2.4 Addition of a System of Coplanar Forces

- A force can be resolved into 2 components along the x and y axes.
- These components are called rectangular components.

- A force \mathbf{F} can be represented by its rectangular components in 2 ways:
* Scalar notation
* Cartesian vector notation

\square Scalar Notation

- A force \mathbf{F} is expressed in scalar form in terms of its rectangular components.

$$
\begin{aligned}
& F_{x}=F \cos \theta \\
& F_{y}=F \sin \theta
\end{aligned}
$$

$$
\begin{aligned}
& \frac{F_{x}}{F}=\frac{a}{c} \quad \Rightarrow \quad F_{x}=F\left(\frac{a}{c}\right) \\
& \frac{F_{y}}{F}=\frac{b}{c} \quad \Rightarrow \quad F_{y}=F\left(\frac{b}{c}\right) \downarrow
\end{aligned}
$$

Cartesian Vector Notation

- A force \mathbf{F} is expressed as a Cartesian vector in terms of unit vectors \mathbf{i} and \mathbf{j}

$$
\mathbf{F}=F_{x} \mathbf{i}+F_{y} \mathbf{j}
$$

Note : Unit vectors \mathbf{i} and \mathbf{j} have dimensionless magnitude of unity (= 1)

\square Coplanar Force Resultants

To determine resultant of several coplanar forces:

- Resolve each force into x and y components
- Add the respective components using scalar algebra
- Resultant force is found by adding the respective components of each force.

Example: Addition of 3 concurrent forces.

- Each force is first represened as a Cartesian vector

$$
\begin{aligned}
& \mathbf{F}_{1}=F_{1 x} \mathbf{i}+F_{1 y} \mathbf{j} \\
& \mathbf{F}_{2}=-F_{2 x} \mathbf{i}+F_{2 y} \mathbf{j} \\
& \mathbf{F}_{3}=F_{3 x} \mathbf{i}-F_{3 y} \mathbf{j}
\end{aligned}
$$

- Find the resultant by adding the respective components
$>$ Vector notation

$$
\begin{aligned}
\mathbf{F}_{R} & =\mathbf{F}_{1}+\mathbf{F}_{2}+\mathbf{F}_{3} \\
& =\left(F_{1 x} \mathbf{i}+F_{1 y} \mathbf{j}\right)+\left(-F_{2 x} \mathbf{i}+F_{2 y} \mathbf{j}\right)+\left(F_{3 x} \mathbf{i}-F_{3 y} \mathbf{j}\right) \\
& =\left(F_{1 x}-F_{2 x}+F_{3 x}\right) \mathbf{i}+\left(F_{1 y}+F_{2 y}-F_{3 y}\right) \mathbf{j} \\
& =F_{R x} \mathbf{i}+F_{R y} \mathbf{j}
\end{aligned}
$$

> Scalar notation

$$
\begin{array}{ll}
(\stackrel{+}{\rightarrow}) & F_{R x}=F_{1 x}-F_{2 x}+F_{3 x} \\
(+\uparrow) & F_{R y}=F_{1 y}+F_{2 y}-F_{3 y}
\end{array}
$$

Note : In both cases, $F_{R x}=\Sigma F_{x}, \quad F_{R y}=\sum F_{y}$

- Magnitude of \mathbf{F}_{R} can be found by Pythagorean Theorem

$$
\begin{aligned}
F_{R} & =\sqrt{F_{R x}^{2}+F_{R y}^{2}} \\
\theta & =\tan ^{-1}\left|\frac{F_{R y}}{F_{R x}}\right|
\end{aligned}
$$

Example 2.5

Given :

Two forces \mathbf{F}_{1} and \mathbf{F}_{2} acting on the boom as shown.

Find :

a) Determine x and y components of \mathbf{F}_{1} and \mathbf{F}_{2}.
b) Express each force as a Cartesian vector.

