Chapter 2
 Force Vectors

Chapter Objectives

- Parallelogram Law
- Cartesian vector form for position and force
- Dot product and angle between 2 vectors

Chapter Outline

1. Scalars and Vectors
2. Vector Operations
3. Vector Addition of Forces
4. Addition of a System of Coplanar Forces
5. Cartesian Vectors
6. Addition and Subtraction of Cartesian Vectors
7. Position Vectors
8. Force Vector Directed along a Line
9. Dot Product

2.1 Scalars and Vectors

Physical quantities are measured using either scalars or vectors.

\square Scalar

- A quantity characterized by a either positive or negative number.

Examples: mass, volume and length.

- Indicated by letters in italic such as A.

\square Vector

- A quantity that has magnitude and direction.

Examples: position, force and moment

- A vector may be represented by:
(i) A letter with an arrow over it \vec{A} with its magnitude denoted by $|\vec{A}|$

Or
(ii) A bold face letter \mathbf{A} with its magnitude denoted by A.

2.2 Vector Operations

I. Multiplication and Division of a Vector by a Scalar

- Product of vector \mathbf{A} and scalar a is $a \mathbf{A}$.
- Law of multiplication applies.

$$
\mathbf{A} / a=(1 / a) \mathbf{A}, \quad a \neq 0
$$

II. Vector Addition

- Addition of two vectors is commutative

$$
\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}
$$

- Addition of two vectors can be obtained using
> Parallelogram law
$>$ Triangle rule.
- Parallelogram law

Parallelogram law

- Triangle rule

$\mathbf{R}=\mathbf{A}+\mathbf{B}$
Triangle rule

Note :

- If two vectors are collinear, the parallelogram law reduces to an algebraic or scalar addition

Addition of collinear vectors

III. Vector Subtraction

- A special case of addition

$$
\mathbf{A}-\mathbf{B}=\mathbf{A}+(-\mathbf{B})
$$

- Rules of vector addition applies.

Parallelogram law
Vector subtraction

Triangle construction

2.3 Vector Addition of Forces

I. Finding a Resultant Force

- The method of vector addition is used to find the resultant force \mathbf{F}_{R} of adding two forces $\mathbf{F}_{1}+\mathbf{F}_{2}$.

(a)

(b)

Parallelogram law

(c)

Triangle rule

- Magnitude of the resultant force can be determined by the law of cosines.
- Direction of the resultant force can be determined by the law of sines

Cosine law:
$C=\sqrt{A^{2}+B^{2}-2 A B \cos c}$ Sine law:

$$
\frac{A}{\sin a}=\frac{B}{\sin b}=\frac{C}{\sin c}
$$

II. Finding the Components of a Force

- If a force \mathbf{F} is to be resolved into components along two axes u $\& v$, a parallelogram is constructed.

(a)

(b)

(c)
- The sides of the parallelogram represent the components \boldsymbol{F}_{u} and \boldsymbol{F}_{v}.
- Magnitude of the two components can be determined by the law of sines.

III. Addition of Several Forces

- If more than 2 forces are to be added, successive applications of parallelogram law can be carried out.

Example 2.1

Given :

The screw eye is subjected to two forces, \mathbf{F}_{1} and \mathbf{F}_{2}.

Determine the magnitude and direction of the resultant force.

Solution

- Construct a parallelogram with sides parallel to the given forces.

Unknown: magnitude of \mathbf{F}_{R} and angle θ

Magnitude of resultant force:

Law of Cosines

$$
\begin{aligned}
F_{R} & =\sqrt{(100 \mathrm{~N})^{2}+(150 \mathrm{~N})^{2}-2(100 \mathrm{~N})(150 \mathrm{~N}) \cos 115^{\circ}} \\
& =\sqrt{10000+22500-30000(-0.4226)} \\
& =212.6 \mathrm{~N}=213 \mathrm{~N}
\end{aligned}
$$

Direction resultant force:

Law of Sines

$$
\begin{aligned}
& \frac{150 \mathrm{~N}}{\sin \theta}=\frac{212.6 \mathrm{~N}}{\sin 115^{\circ}} \\
& \sin \theta=\frac{150 \mathrm{~N}}{212.6 \mathrm{~N}} \sin 115^{\circ} \Rightarrow \theta=39.8^{\circ}
\end{aligned}
$$

Direction of \mathbf{F}_{R} measured from the horizontal is

$$
\begin{aligned}
\phi & =39.8^{\circ}+15^{\circ} \\
& =54.8^{\circ}
\end{aligned}
$$

Example 2.2

Given :

- A horizontal 600-N force is to be resolved along the u and v axes.

Find :

- Determine the magnitude of the resolved components.

Solution

- Construct a parallelogram with sides parallel to the u and v axes.

- Consider half portion of the parallelogram.
- Applying law of sines,

$$
\begin{aligned}
& \frac{F_{u}}{\sin 120^{\circ}}=\frac{600 \mathrm{~N}}{\sin 30^{\circ}} \\
& \Rightarrow \quad F_{u}=1039 \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{F_{v}}{\sin 30^{\circ}}=\frac{600 \mathrm{~N}}{\sin 30^{\circ}} \\
& \Rightarrow \quad F_{v}=600 \mathrm{~N}
\end{aligned}
$$

Example 2.4

Given :

- The resultant force acting on the eyebolt is directed along the positive x axis.

Find :

- the minimum magnitude of \mathbf{F}_{2}
- the angle θ.
- the corresponding resultant force.

(a)

Solution

- Unknown: magnitudes of \mathbf{F}_{R} and \mathbf{F}_{2}, angle θ.
- Using the triangle rule, we have

- As shown in the figure, F_{2} is minimum if $\theta=90^{\circ}$

- Therefore,

$$
\begin{aligned}
& F_{2}=(800 \mathrm{~N}) \sin 60^{\circ}=693 \mathrm{~N} \\
& F_{R}=(800 \mathrm{~N}) \cos 60^{\circ}=400 \mathrm{~N}
\end{aligned}
$$

