Example 5.15

Given :

- The homogenous plate has a mass of 100 kg and is subjected to a force and couple moment along its edges.
- It is supported in the horizontal plane by means of a roller at A, a ball-and-socket joint at B, and
 a cord at C.

Find :

Determine the components of reactions at the supports.

Solution

Free-body diagram

- Roller at A : reaction is perpendicular to the plate.
- Ball-and-socket joint at B : reaction has x, y, z components.

- C : Tension force
- Weight at the centroid of the plate: $W=(100 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{-2}\right)=981 \mathrm{~N}$

Equations of Equilibrium

$$
\begin{array}{ll}
\Sigma F_{x}=0: & B_{x}=0 \\
\Sigma F_{y}=0: & B_{y}=0 \\
\Sigma F_{z}=0: & A_{z}+B_{z}+T_{C}-300 \mathrm{~N}-981 \mathrm{~N}=0 \tag{1}
\end{array}
$$

$$
\begin{align*}
& \Sigma M_{x}=0: T_{C}(2 \mathrm{~m})-(981 \mathrm{~N})(1 \mathrm{~m})+B_{z}(2 \mathrm{~m})=0 \tag{2}\\
& \Sigma M_{y}=0: \\
& 300 \mathrm{~N}(1.5 \mathrm{~m})+(981 \mathrm{~N})(1.5 \mathrm{~m})-B_{z}(3 \mathrm{~m})-A_{z}(3 \mathrm{~m})-200 \mathrm{~N} \cdot \mathrm{~m}=0 \\
& \quad \Rightarrow \quad 1721.5 \mathrm{~N} \cdot \mathrm{~m}-B_{z}(3 \mathrm{~m})-A_{z}(3 \mathrm{~m})=0 \tag{3}
\end{align*}
$$

- $2 \times$ Eq.(1) - Eq.(2):

$$
\begin{aligned}
2 A_{z}-1581 & =0 \\
\Rightarrow A_{z} & =790.5 \mathrm{~N}
\end{aligned}
$$

- Substituting A_{z} into Eq.(3), we get

$$
\Rightarrow B_{z}=-216.7 \mathrm{~N}
$$

- Substituting B_{z} into Eq.(2), we get

$$
\begin{aligned}
& 2 T_{C}-981 \mathrm{~N}-2(216.7 \mathrm{~N})=0 \\
& \quad \Rightarrow T_{C}=707.2 \mathrm{~N}
\end{aligned}
$$

Note:

- Since $B_{x}=0 \& B_{y}=0$, there is no moment about the z axis. Therefore, the condition $\Sigma M_{z}=0$ is not used.
- As the supports cannot prevent the plate from turning about the z axis, it is said to be partially constrained.

Alternative Method

- This problem can also be solved by replacing Eqs.(2) \& (3) with the following 2 equations.

$\Sigma M_{x^{\prime}}=0:(981 \mathrm{~N})(1 \mathrm{~m})+(300 \mathrm{~N})(2 \mathrm{~m})-A_{z}(2 \mathrm{~m})=0$

$$
\begin{equation*}
\Rightarrow \quad A_{z}=790.5 \mathrm{~N} \tag{4}
\end{equation*}
$$

$\Sigma M_{y^{\prime}}=0$:
$-300 \mathrm{~N}(1.5 \mathrm{~m})-(981 \mathrm{~N})(1.5 \mathrm{~m})-200 \mathrm{~N} \cdot \mathrm{~m}+T_{C}(3 \mathrm{~m})=0$

$$
\begin{equation*}
\Rightarrow \quad T_{C}=707.2 \mathrm{~N} \tag{5}
\end{equation*}
$$

- Substituting $A_{z} \& T_{C}$ into Eq.(1), we get

$$
\begin{aligned}
B_{z} & =300 \mathrm{~N}+981 \mathrm{~N}-A_{z}-T_{C} \\
\Rightarrow B_{z} & =-216.7 \mathrm{~N}
\end{aligned}
$$

Example 5.17

Given :

- The boom is used to support the $375-\mathrm{N}$ ($=37.5 \mathrm{~kg}$) flowerpot.

Find :
Determine the tension developed in wires $A B$ and $A C$.