Solution

a) Force Components

- Using parallelogram law to resolve \mathbf{F}_{1} into x and y components.

$$
\begin{aligned}
(\stackrel{+}{\rightarrow}) \quad F_{1 x} & =-200 \sin 30^{\circ} \mathrm{N} \\
& =-100 \mathrm{~N}
\end{aligned}
$$

$$
\text { or } \quad F_{1 x}=100 \mathrm{~N} \leftarrow
$$

$$
\begin{aligned}
(+\uparrow) \quad F_{1 y} & =200 \cos 30^{\circ} \mathrm{N} \\
& =173 \mathrm{~N}
\end{aligned}
$$

$$
\text { or } F_{1 y}=173 \mathrm{~N} \uparrow
$$

- Using parallelogram law to resolve \mathbf{F}_{2} into x and y components.

$$
\begin{aligned}
& (\stackrel{+}{\rightarrow}) F_{2 x}=260\left(\frac{12}{13}\right)=240 \mathrm{~N} \\
& \text { or } \quad F_{2 x}=240 \mathrm{~N} \rightarrow \\
& (+\uparrow) F_{2 y}=-260\left(\frac{5}{13}\right)=-100 \mathrm{~N} \\
& \text { or } \quad F_{2 y}=100 \mathrm{~N} \quad \downarrow
\end{aligned}
$$

b) Cartesian vector notation for each force

$$
\begin{aligned}
& \mathbf{F}_{1}=F_{1 x} \mathbf{i}+F_{1 y} \mathbf{j} \\
\Rightarrow & \mathbf{F}_{1}=\{-100 \mathbf{i}+173 \mathbf{j}\} \mathrm{N} \\
& \mathbf{F}_{2}=F_{2 x} \mathbf{i}+F_{2 y} \mathbf{j} \\
\Rightarrow & \mathbf{F}_{2}=\{240 \mathbf{i}-100 \mathbf{j}\} \mathrm{N}
\end{aligned}
$$

Example 2.6

Given :

The link is subjected to
two forces \mathbf{F}_{1} and \mathbf{F}_{2}.

Find :

Determine the magnitude and direction of the resultant force.

Solution

I. Method 1: Scalar Notation

$$
\begin{aligned}
\xrightarrow{+} F_{R x}=\Sigma F_{x}: \quad F_{R x} & =600 \cos 30^{\circ} \mathrm{N}-400 \sin 45^{\circ} \mathrm{N} \\
& =236.8 \mathrm{~N}
\end{aligned}
$$

$$
+\uparrow F_{R y}=\Sigma F_{y}: \quad F_{R y}=600 \sin 30^{\circ} \mathrm{N}+400 \cos 45^{\circ} \mathrm{N}
$$

$$
=582.8 \mathrm{~N}
$$

- Resultant Force

$$
\begin{aligned}
F_{R} & =\sqrt{(236.8 \mathrm{~N})^{2}+(582.8 \mathrm{~N})^{2}} \\
& =629 \mathrm{~N}
\end{aligned}
$$

- Direction

$$
\begin{aligned}
\theta & =\tan ^{-1}\left(\frac{582.8 \mathrm{~N}}{236.8 \mathrm{~N}}\right) \\
& =67.9^{\circ}
\end{aligned}
$$

II. Method 2: Vector Notation

- Resolve each force into its x and y components :

$$
\begin{aligned}
& \mathbf{F}_{1}=\left\{600 \cos 30^{\circ} \mathbf{i}+600 \sin 30^{\circ} \mathbf{j}\right\} \mathrm{N} \\
& \mathbf{F}_{2}=\left\{-400 \sin 45^{\circ} \mathbf{i}+400 \cos 45^{\circ} \mathbf{j}\right\} \mathrm{N}
\end{aligned}
$$

- Resultant force :

$$
\begin{aligned}
& \mathbf{F}_{R}=\mathbf{F}_{1}+\mathbf{F}_{2} \\
& \quad=\left\{\left(600 \cos 30^{\circ}-400 \sin 45^{\circ}\right) \mathbf{i}+\left(600 \sin 30^{\circ}+400 \cos 45^{\circ}\right) \mathbf{j}\right\} \mathrm{N} \\
& \quad=\{236.8 \mathbf{i}+582.8 \mathbf{j}\} \mathrm{N}
\end{aligned} \text { The magnitude and direction of } \mathbf{F}_{R} \text { are determined in the same manner } \quad \begin{aligned}
& \text { as before. }
\end{aligned}
$$

Example 2.7

Given :

The end of the boom O is subjected to three concurrent and planar forces.

Find :

Determine the magnitude and direction of the resultant force.

