac{2}{7} F_{AB} \mathbf{i} - \frac{6}{7} F_{AB} \mathbf{j} + \frac{3}{7} F_{AB} \mathbf{k} \right) + \left(-\frac{2}{7} F_{AC} \mathbf{i} - \frac{6}{7} F_{AC} \mathbf{j} + \frac{3}{7} F_{AC} \mathbf{k} \right) + (-375 \mathbf{k}) \right] = \mathbf{0}$
 $\left(\frac{1.8}{7} F_{AB} + \frac{1.8}{7} F_{AC} - 225 \right) \mathbf{i} + \left(-\frac{1.2}{7} F_{AB} + \frac{1.2}{7} F_{AC} \right) \mathbf{k} = \mathbf{0}$

• Equating the respective **i**, **j**, **k** components, we have

$$\mathbf{i}: \Sigma F_x = 0:$$
 $\frac{1.8}{7}F_{AB} + \frac{1.8}{7}F_{AC} - 225 = 0$ (1)

j: $\Sigma F_y = 0$: 0 = 0

k:
$$\Sigma F_z = 0$$
: $-\frac{1.2}{7}F_{AB} + \frac{1.2}{7}F_{AC} = 0$ (2)

- From Eq. (2), $F_{AC} = F_{AB}$ (3)
- Substituting Eq.(3) into Eq. (1), we have

$$\frac{3.6}{7}F_{AB} = 225$$

$$\Rightarrow F_{AB} = 437.5$$
 N

• Thus,

$$F_{AC} = F_{AB} = 437.5$$
 N

Example 5.18

Given :

• Rod *AB* shown in the figure is subjected to the 200-N force.

Find :

Determine the reactions at the ball-and-socket joint *A* and the tension in the cables *BC* and *BE*.

Solution

Free-body diagram

- Ball-and-socket joint at A : reaction \mathbf{F}_A has x, y, z components.
- *B*: Tension force $T_D \& T_E$
- C: Applied force F=200 N

Express all forces as Cartesian vectors

$$\mathbf{F}_A = A_x \mathbf{i} + A_y \mathbf{j} + A_z \mathbf{k}$$
$$\mathbf{T}_E = T_E \mathbf{i}$$

$$\mathbf{T}_D = T_D \mathbf{j}$$

 $\mathbf{F} = \{-200 \mathbf{k} \} \mathbf{N}$

Force Equations of Equilibrium

$$\sum \mathbf{F} = \mathbf{0} : \qquad \mathbf{F}_A + \mathbf{T}_E + \mathbf{T}_D + \mathbf{F} = \mathbf{0}$$
$$(A_x \mathbf{i} + A_y \mathbf{j} + A_z \mathbf{k}) + T_E \mathbf{i} + T_D \mathbf{j} - 200 \mathbf{k} = 0\mathbf{i} + 0\mathbf{j} + 0 \mathbf{k}$$
$$(A_x + T_E)\mathbf{i} + (A_y + T_D)\mathbf{j} + (A_z - 200) \mathbf{k} = 0\mathbf{i} + 0\mathbf{j} + 0 \mathbf{k}$$

- Equating the respective **i**, **j**, **k** components, we have
 - $\mathbf{i}: \ \Sigma F_x = 0: \qquad \qquad A_x + T_E = 0 \tag{1}$
 - $\mathbf{j}: \ \Sigma F_y = 0: \qquad A_y + T_D = 0 \tag{2}$
 - **k**: $\Sigma F_z = 0$: $A_z 200 = 0$ (3)

Moment Equations of Equilibrium
• Coordinates:
$$A (0, 0, 0)$$
 m
 $B (1, 2, -2)$ m
 $\mathbf{r}_B = \mathbf{r}_{AB} = (x_B - x_A)\mathbf{i} + (y_B - y_A)\mathbf{j} + (z_B - z_A)\mathbf{k}$
 $= (1 - 0)\mathbf{i} + (2 - 0)\mathbf{j} + (-2 - 0)\mathbf{k}$
 $= \{1\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}\}$ m
 $\mathbf{r}_C = \mathbf{r}_{AC} = \frac{1}{2}\mathbf{r}_B = 0.5\mathbf{i} + 1\mathbf{j} - 1\mathbf{k}$

• Summing moments about point A:

 $\sum \mathbf{M}_{A} = \mathbf{0}: \quad \mathbf{r}_{C} \times \mathbf{F} + \mathbf{r}_{B} \times (\mathbf{T}_{E} + \mathbf{T}_{D}) = \mathbf{0}$ $(0.5\mathbf{i} + 1\mathbf{j} - 1\mathbf{k}) \times (-200 \, \mathbf{k}) + (1\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}) \times (T_{E}\mathbf{i} + T_{D}\mathbf{j}) = \mathbf{0}$

 $(2T_D - 200)\mathbf{i} + (-2T_E + 100)\mathbf{j} + (T_D - 2T_E)\mathbf{k} = 0\mathbf{i} + 0\mathbf{j} + 0\mathbf{k}$

