2.8 Force Vector Directed along a Line

- In 3D problems, direction of a force \mathbf{F} is specified by 2 points, through which its line of action lies.
- F can be formulated as a Cartesian vector

$$
\mathbf{F}=F \mathbf{u}
$$

$$
\mathbf{F}=F\left(\frac{\mathbf{r}}{r}\right)
$$

$$
\mathbf{F}=F\left(\frac{\left(x_{B}-x_{A}\right) \mathbf{i}+\left(y_{B}-y_{A}\right) \mathbf{j}+\left(z_{B}-z_{A}\right) \mathbf{k}}{\sqrt{\left(x_{B}-x_{A}\right)^{2}+\left(y_{B}-y_{A}\right)^{2}+\left(z_{B}-z_{A}\right)^{2}}}\right)
$$

Application

Force F acting along the chain can be presented as a Cartesian vector as follows.

- Establish x, y, z axes

- Form a position vector \mathbf{r} along length of chain
- Determine the unit vector $\mathbf{u}=\mathbf{r} / r$ that defines the direction of both the chain and the force
- Finally, write

$$
\mathbf{F}=F \mathbf{u}
$$

Example 2.13

Given :

The man pulls on the cord with a force of 350 N .

Find :

Represent this force acting on the support A as a Cartesian vector and determine its direction.

Solution

- Coordinates : $A(0 \mathrm{~m}, 0 \mathrm{~m}, 7.5 \mathrm{~m})$

$$
B(3 \mathrm{~m},-2 \mathrm{~m}, 1.5 \mathrm{~m})
$$

- Position vector from A to B :

$$
\begin{aligned}
\mathbf{r} & =\left(x_{B}-x_{A}\right) \mathbf{i}+\left(y_{B}-y_{A}\right) \mathbf{j}+\left(z_{B}-z_{A}\right) \mathbf{k} \\
& =(3 \mathrm{~m}-0 \mathrm{~m}) \mathbf{i}+(-2 \mathrm{~m}-0 \mathrm{~m}) \mathbf{j}+(1.5 \mathrm{~m}-7.5 \mathrm{~m}) \mathbf{k} \\
& =\{3 \mathbf{i}-2 \mathbf{j}-6 \mathbf{k}\} \mathrm{m}
\end{aligned}
$$

- Length of cord $A B$:

$$
r=\sqrt{(3)^{2}+(-2)^{2}+(-6)^{2}}=7 \mathrm{~m}
$$

- Unit vector in the direction of \mathbf{r}.

$$
\mathbf{u}=\frac{\mathbf{r}}{r}=\frac{3 \mathbf{i}-2 \mathbf{j}-6 \mathbf{k}}{7}=\frac{3}{7} \mathbf{i}-\frac{2}{7} \mathbf{j}-\frac{6}{7} \mathbf{k}
$$

- Force \mathbf{F} has a magnitude of $350 \mathrm{~N} \&$ a direction specified by \mathbf{u}.

$$
\begin{aligned}
\mathbf{F} & =F \mathbf{u} \\
& =(350 \mathrm{~N})\left(\frac{3}{7} \mathbf{i}-\frac{2}{7} \mathbf{j}-\frac{6}{7} \mathbf{k}\right) \\
& =\{150 \mathbf{i}-100 \mathbf{j}-300 \mathbf{k}\} \mathrm{N}
\end{aligned}
$$

- The components of the unit vector \mathbf{u} give the coordinate direction angles.

$$
\begin{aligned}
& \alpha=\cos ^{-1}\left(\frac{3}{7}\right)=64.6^{\circ} \\
& \beta=\cos ^{-1}\left(\frac{-2}{7}\right)=107^{\circ} \\
& \gamma=\cos ^{-1}\left(-\frac{6}{7}\right)=149^{\circ}
\end{aligned}
$$

Example 2.14

Given :

The force $F_{B}=750 \mathrm{~N}$ acts on the hook as shown.

Find :

Express F_{B} as a Cartesian vector.

