2.7 Position Vectors

a x, y, z Coordinates

- We will use a right-handed coordinate system in which the positive z axis points upwards, and the x, y axes lie in the horizontal plane.
- Points in space are located relative to the origin of coordinates, O, by successive measurements along the
 x, y, z axes.
E.g. : Coordinates of point A is ($4 \mathrm{~m}, ~ 2 \mathrm{~m},-6 \mathrm{~m}$)

Coordinates of point B is $(6 \mathrm{~m},-1 \mathrm{~m}, 4 \mathrm{~m})$

\square Position Vector

A position vector \mathbf{r} is defined as a fixed vector which locates a point in space relative to another point.
(a) Position vector of a point relative to the origin of coordinates, \boldsymbol{O}.

- The position vector of point $P(x, y, z)$ relative to the origin of coordinates, O, is

$$
\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}
$$

- The position vector \mathbf{r} with respect to the origin of coordinates, O, is formed by the head-to-tail vector addition of its 3 components

(b) Position vector of a point relative to another point.

- Let $\mathbf{r}_{A}=$ position vector of point A relative to the origin.
$\mathbf{r}_{B}=$ position vector of point B relative to the origin.
$\mathbf{r}\left(\right.$ or $\left.\mathbf{r}_{A B}\right)=$ position vector of point B relative to point A
- From the figure,

$$
\mathbf{r}_{A}+\mathbf{r}=\mathbf{r}_{B}
$$

- Therefore,

$$
\begin{aligned}
\mathbf{r} & =\mathbf{r}_{B}-\mathbf{r}_{A} \\
& =\left(x_{B} \mathbf{i}+y_{B} \mathbf{j}+z_{B} \mathbf{k}\right)-\left(x_{A} \mathbf{i}+y_{A} \mathbf{j}+z_{A} \mathbf{k}\right)
\end{aligned}
$$

$$
\mathbf{r}=\left(x_{B}-x_{A}\right) \mathbf{i}+\left(y_{B}-y_{A}\right) \mathbf{j}+\left(z_{B}-z_{A}\right) \mathbf{k}
$$

(b) Application

Length and direction of cable $A B$ can be found as follows.

- Determine the coordinates of A and B in a Cartesian coordinate system.

- Determine the position vector \mathbf{r} of point B relative to point A.
> Magnitude of \mathbf{r} represents the length of the cable.
- Determine the unit vector $\mathbf{u}=\mathbf{r} / r$
$>$ The components of the unit vector \mathbf{u} give the coordinate direction angles α, β and γ.

Example 2.12

Given :

An elastic rubber band is attached to points A and B as shown.

Find :
Determine its length and its direction measured from A toward B.

Solution

- Coordinates: $\quad A(1 \mathrm{~m}, 0,-3 \mathrm{~m})$

$$
B(-2 \mathrm{~m}, 2 \mathrm{~m}, 3 \mathrm{~m})
$$

- Position vector:

$$
\begin{aligned}
\mathbf{r} & =\left(x_{B}-x_{A}\right) \mathbf{i}+\left(y_{B}-y_{A}\right) \mathbf{j}+\left(z_{B}-z_{A}\right) \mathbf{k} \\
\mathbf{r} & =\{[-2-1] \mathbf{i}+[2-0] \mathbf{j}+[3-(-3)] \mathbf{k}\} \mathrm{m} \\
& =\{-3 \mathbf{i}+2 \mathbf{j}+6 \mathbf{k}\} \mathrm{m}
\end{aligned}
$$

- Length of the rubber band:

$$
r=\sqrt{(-3)^{2}+(2)^{2}+(6)^{2}}=7 \mathrm{~m}
$$

- Unit vector in the direction of \mathbf{r}

$$
\mathbf{u}=\frac{\mathbf{r}}{r}=-\frac{3}{7} \mathbf{i}+\frac{2}{7} \mathbf{j}+\frac{6}{7} \mathbf{k}
$$

- The components of the unit vector \mathbf{u} give the coordinate direction angles.

$$
\begin{aligned}
& \alpha=\cos ^{-1}\left(-\frac{3}{7}\right)=115^{\circ} \\
& \beta=\cos ^{-1}\left(\frac{2}{7}\right)=73.4^{\circ} \\
& \gamma=\cos ^{-1}\left(\frac{6}{7}\right)=31.0^{\circ}
\end{aligned}
$$

