Chapter 2 Force Vectors

Chapter Objectives

- Parallelogram Law
- Cartesian vector form for position and force
- Dot product and angle between 2 vectors

Chapter Outline

- 1. Scalars and Vectors
- 2. Vector Operations
- 3. Vector Addition of Forces
- 4. Addition of a System of Coplanar Forces
- 5. Cartesian Vectors
- 6. Addition and Subtraction of Cartesian Vectors
- 7. Position Vectors
- 8. Force Vector Directed along a Line
- 9. Dot Product

2.1 Scalars and Vectors

Physical quantities are measured using either scalars or vectors.

Scalar

• A quantity characterized by a either positive or negative number.

Examples: mass, volume and length.

• Indicated by letters in italic such as *A*.

Vector

A quantity that has magnitude and direction.
 Examples: position, force and moment

- A vector may be represented by :
 - (i) A letter with an arrow over it \vec{A} with its magnitude denoted by $|\vec{A}|$
 - or

(ii) A bold face letter **A** with its magnitude denoted by *A*.

2.2 Vector Operations

I. Multiplication and Division of a Vector by a Scalar

- Product of vector \mathbf{A} and scalar a is $a\mathbf{A}$.
- Law of multiplication applies.

$$\mathbf{A}/a = (1/a) \mathbf{A}, \quad a \neq 0$$

II. Vector Addition

• Addition of two vectors is *commutative*

 $\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$

- Addition of two vectors can be obtained using
 - Parallelogram law
 - ➤ Triangle rule.

Parallelogram law

Parallelogram law

Triangle rule

Note :

• If two vectors are *collinear*, the parallelogram law reduces to an algebraic or scalar addition

Addition of collinear vectors

III. Vector Subtraction

• A special case of addition

 $\mathbf{A} - \mathbf{B} = \mathbf{A} + (-\mathbf{B})$

• Rules of vector addition applies.

2.3 Vector Addition of Forces

I. Finding a Resultant Force

• The method of vector addition is used to find the resultant force \mathbf{F}_{R} of adding two forces $\mathbf{F}_{1} + \mathbf{F}_{2}$.

Parallelogram law

Triangle rule

- Magnitude of the resultant force can be determined by the *law of cosines*.
- Direction of the resultant force can be determined by the *law of sines*

Cosine law:

$$C = \sqrt{A^2 + B^2} - 2AB \cos c$$
Sine law:

$$\frac{A}{\sin a} = \frac{B}{\sin b} = \frac{C}{\sin c}$$

II. Finding the Components of a Force

If a force F is to be resolved into components along two axes u & v, a parallelogram is constructed.

- The sides of the parallelogram represent the components F_u and F_v .
- Magnitude of the two components can be determined by the *law of sines*.

III. Addition of Several Forces

• If more than 2 forces are to be added, successive applications of parallelogram law can be carried out.

Example 2.1

Given :

The screw eye is subjected to two forces, \mathbf{F}_1 and \mathbf{F}_2 .

Find :

Determine the magnitude and direction of the resultant force.

Solution

• Construct a parallelogram with sides parallel to the given forces.

Unknown: magnitude of \mathbf{F}_R and angle θ

Magnitude of resultant force:

Law of Cosines

$$F_R = \sqrt{(100 \text{ N})^2 + (150 \text{ N})^2 - 2(100 \text{ N})(150 \text{ N})\cos 115^\circ}$$
$$= \sqrt{10000 + 22500 - 30000(-0.4226)}$$
$$= 212.6N = 213N$$

Direction resultant force:

Law of Sines

$$\frac{150N}{\sin\theta} = \frac{212.6N}{\sin 115^{\circ}}$$
$$\sin\theta = \frac{150N}{212.6N} \sin 115^{\circ} \implies \theta = 39.8^{\circ}$$

Direction of \mathbf{F}_R measured from the horizontal is

 $\phi = 39.8^{\circ} + 15^{\circ}$

 $= 54.8^{\circ}$

Example 2.2

Given :

• A horizontal 600-N force is to be resolved along the *u* and *v* axes.

Find :

• Determine the magnitude of the resolved components.

Solution

• Construct a parallelogram with sides parallel to the *u* and *v* axes.

- Consider half portion of the parallelogram.
- Applying law of sines,

$$\frac{F_u}{\sin 120^\circ} = \frac{600 \text{ N}}{\sin 30^\circ}$$
$$\implies F_u = 1039 \text{ N}$$

$$\frac{F_{v}}{\sin 30^{\circ}} = \frac{600 \text{ N}}{\sin 30^{\circ}}$$
$$\implies F_{v} = 600 \text{ N}$$

Example 2.4

Given :

• The resultant force acting on the eyebolt is directed along the positive *x* axis.

Find :

- the minimum magnitude of \mathbf{F}_2
- the angle θ .
- the corresponding resultant force.

Solution

- Unknown: magnitudes of \mathbf{F}_R and \mathbf{F}_2 , angle θ .
- Using the triangle rule, we have

• As shown in the figure, F_2 is minimum if $\theta = 90^{\circ}$

• Therefore,

 $F_2 = (800 \text{ N}) \sin 60^\circ = 693 \text{ N}$

$$F_R = (800 \text{ N}) \cos 60^\circ = 400 \text{ N}$$