Solution

$$
\begin{aligned}
& \xrightarrow{+} F_{R x}=\Sigma F_{x}: \quad \begin{aligned}
F_{R x} & =-400+250 \sin 45^{\circ} \mathrm{N}-200(4 / 5) \mathrm{N} \\
& =-383.2 \mathrm{~N} \\
& =383.2 \mathrm{~N} \leftarrow \\
+\uparrow F_{R y}=\Sigma F_{y}: \quad F_{R y} & =250 \cos 45^{\circ} \mathrm{N}+200(3 / 5) \mathrm{N} \\
& =296.8 \mathrm{~N} \uparrow
\end{aligned}
\end{aligned}
$$

- Resultant Force

$$
\begin{aligned}
F_{R} & =\sqrt{(-383.2 \mathrm{~N})^{2}+(296.8 \mathrm{~N})^{2}} \\
& =485 \mathrm{~N}
\end{aligned}
$$

- Direction

$$
\begin{aligned}
\theta & =\tan ^{-1}\left(\frac{296.8 \mathrm{~N}}{383.2 \mathrm{~N}}\right) \\
& =37.8^{\circ}
\end{aligned}
$$

2.4 Cartesian Vectors

\square Right-Handed Coordinate System
A rectangular or Cartesian coordinate system is said to be right-handed provided:

* Thumb of right hand points in the direction of the positive z axis when the right-hand fingers are curled about this axis and directed from the positive x toward the positive y axis.

Note : z-axis for the 2D problem would be perpendicular, directed out of the page.

Rectangular Components of a Vector

- A vector A may have one, two or three rectangular components along the x, y and z axes, depending on orientation.
- By two successive application of the parallelogram law

$$
\begin{aligned}
& \mathbf{A}=\mathbf{A}^{\prime}+\mathbf{A}_{z} \\
& \mathbf{A}^{\prime}=\mathbf{A}_{x}+\mathbf{A}_{y}
\end{aligned}
$$

- Combining the equations, A can be expressed as

$$
\mathbf{A}=\mathbf{A}_{x}+\mathbf{A}_{y}+\mathbf{A}_{z}
$$

\square Cartesian Unit Vectors

- In three dimensions, the set of Cartesian unit vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$ is used to designate the direction of the x, y, z axes, respectively.
- The sense of these unit vectors is represented by a plus (+) sign or minus (-) sign.

Cartesian Vector Representation

- A vector \mathbf{A} with 3 components acting in the positive \mathbf{i}, \mathbf{j} and \mathbf{k} directions can be written as

$$
\mathbf{A}=A_{x} \mathbf{i}+A_{y} \mathbf{j}+A_{Z} \mathbf{k}
$$

Note: The magnitude and direction of each components are separated to ease vector algebraic operations

\square Magnitude of a Cartesian Vector

- From the blue right triangle,

$$
A=\sqrt{A^{\prime 2}+A_{z}^{2}}
$$

- From the gray right triangle,

$$
A^{\prime}=\sqrt{A_{x}^{2}+A_{y}^{2}}
$$

- Combining these 2 equations yields

$$
A=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}
$$

Hence, the magnitude of \mathbf{A} is equal to the positive square root of the sum of the squares of its components.

\square Direction of a Cartesian Vector

- Direction of \mathbf{A} is defined as the coordinate direction angles α, β and γ measured between the tail of \mathbf{A} and the positive x, y and z axes.
- $0^{\circ} \leq \alpha, \beta, \gamma \leq 180^{\circ}$
- The direction cosines of \mathbf{A} is

$$
\left.\begin{array}{l}
\cos \alpha=\frac{A_{x}}{A} \tag{1}\\
\cos \beta=\frac{A_{y}}{A} \\
\cos \gamma=\frac{A_{z}}{A}
\end{array}\right]
$$

- The coordinate direction angles α, β and γ can be determined by the inverse cosines

\square Uunit Vector in a Specified Direction

- A vector \mathbf{A} can be expressed in terms of a unit vector \mathbf{u}_{A} having the same direction as \mathbf{A} as follows

$$
\mathbf{A}=A \mathbf{u}_{\mathrm{A}}
$$

where $\quad \mathbf{u}_{A}=\frac{\mathbf{A}}{A}$

- If $\mathbf{A}=A_{x} \mathbf{i}+A_{y} \mathbf{j}+A_{z} \mathbf{k}$, then

$$
\begin{equation*}
\mathbf{u}_{A}=\frac{\mathbf{A}}{A}=\frac{A_{x}}{A} \mathbf{i}+\frac{A_{y}}{A} \mathbf{j}+\frac{A_{z}}{A} \mathbf{k} \tag{2}
\end{equation*}
$$

where

$$
A=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}
$$

- From Eq.(1) \& Eq. (2)

$$
\mathbf{u}_{A}=\cos \alpha \mathbf{i}+\cos \beta \mathbf{j}+\cos \gamma \mathbf{k}
$$