Solution

- Coordinates :

$$
A(2 \mathrm{~m}, 0,2 \mathrm{~m})
$$

$B\left(-\left(\frac{4}{5}\right)(5) \sin 30^{\circ} \mathrm{m},\left(\frac{4}{5}\right)(5) \cos 30^{\circ} \mathrm{m},\left(\frac{3}{5}\right)(5) \mathrm{m}\right)$
$\Rightarrow B(-2 \mathrm{~m}, 3.464 \mathrm{~m}, 3 \mathrm{~m})$

- Position vector:

$$
\begin{aligned}
\mathbf{r}_{B} & =\left(x_{B}-x_{A}\right) \mathbf{i}+\left(y_{B}-y_{A}\right) \mathbf{j}+\left(z_{B}-z_{A}\right) \mathbf{k} \\
& =(-2 \mathrm{~m}-2 \mathrm{~m}) \mathbf{i}+(3.464 \mathrm{~m}-0) \mathbf{j}+(3 \mathrm{~m}-2 \mathrm{~m}) \mathbf{k} \\
& =\{-4 \mathbf{i}+3.464 \mathbf{j}+1 \mathbf{k}\} \mathrm{m}
\end{aligned}
$$

- Magnitude of \mathbf{r}_{B}

$$
r_{B}=\sqrt{(-4)^{2}+(3.464)^{2}+(1)^{2}}=5.385 \mathrm{~m}
$$

- Unit vector in the direction of \mathbf{F}_{B}

$$
\begin{aligned}
\mathbf{u}_{B} & =\frac{\mathbf{r}_{B}}{r_{B}}=\frac{-4 \mathbf{i}+3.464 \mathbf{j}+1 \mathbf{k}}{5.385} \\
& =-0.7428 \mathbf{i}+0.6433 \mathbf{j}+0.1857 \mathbf{k}
\end{aligned}
$$

- Force \mathbf{F}_{B} expressed as a Cartesian vector becomes

$$
\begin{aligned}
\mathbf{F}_{B} & =F_{B} \mathbf{u}_{B} \\
& =(750 \mathrm{~N})(-0.7428 \mathbf{i}+0.6433 \mathbf{j}+0.1857 \mathbf{k}) \\
& =\{-557 \mathbf{i}+482 \mathbf{j}+139 \mathbf{k}\} \mathrm{N}
\end{aligned}
$$

Example 2.15

Given :

- The roof is supported by cables as shown.
- The cables exert forces $F_{A B}=100 \mathrm{~N}$ and $F_{A C}=120 \mathrm{~N}$ on the wall hook at A.

Find :

- Determine the resultant force
 acting at A.
- Express the resultant force as a Cartesian vector

Solution

- Coordinates: $\quad A(0,0,4 \mathrm{~m})$
$B(4 \mathrm{~m}, 0,0)$
$C(4 \mathrm{~m}, 2 \mathrm{~m}, 0)$
- Express $\mathbf{F}_{A B}$ as a Cartesian vector

$$
\begin{aligned}
\mathbf{r}_{A B} & =\left(x_{B}-x_{A}\right) \mathbf{i}+\left(y_{B}-y_{A}\right) \mathbf{j}+\left(z_{B}-z_{A}\right) \mathbf{k} \\
& =(4 \mathrm{~m}-0) \mathbf{i}+(0-0) \mathbf{j}+(0-4 \mathrm{~m}) \mathbf{k} \\
& =\{4 \mathbf{i}-4 \mathbf{k}\} \mathrm{m} \\
r_{A B} & =\sqrt{(4)^{2}+(-4)^{2}}=5.66 \mathrm{~m} \\
\mathbf{F}_{A B} & =F_{A B} \mathbf{u}_{A B}=F_{A B}\left(\frac{\mathbf{r}_{A B}}{r_{A B}}\right) \\
& =(100 \mathrm{~N})\left(\frac{4 \mathbf{i}-4 \mathbf{k}}{5.66}\right)=\{70.7 \mathbf{i}-70.7 \mathbf{k}\} \mathrm{N}
\end{aligned}
$$