Solution

Free-body diagram

- O : reaction force in x, y, z directions
- $\mathrm{B} \& C$: Tension forces

Express all forces as Cartesian vectors
-Coordinates: $A(0,0.6,0) \mathrm{m}$ $B(0.2,0,0.3) \mathrm{m}$
C (-0.2, 0, 0.3) m

- Position vectors:

$$
\begin{aligned}
\mathbf{r}_{A B} & =\left(x_{B}-x_{A}\right) \mathbf{i}+\left(y_{B}-y_{A}\right) \mathbf{j}+\left(z_{B}-z_{A}\right) \mathbf{k} \\
& =(0.2-0) \mathbf{i}+(0-0.6) \mathbf{j}+(0.3-0) \mathbf{k} \\
& =\{0.2 \mathbf{i}-0.6 \mathbf{j}+0.3 \mathbf{k}\} \mathrm{m} \\
r_{A B} & =\sqrt{(0.2)^{2}+(-0.6)^{2}+(0.3)^{2}}=0.7 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{r}_{C A} & =\left(x_{C}-x_{A}\right) \mathbf{i}+\left(y_{C}-y_{A}\right) \mathbf{j}+\left(z_{C}-z_{A}\right) \mathbf{k} \\
& =(-0.2-0) \mathbf{i}+(0-0.6) \mathbf{j}+(0.3-0) \mathbf{k} \\
& =\{-0.2 \mathbf{i}-0.6 \mathbf{j}+0.3 \mathbf{k}\} \mathrm{m}
\end{aligned}
$$

$$
r_{A C}=\sqrt{(-0.2)^{2}+(-0.6)^{2}+(0.3)^{2}}=0.7 \mathrm{~m}
$$

- Forces

$$
\begin{aligned}
\mathbf{F}_{A B} & =F \mathbf{u}_{A B}=F_{B}\left(\frac{\mathbf{r}_{A B}}{r_{A B}}\right) \\
& =F_{A B}\left(\frac{0.2 \mathbf{i}-0.6 \mathbf{j}+0.3 \mathbf{k}}{0.7}\right) \\
& =\frac{2}{7} F_{A B} \mathbf{i}-\frac{6}{7} F_{A B} \mathbf{j}+\frac{3}{7} F_{A B} \mathbf{k}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{F}_{A C} & =F \mathbf{u}_{A C} \\
& =F_{A C}\left(\frac{-0.2 \mathbf{i}-0.6 \mathbf{j}+0.3 \mathbf{k}}{0.7}\right) \\
& =-\frac{2}{7} F_{A C} \mathbf{i}-\frac{6}{7} F_{A C} \mathbf{j}+\frac{3}{7} F_{A C} \mathbf{k}
\end{aligned}
$$

$$
\mathbf{W}=-375 \mathbf{k}
$$

(b)

$$
\sum \mathbf{M}_{O}=\mathbf{0}: \quad \mathbf{r}_{A} \times\left(\mathbf{F}_{A B}+\mathbf{F}_{A C}+\mathbf{W}\right)=\mathbf{0}
$$

$$
(0.6 \mathbf{j}) \times\left[\left(\frac{2}{7} F_{A B} \mathbf{i}-\frac{6}{7} F_{A B} \mathbf{j}+\frac{3}{7} F_{A B} \mathbf{k}\right)+\left(-\frac{2}{7} F_{A C} \mathbf{i}-\frac{6}{7} F_{A C} \mathbf{j}+\frac{3}{7} F_{A C} \mathbf{k}\right)+(-375 \mathbf{k})\right]=\mathbf{0}
$$

$$
\left(\frac{1.8}{7} F_{A B}+\frac{1.8}{7} F_{A C}-225\right) \mathbf{i}+\left(-\frac{1.2}{7} F_{A B}+\frac{1.2}{7} F_{A C}\right) \mathbf{k}=\mathbf{0}
$$

- Equating the respective $\mathbf{i}, \mathbf{j}, \mathbf{k}$ components, we have
$\mathbf{i}: \Sigma F_{x}=0: \quad \frac{1.8}{7} F_{A B}+\frac{1.8}{7} F_{A C}-225=0$
$\mathbf{j}: \Sigma F_{y}=0: \quad 0=0$
$\mathbf{k}: \Sigma F_{z}=0: \quad-\frac{1.2}{7} F_{A B}+\frac{1.2}{7} F_{A C}=0$
- From Eq. (2),

$$
\begin{equation*}
F_{A C}=F_{A B} \tag{3}
\end{equation*}
$$

- Substituting Eq.(3) into Eq. (1), we have
- Thus,

$$
\begin{aligned}
& \frac{3.6}{7} F_{A B}=225 \\
\Rightarrow & F_{A B}=437.5 \mathrm{~N}
\end{aligned}
$$

$$
F_{A C}=F_{A B}=437.5 \mathrm{~N}
$$

Example 5.18

Given :

- $\operatorname{Rod} A B$ shown in the figure is subjected to the $200-\mathrm{N}$ force.

Find :

Determine the reactions at the ball-and-socket joint A and the tension in the cables $B C$ and $B E$.