- Therefore, the magnitude of \mathbf{u}_{A} is

$$
\begin{equation*}
u_{A}=\sqrt{\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma} \tag{3}
\end{equation*}
$$

- Since \mathbf{u}_{A} is a unit vector,

$$
\begin{equation*}
u_{\mathrm{A}}=1 \tag{4}
\end{equation*}
$$

- Hence, from Eqs (3) \& (4),

$$
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1
$$

- In summary, if the magnitude and coordinate direction angles of vector \mathbf{A} is known, then \mathbf{A} may be expressed in Cartesian vector form as

$$
\begin{aligned}
\mathbf{A} & =A \mathbf{u}_{\mathrm{A}} \\
& =A(\cos \alpha \mathbf{i}+\cos \beta \mathbf{j}+\cos \gamma \mathbf{k}) \\
& =A \cos \alpha \mathbf{i}+A \cos \beta \mathbf{j}+A \cos \gamma \mathbf{k} \\
& =A_{x} \mathbf{i}+A_{y} \mathbf{j}+A_{Z} \mathbf{k}
\end{aligned}
$$

2.6 Addition and Subtraction of Cartesian Vectors

\square Concurrent Force Systems

Procedures to find the resultant of a concurrent force system:

- Express each force as a Cartesian vector.
- Add the $\mathbf{i}, \mathbf{j}, \mathbf{k}$ components of all the forces in the system.
- Force resultant is the vector sum of all the forces in the system.

$$
\mathbf{F}_{R}=\sum \mathbf{F}=\sum F_{x} \mathbf{i}+\sum F_{y} \mathbf{j}+\sum F_{z} \mathbf{k}
$$

Example:

Find the resultant vector of $\mathbf{A}+\mathbf{B}$

- Write $\mathbf{A}=A_{x} \mathbf{i}+A_{y} \mathbf{j}+A_{Z} \mathbf{k}$

$$
\mathbf{B}=B_{x} \mathbf{i}+B_{y} \mathbf{j}+B_{Z} \mathbf{k}
$$

- The resultant is then given by

$$
\begin{aligned}
\mathbf{R} & =\mathbf{A}+\mathbf{B} \\
& =\left(A_{x}+B_{x}\right) \mathbf{i}+\left(A_{y}+B_{y}\right) \mathbf{j}+\left(A_{z}+B_{z}\right) \mathbf{k}
\end{aligned}
$$

Example 2.8

Given :

A force \mathbf{F} of 200 N has a direction as shown.

Find :

Express the force \mathbf{F} as a Cartesian vector.

Solution

- Since two coordinate direction angles are specified, the third angle α is found by

$$
\begin{aligned}
& \cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1 \\
& \cos ^{2} \alpha+\cos ^{2} 60^{\circ}+\cos ^{2} 45^{\circ}=1 \\
& \cos \alpha=\sqrt{1-\cos ^{2} 60^{\circ}-\cos ^{2} 45^{\circ}}= \pm 0.5
\end{aligned}
$$

- Thus,

$$
\alpha=\cos ^{-1}(0.5)=60^{\circ}
$$

or

$$
\alpha=\cos ^{-1}(-0.5)=120^{\circ}
$$

- From the figure, it is clear that F_{x} must be in the $+x$ direction. Therefore, $\alpha=60^{\circ}$
- Hence,

$$
\begin{aligned}
\mathbf{F} & =F_{x} \mathbf{i}+F_{y} \mathbf{j}+F_{Z} \mathbf{k} \\
& =F \cos \alpha \mathbf{i}+F \cos \beta \mathbf{j}+F \cos \gamma \mathbf{k} \\
& =200 \cos 60^{\circ} \mathbf{i}+200 \cos 60^{\circ} \mathbf{j}+200 \cos 45^{\circ} \mathbf{k} \\
& =\{100.0 \mathbf{i}+100.0 \mathbf{j}+141.4 \mathbf{k}\} \mathbf{N}
\end{aligned}
$$

Example 2.10

Given :

A force \mathbf{F} of 100 kN has a direction as shown.

Find :

Express the force \mathbf{F} as a Cartesian vector.