- Express $\mathbf{F}_{A C}$ as a Cartesian vector

$$
\begin{aligned}
\mathbf{r}_{A C} & =\left(x_{C}-x_{A}\right) \mathbf{i}+\left(y_{C}-y_{A}\right) \mathbf{j}+\left(z_{C}-z_{A}\right) \mathbf{k} \\
& =(4 \mathrm{~m}-0) \mathbf{i}+(2 \mathrm{~m}-0) \mathbf{j}+(0-4 \mathrm{~m}) \mathbf{k} \\
& =\{4 \mathbf{i}+2 \mathbf{j}-4 \mathbf{k}\} \mathrm{m} \\
r_{A C} & =\sqrt{(4)^{2}+(2)^{2}+(-4)^{2}}=6 \mathrm{~m} \\
\mathbf{F}_{A C} & =F_{A C} \mathbf{u}_{A C}=F_{A C}\left(\frac{\mathbf{r}_{A C}}{r_{A C}}\right) \\
& =(120 \mathrm{~N})\left(\frac{4 \mathbf{i}+2 \mathbf{j}-4 \mathbf{k}}{6}\right) \\
& =\{80 \mathbf{i}+40 \mathbf{j}-80 \mathbf{k}\} \mathrm{N}
\end{aligned}
$$

- Resultant force

$$
\begin{aligned}
\mathbf{F}_{R} & =\mathbf{F}_{A B}+\mathbf{F}_{A C} \\
& =\{70.7 \mathbf{i}-70.7 \mathbf{k}\} \mathrm{N}+\{80 \mathbf{i}+40 \mathbf{j}-80 \mathbf{k}\} \mathrm{N} \\
& =\{1501 \mathbf{i}+40 \mathbf{j}-151 \mathbf{k}\} \mathrm{N}
\end{aligned}
$$

- The magnitude of \mathbf{F}_{R}

$$
\begin{aligned}
F_{R} & =\sqrt{(151)^{2}+(40)^{2}+(-151)^{2}} \\
& =217 \mathrm{~N}
\end{aligned}
$$

2.9 Dot Product

- The dot product of vectors \mathbf{A} and \mathbf{B} is written as $\mathbf{A} \cdot \mathbf{B}(\operatorname{read} \mathbf{A}$ dot B).
- It is defined as the products of the magnitudes of \mathbf{A} and \mathbf{B} and the angle between their tails.
$\mathbf{A}^{\prime} \mathbf{B}=A B \cos \theta$
where $0^{\circ} \leq \theta \leq 180^{\circ}$.

- It is often referred to as the scalar product of vectors as the result is a scalar.
\square Laws of Operation

1. Commutative law

$$
\mathbf{A} \cdot \mathbf{B}=\mathbf{B} \cdot \mathbf{A}
$$

2. Multiplication by a scalar

$$
a(\mathbf{A} \cdot \mathbf{B})=(a \mathbf{A}) \cdot \mathbf{B}=\mathbf{A} \cdot(a \mathbf{B})
$$

3. Distribution law

$$
\mathbf{A} \cdot(\mathbf{B}+\mathbf{D})=(\mathbf{A} \cdot \mathbf{B})+(\mathbf{A} \cdot \mathbf{D})
$$

Cartesian Vector Formulation

- Dot product of Cartesian unit vectors

$$
\begin{aligned}
& \mathbf{i} \cdot \mathbf{i}=(1)(1) \cos 0^{\circ}=1 \\
& \mathbf{i} \cdot \mathbf{j}=(1)(1) \cos 90^{\circ}=0 \\
& \mathbf{i} \cdot \mathbf{k}=(1)(1) \cos 90^{\circ}=0
\end{aligned}
$$

- In summary,

$$
\begin{array}{llr}
\mathbf{i} \cdot \mathbf{i}=1 & \mathbf{j} \cdot \mathbf{j}=1 & \mathbf{k} \cdot \mathbf{k}=1 \\
\mathbf{i} \cdot \mathbf{j}=0 & \mathbf{i} \cdot \mathbf{k}=0 & \mathbf{j} \cdot \mathbf{k}=0
\end{array}
$$