Solution

Free-body diagram

- Ball-and-socket joint at A : reaction \mathbf{F}_{A} has x, y, z components.
- B: Tension force $T_{D} \& T_{E}$
- C : Applied force $F=200 \mathrm{~N}$

Express all forces as Cartesian vectors

$$
\begin{aligned}
& \mathbf{F}_{A}=A_{x} \mathbf{i}+A_{y} \mathbf{j}+A_{z} \mathbf{k} \\
& \mathbf{T}_{E}=T_{E} \mathbf{i} \\
& \mathbf{T}_{D}=T_{D} \mathbf{j} \\
& \mathbf{F}=\{-200 \mathbf{k}\} \mathbf{N}
\end{aligned}
$$

Force Equations of Equilibrium

$$
\sum \mathbf{F}=\mathbf{0}: \quad \mathbf{F}_{A}+\mathbf{T}_{E}+\mathbf{T}_{D}+\mathbf{F}=\mathbf{0}
$$

$$
\begin{array}{r}
\left(A_{x} \mathbf{i}+A_{y} \mathbf{j}+A_{z} \mathbf{k}\right)+T_{E} \mathbf{i}+T_{D} \mathbf{j}-200 \mathbf{k}=0 \mathbf{i}+0 \mathbf{j}+0 \mathbf{k} \\
\left(A_{x}+T_{E}\right) \mathbf{i}+\left(A_{y}+T_{D}\right) \mathbf{j}+\left(A_{z}-200\right) \mathbf{k}=0 \mathbf{i}+0 \mathbf{j}+0 \mathbf{k}
\end{array}
$$

- Equating the respective $\mathbf{i}, \mathbf{j}, \mathbf{k}$ components, we have

$$
\begin{array}{ll}
\mathbf{i}: \Sigma F_{x}=0: & A_{x}+T_{E}=0 \\
\mathbf{j}: \Sigma F_{y}=0: & A_{y}+T_{D}=0 \\
\mathbf{k}: \Sigma F_{z}=0: & A_{z}-200=0 \tag{3}
\end{array}
$$

Moment Equations of Equilibrium

- Coordinates: $A(0,0,0) \mathrm{m}$

$$
\begin{aligned}
& B(1,2,-2) \mathrm{m} \\
\mathbf{r}_{B} & =\mathbf{r}_{A B}=\left(x_{B}-x_{A}\right) \mathbf{i}+\left(y_{B}-y_{A}\right) \mathbf{j}+\left(z_{B}-z_{A}\right) \mathbf{k} \\
= & (1-0) \mathbf{i}+(2-0) \mathbf{j}+(-2-0) \mathbf{k} \\
= & \{1 \mathbf{i}+2 \mathbf{j}-2 \mathbf{k}\} \mathrm{m} \\
\mathbf{r}_{C}= & \mathbf{r}_{A C}=1 / 2 \mathbf{r}_{B}=0.5 \mathbf{i}+1 \mathbf{j}-1 \mathbf{k}
\end{aligned}
$$

- Summing moments about point A :

$$
\begin{aligned}
& \sum \mathbf{M}_{A}=\mathbf{0}: \quad \mathbf{r}_{C} \times \mathbf{F}+\mathbf{r}_{B} \times\left(\mathbf{T}_{E}+\mathbf{T}_{D}\right)=\mathbf{0} \\
& \quad(0.5 \mathbf{i}+1 \mathbf{j}-1 \mathbf{k}) \times(-200 \mathbf{k})+(1 \mathbf{i}+2 \mathbf{j}-2 \mathbf{k}) \times\left(T_{E} \mathbf{i}+T_{D} \mathbf{j}\right)=\mathbf{0} \\
& \\
& \quad\left(2 T_{D}-200\right) \mathbf{i}+\left(-2 T_{E}+100\right) \mathbf{j}+\left(T_{D}-2 T_{E}\right) \mathbf{k}=0 \mathbf{i}+0 \mathbf{j}+0 \mathbf{k}
\end{aligned}
$$

- Equating the respective $\mathbf{i}, \mathbf{j}, \mathbf{k}$ components, we have

$$
\begin{array}{ll}
\mathbf{i}: \Sigma F_{x}=0: & 2 T_{D}-200=0 \\
\mathbf{j}: \Sigma F_{y}=0: & -2 T_{E}+100=0 \\
\mathbf{k}: \Sigma F_{z}=0: & T_{D}-2 T_{E}=0 \tag{6}
\end{array}
$$

- Solving Eqs.(1) ~ (6), we get

$$
\begin{aligned}
T_{D} & =100 \mathrm{~N} \\
T_{E} & =50 \mathrm{~N} \\
A_{x} & =-50 \mathrm{~N} \\
A_{y} & =-100 \mathrm{~N} \\
A_{z} & =200 \mathrm{~N}
\end{aligned}
$$

Example 5.19

Given :

- The bent rod in the figure is supported at A by journal bearing, at D by a ball-and-socket joint, and at B by means of cable $B C$.
- The bearing at A is capable of exerting force components only in the z and y directions since it is properly aligned
 on the shaft.

Find :

Determine the tension in cable $B C$ using only one equilibrium equation.