• Equating the respective **i**, **j**, **k** components, we have

$$\mathbf{i}: \Sigma F_x = 0:$$
 $2T_D - 200 = 0$ (4)

j:
$$\Sigma F_y = 0$$
: $-2T_E + 100 = 0$ (5)

k:
$$\Sigma F_z = 0$$
: $T_D - 2T_E = 0$ (6)

• Solving Eqs.(1) ~ (6), we get

$$T_D = 100 \text{ N}$$
$$T_E = 50 \text{N}$$
$$A_x = -50 \text{N}$$
$$A_y = -100 \text{N}$$
$$A_z = 200 \text{N}$$

Example 5.19

Given :

- The bent rod in the figure is supported at *A* by journal bearing, at *D* by a balland-socket joint, and at *B* by means of cable *BC*.
- The bearing at *A* is capable of exerting force components only in the *z* and *y* directions since it is properly aligned on the shaft.

Find :

Determine the tension in cable *BC* using only one equilibrium equation.

Solution <u>Free-body diagram</u>

- Journal bearing at A : reaction has y, z components only.
- Ball and socket joint at D : reaction has x, y, z components.
- *B*: Tension force T_B
- Weight at *E*: $W= (100 \text{ kg})(9.81 \text{ m/s}^{-2}) = 981 \text{ N}$

Equations of Equilibrium

• Since only T_B required, we may sum the moments about the axis that passes through points D and A as the moments produced by the reactive forces at A and D are zero about this axis.

Method I : Vector Analysis

• Unit vector along the axis *DA*.

$$\mathbf{u} = \frac{\mathbf{r}_{DA}}{r_{DA}}$$

$$= \frac{(x_A - x_D)\mathbf{i} + (y_A - y_D)\mathbf{j} + (z_A - z_D)\mathbf{k}}{\sqrt{(x_A - x_D)^2 + (y_A - y_D)^2 + (z_A - z_D)^2}}$$

$$= \frac{(-1 - 0)\mathbf{i} + (-1 - 0)\mathbf{j} + (0 - 0)\mathbf{k}}{\sqrt{(-1 - 0)^2 + (-1 - 0)^2 + (0 - 0)^2}}$$

$$= -\frac{1}{\sqrt{2}}\mathbf{i} - \frac{1}{\sqrt{2}}\mathbf{j}$$

$$= -0.7071 \mathbf{i} - 0.7071 \mathbf{j}$$

• Taking the moments about *DA*

$$\Sigma M_{DA} = \mathbf{u} \cdot \Sigma (\mathbf{r} \times \mathbf{F}) = 0$$

 $\mathbf{u} \cdot (\mathbf{r}_B \times \mathbf{T}_B + \mathbf{r}_E \times \mathbf{W}) = 0$

 $(-0.7071 \,\mathbf{i} - 0.7071 \,\mathbf{j}) \cdot [(-1.0 \,\mathbf{j}) \times T_B \,\mathbf{k} + (-0.5 \,\mathbf{j}) \times (-981 \,\mathbf{k}) = 0$

 $(-0.7071 \mathbf{i} - 0.7071 \mathbf{j}) \cdot [(-T_B - 490.5) \mathbf{i}] = 0$

 $-0.7071 \ (-T_B - 490.5) = 0$ $\Rightarrow T_B = 490.5 \text{ N}$

Method II : Scalar Analysis

 $(+ \Sigma M_{DA} = 0; -T_B d_B + W d_W = 0$ - $T_B (1 \text{ m sin } 45^\circ) + (981 \text{ N})(0.5 \text{ m sin } 45^\circ) = 0$ $\Rightarrow T_B = 490.5 \text{ N}$

5.7 Constraints and Statical Determinacy

 To ensure the equilibrium of a rigid body, the body must also be properly held or constrained by its supports.

Redundant Constraints

- A body is said to have redundant constraints if it has more supports than are necessary to hold it in equilibrium.
- A body with redundant constraints is *statically indeterminate* as there are more unknown loadings than equations of equilibrium.

Examples of statically indeterminate problems.

No. of equilibrium equations = 3

No. of unknowns = 5

No. of equilibrium equations = 6

No. of unknowns = 8

Improper Constraints

- Having the same number of unknowns as the available equations of equilibrium does not always guarantee that a body will be stable when subjected to a particular loading.
- Instability may occur in a rigid body if it is *improperly constrained* by its supports.
- A body is considered *improperly constrained* if
 - (1) all the reactive forces intersect at a common point (2-D case) or pass through a common axis (3-D case),
 - (2) all the reactive forces are parallel.

- The reactive forces A_x , A_y , and F_B are concurrent at point A. Therefore, the moments of these forces about A are zero.
- However, the presence of **P** causes $\sum M_A \neq 0$.
- Consequently, the beam will rotate about *A*.
- So, the beam is improperly constrained.

(b) **3-D** Case

- The reactive forces at the ball-and socket supports A_x, A_y, A_z, B_x, B_y, and B_z, pass through the common axis AB.
 Therefore, the moments of these forces about A & B are all zero.
- However, the presence of **P** causes $\sum M_{AB} \neq 0$.
- Consequently, the member will rotate about the AB axis.
- So, the memeber is improperly constrained.