Solution

- Find the components of \mathbf{F} :

$$
F^{\prime}=F \cos 60^{\circ}=100 \cos 60^{\circ} \mathrm{kN}
$$

$$
F_{x}=F^{\prime} \cos 45^{\circ}
$$

$$
=\left(100 \cos 60^{\circ}\right) \cos 45^{\circ}=35.4 \mathrm{kN}
$$

$F_{y}=F^{\prime} \sin 45^{\circ}$

$$
=\left(100 \cos 60^{\circ}\right) \sin 45^{\circ}=35.4 \mathrm{kN}
$$

$F_{z}=F \sin 60^{\circ}=100 \sin 60^{\circ} \mathrm{kN}=86.6 \mathrm{kN}$

- Thus,

$$
\mathbf{F}=\{35.4 \mathbf{i}--35.4 \mathbf{j}+86.6 \mathbf{k}\} \mathrm{kN}
$$

Comment: The following are not required by the problem.

- The magnitude of \mathbf{F} is

$$
F=\sqrt{(35.4)^{2}+(-35.4)^{2}+(86.6)^{2}}=100 \mathrm{kN}
$$

- Unit vector in the direction of \mathbf{F} :

$$
\begin{aligned}
\mathbf{u}_{F} & =\frac{\mathbf{F}}{F}=\frac{F_{x}}{F} \mathbf{i}+\frac{F_{y}}{F} \mathbf{j}+\frac{F_{z}}{F} \mathbf{k}=\frac{35.4}{100} \mathbf{i}-\frac{35.4}{100} \mathbf{j}+\frac{86.6}{100} \mathbf{k} \\
& =0.354 \mathbf{i}-0.354 \mathbf{j}+0.866 \mathbf{k}
\end{aligned}
$$

- Coordinate direction angles of \mathbf{F} :

$$
\begin{aligned}
& \alpha=\cos ^{-1}(0.354)=69.3^{\circ} \\
& \beta=\cos ^{-1}(-0.354)=111^{\circ} \\
& \gamma=\cos ^{-1}(0.866)=30^{\circ}
\end{aligned}
$$

Example 2.11

Given:

- Two forces act on the hook as shown.
- The resultant force \mathbf{F}_{R} acts along the positive y axis $\&$ has a magnitude of 800 N .

Find:
Deterrmine the magnitude and coordinate direction angles of \mathbf{F}_{2}.

Solution

- Express \mathbf{F}_{1} as a Cartesian vector.

$$
\begin{aligned}
\mathbf{F}_{1} & =F_{l x} \mathbf{i}+F_{l y} \mathbf{j}+F_{l z} \mathbf{k} \\
& =F_{1} \cos \alpha_{l} \mathbf{i}+F_{l} \cos \beta_{l} \mathbf{j}+F_{1} \cos \gamma_{l} \mathbf{k} \\
& =300 \cos 45^{\circ} \mathbf{i}+300 \cos 60^{\circ} \mathbf{j}+300 \cos 120^{\circ} \mathbf{k} \\
& =\{212.1 \mathbf{i}+150 \mathbf{j}-150 \mathbf{k}\} \mathrm{N}
\end{aligned}
$$

- Express \mathbf{F}_{2} as a Cartesian vector:

$$
\mathbf{F}_{2}=F_{2 x} \mathbf{i}+F_{2 y} \mathbf{j}+F_{2 z} \mathbf{k}
$$

- Express the reusltant force \mathbf{F}_{R} as a Cartesian vector:

$$
\mathbf{F}_{R}=(800 \mathrm{~N})(+\mathbf{j})=\{800 \mathbf{j}\} \mathrm{N}
$$

- We require

$$
\begin{aligned}
& \mathbf{F}_{R}=\mathbf{F}_{1}+\mathbf{F}_{2} \\
& 800 \mathbf{j}=(212.1 \mathbf{i}+150 \mathbf{j}-150 \mathbf{k})+\left(F_{2 x} \mathbf{i}+F_{2 y} \mathbf{j}+F_{2 z} \mathbf{k}\right) \\
& 800 \mathbf{j}=\left(212.1+F_{2 x}\right) \mathbf{i}+\left(150+F_{2 y}\right) \mathbf{j}+\left(-150+F_{2 z}\right) \mathbf{k}
\end{aligned}
$$

- Equating the $\mathbf{i}, \mathbf{j}, \mathbf{k}$ components, we have
i :

$$
\begin{aligned}
& 0=212.1+F_{2 x} \\
\Rightarrow & F_{2 x}=-212.1 \mathrm{~N}
\end{aligned}
$$

j:

$$
\begin{aligned}
800 & =150+F_{2 y} \\
\Rightarrow & F_{2 y}
\end{aligned}=650 \mathrm{~N} .
$$

k:

$$
\begin{aligned}
& 0=-150+F_{2 z} \\
\Rightarrow & F_{2 z}=150 \mathrm{~N}
\end{aligned}
$$