Solution

Free-body diagram

- Journal bearing at A : reaction has y, z components only.
- Ball and socket joint at D : reaction has x, y, z components.
- B : Tension force T_{B}
- Weight at E :

$$
W=(100 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{-2}\right)=981 \mathrm{~N}
$$

Equations of Equilibrium

- Since only T_{B} required, we may sum the moments about the axis that passes through points D and A as the moments produced by the reactive forces at A and D are zero about this axis.

Method I : Vector Analysis

- Unit vector along the axis $D A$.

$$
\begin{aligned}
\mathbf{u} & =\frac{\mathbf{r}_{D A}}{r_{D A}} \\
& =\frac{\left(x_{A}-x_{D}\right) \mathbf{i}+\left(y_{A}-y_{D}\right) \mathbf{j}+\left(z_{A}-z_{D}\right) \mathbf{k}}{\sqrt{\left(x_{A}-x_{D}\right)^{2}+\left(y_{A}-y_{D}\right)^{2}+\left(z_{A}-z_{D}\right)^{2}}} \\
& =\frac{(-1-0) \mathbf{i}+(-1-0) \mathbf{j}+(0-0) \mathbf{k}}{\sqrt{(-1-0)^{2}+(-1-0)^{2}+(0-0)^{2}}} \\
& =-\frac{1}{\sqrt{2}} \mathbf{i}-\frac{1}{\sqrt{2}} \mathbf{j} \\
& =-0.7071 \mathbf{i}-0.7071 \mathbf{j}
\end{aligned}
$$

- Taking the moments about $D A$

$$
\begin{aligned}
& \Sigma M_{D A}=\mathbf{u} \cdot \Sigma(\mathbf{r} \times \mathbf{F})=0 \\
& \mathbf{u} \cdot\left(\mathbf{r}_{B} \times \mathbf{T}_{B}+\mathbf{r}_{E} \times \mathbf{W}\right)=0
\end{aligned}
$$

$$
(-0.7071 \mathbf{i}-0.7071 \mathbf{j}) \cdot\left[(-1.0 \mathbf{j}) \times T_{B} \mathbf{k}\right.
$$

$$
+(-0.5 \mathbf{j}) \times(-981 \mathbf{k})=0
$$

$$
(-0.7071 \mathbf{i}-0.7071 \mathbf{j}) \cdot\left[\left(-T_{B}-490.5\right) \mathbf{i}\right]=0
$$

$$
\begin{aligned}
& -0.7071\left(-T_{B}-490.5\right)=0 \\
& \Rightarrow T_{B}=490.5 \mathrm{~N}
\end{aligned}
$$

Method II : Scalar Analysis

$$
\begin{aligned}
\left(+\Sigma M_{D A}=0:\right. & -T_{B} d_{B}+W d_{W}=0 \\
& -T_{B}\left(1 \mathrm{~m} \sin 45^{\circ}\right)+(981 \mathrm{~N})\left(0.5 \mathrm{~m} \sin 45^{\circ}\right)=0 \\
& \Rightarrow T_{B}=490.5 \mathrm{~N}
\end{aligned}
$$

5.7 Constraints and Statical Determinacy

- To ensure the equilibrium of a rigid body, the body must also be properly held or constrained by its supports.
- Redundant Constraints
- A body is said to have redundant constraints if it has more supports than are necessary to hold it in equilibrium.
- A body with redundant constraints is statically indeterminate as there are more unknown loadings than equations of equilibrium.

- Examples of statically indeterminate problems.

(i)

(a)

No. of equilibrium equations $=3$

No. of unknowns $=5$

No. of equilibrium equations $=6$

No. of unknowns $=8$

\square Improper Constraints

- Having the same number of unknowns as the available equations of equilibrium does not always guarantee that a body will be stable when subjected to a particular loading.
- Instability may occur in a rigid body if it is improperly constrained by its supports.
- A body is considered improperly constrained if
(1) all the reactive forces intersect at a common point (2-D case) or pass through a common axis (3-D case),
(2) all the reactive forces are parallel.

(a) 2-D Case

- The reactive forces A_{x}, A_{y}, and F_{B} are concurrent at point A. Therefore, the moments of these forces about A are zero.
- However, the presence of \mathbf{P} causes $\sum M_{A} \neq 0$.
- Consequently, the beam will rotate about A.
- So, the beam is improperly constrained.
(b) 3-D Case

- The reactive forces at the ball-and socket supports A_{x}, A_{y}, A_{z}, B_{x}, B_{y}, and B_{z}, pass through the common axis $A B$.
Therefore, the moments of these forces about $A \& B$ are all zero.
- However, the presence of \mathbf{P} causes $\sum M_{A B} \neq 0$.
- Consequently, the member will rotate about the $A B$ axis.
- So, the memeber is improperly constrained.