- The magnitude of \mathbf{F}_{2} is

$$
F_{2}=\sqrt{(-212.1 \mathrm{~N})^{2}+(650 \mathrm{~N})^{2}+(150 \mathrm{~N})^{2}}=700 \mathrm{~N}
$$

- Coordinate direction angles of \mathbf{F}_{2}

$$
\begin{gathered}
F_{2 x}=F_{2} \cos \alpha \Rightarrow \cos \alpha=\frac{F_{2 x}}{F_{2}}=\frac{-212.1}{700} \\
\therefore \alpha=108^{\circ} \\
F_{2 y}=F_{2} \cos \beta \Rightarrow \cos \beta=\frac{F_{2 y}}{F_{2}}=\frac{650}{700} \\
\therefore \beta=21.8^{\circ} \\
F_{2 z}=F_{2} \cos \gamma \Rightarrow \\
\cos \gamma=\frac{F_{2 z}}{F_{2}}=\frac{150}{700} \\
\therefore \gamma=77.6^{\circ}
\end{gathered}
$$

Problem 2-70

Given :

- Two forces act on the bracket as shown.
- The resultant force is

$$
\mathbf{F}_{R}=\{800 \mathbf{j}\} \mathrm{N} .
$$

Find :

The magnitude \& coordinate direction angles of \mathbf{F}.

Solution

- Express \mathbf{F}_{1} as a Cartesian vector.

$$
\begin{aligned}
& F_{l x}=\left(750 \cos 45^{\circ}\right) \cos 30^{\circ}=459.2798 \mathrm{~N} \\
& F_{l y}=\left(750 \cos 45^{\circ}\right) \sin 30^{\circ}=265.1650 \mathrm{~N} \\
& F_{l z}=750 \sin 45^{\circ}=530.3301 \mathrm{~N}
\end{aligned}
$$

Thus,

$$
\mathbf{F}_{1}=\{459.2798 \mathbf{i}+265.1650 \mathbf{j}-530.3301 \mathbf{k}\} \mathrm{N}
$$

- Express \mathbf{F} as a Cartesian vector:

$$
\begin{aligned}
\mathbf{F} & =F_{x} \mathbf{i}+F_{y} \mathbf{j}+F_{z} \mathbf{k} \\
& =F \cos \alpha \mathbf{i}+F \cos \beta \mathbf{j}+F \cos \gamma \mathbf{k}
\end{aligned}
$$

- Resultant force

$$
\begin{aligned}
& \mathbf{F}_{R}=\mathbf{F}_{1}+\mathbf{F} \\
& 800 \mathbf{j}=(459.2798+F \cos \alpha) \mathbf{i} \\
&+(265.1650+F \cos \beta) \mathbf{j} \\
&+(-530.3301+F \cos \gamma) \mathbf{k}
\end{aligned}
$$

- Equating the $\mathbf{i}, \mathbf{j}, \mathbf{k}$ components, we have
i :

$$
\begin{align*}
& 0=459.2798+F \cos \alpha \\
\Longrightarrow & \cos \alpha=-459.2798 / F \tag{1}
\end{align*}
$$

$\mathbf{j}: \quad 800=265.1650+F \cos \beta$

$$
\Longrightarrow \cos \beta=534.8350 / F
$$

k:

$$
\begin{align*}
& 0=-530.3301+F \cos \gamma \\
\Longrightarrow & \cos \gamma=530.3301 / F \tag{3}
\end{align*}
$$

- Squaring Eqs.(1), (2) \& (3) \& then adding the results yields

$$
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=\frac{(-459.2798)^{2}+(534.8350)^{2}+(530.3301)^{2}}{F^{2}}
$$

$$
1=\frac{778236.4269}{F^{2}}
$$

$$
\Longrightarrow F^{2}=778236.4269
$$

$$
\begin{equation*}
\Longrightarrow F=882.1771 \mathrm{~N}=882.18 \mathrm{~N} \tag{4}
\end{equation*}
$$

- From Eqs.(1) \& (4),

$$
\cos \alpha=\frac{-459.2798}{882.1771} \quad \Rightarrow \quad \alpha=121.37^{\circ}
$$

- From Eqs.(2) \& (4),

$$
\cos \beta=\frac{534.8350}{882.1771} \quad \Rightarrow \quad \beta=52.68^{\circ}
$$

- From Eqs.(3) \& (4),

$$
\cos \gamma=\frac{530.3301}{882.1771} \quad \Rightarrow \quad \gamma=53.05^{\circ}
$$