- If $\mathbf{A}=A_{x} \mathbf{i}+A_{y} \mathbf{j}+A_{z} \mathbf{k}$ and $\mathbf{B}=B_{x} \mathbf{i}+B_{y} \mathbf{j}+B_{z} \mathbf{k}$, then

$$
\begin{aligned}
\mathbf{A} \cdot \mathbf{B} & =\left(A_{x} \mathbf{i}+A_{y} \mathbf{j}+A_{z} \mathbf{k}\right) \cdot\left(B_{x} \mathbf{i}+B_{y} \mathbf{j}+B_{z} \mathbf{k}\right) \\
& =A_{x} B_{x}(\mathbf{i} \cdot \mathbf{i})+A_{x} B_{y}(\mathbf{i} \cdot \mathbf{j})+A_{x} B_{z}(\mathbf{i} \cdot \mathbf{k}) \\
& +A_{y} B_{x}(\mathbf{j} \cdot \mathbf{i})+A_{y} B_{y}(\mathbf{j} \cdot \mathbf{j})+A_{y} B_{z}(\mathbf{j} \cdot \mathbf{k}) \\
& +A_{z} B_{x}(\mathbf{k} \cdot \mathbf{i})+A_{z} B_{y}(\mathbf{k} \cdot \mathbf{j})+A_{z} B_{z}(\mathbf{k} \cdot \mathbf{k})
\end{aligned}
$$

- Thus, to determine the dot product of two Cartesian vectors, multiply their corresponding x, y, z components and sum these products algebraically.

$$
\mathbf{A} \cdot \mathbf{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
$$

Note: The result will be either a positive or negative scalar.

\square Applications

(1) To determine the angle formed between two vectors or intersecting lines

- The angle θ between the tails of vectors \mathbf{A} and \mathbf{B} is given by

$$
\theta=\cos ^{-1}\left(\frac{\mathbf{A} \cdot \mathbf{B}}{A B}\right) \quad 0^{\circ} \leq \theta \leq 180^{\circ}
$$

- If $\mathbf{A} \cdot \mathbf{B}=0, \cos ^{-1}(0)=90^{\circ}$.

$\Longrightarrow \mathbf{A}$ is perpendicular to \mathbf{B}.
(2) To determine the components of a vector parallel and perpendicular to a line.

(a) Components parallel to a line
- The component of A parallel to or collinear with the line $a a$

$$
\begin{aligned}
A_{a} & =A \cos \theta \\
A_{a} & =\mathbf{A} \cdot \mathbf{u}_{a}
\end{aligned}
$$

or

- In vector form

$$
\mathbf{A}_{a}=A_{a} \mathbf{u}_{a}
$$

- A_{a} is also known as the scalar projection of \mathbf{A} onto the line $a a$.

(b) Components perpendicular to a line

- The component of \mathbf{A} that is perpendicular to line $a a$ is given by

$$
\mathbf{A}_{\perp}=\mathbf{A}-\mathbf{A}_{a}
$$

- The magnitude of \mathbf{A}_{\perp} can be determined from one of the following two ways.
(i) $\quad A_{\perp}=\sqrt{A^{2}-A_{a}^{2}}$
(ii) $A_{\perp}=A \sin \theta$

where

$$
\theta=\cos ^{-1}\left(\frac{\mathbf{A} \cdot \mathbf{u}_{A}}{A}\right)
$$

Example 2.16

Given :

The force $F=100 \mathrm{~N}$ acts on a ring as shown.

Find :

Determine the magnitudes of the projection of the force \mathbf{F} onto the u and v axes.

Solution

- Projection of \mathbf{F} onto the u axis

$$
\begin{aligned}
\left(F_{u}\right)_{\text {proj }} & =F \cos 45^{\circ} \\
& =(100 \mathrm{~N}) \cos 45^{\circ} \\
& =70.7 \mathrm{~N}
\end{aligned}
$$

- Projection of \mathbf{F} onto the u axis

$$
\begin{aligned}
\left(F_{v}\right)_{\text {proj }} & =F \cos 15^{\circ} \\
& =(100 \mathrm{~N}) \cos 15^{\circ} \\
& =96.6 \mathrm{~N}
\end{aligned}
$$

Note: These projections are not equal to the magnitudes of the components of force F along the $u \& v$ axes found from the parallelogram law. They will only be equal if the $u \& v$ axes are perpendicular to one another.

Example 2.17

Given :

The frame is subjected to a horizontal force $\mathbf{F}=\{300 \mathrm{j}\} \mathrm{N}$.

Find :

Determine the magnitude of the components of \mathbf{F} parallel and perpendicular to member $A B$.

Solution

- Coordinates : $\quad B(2 \mathrm{~m}, 6 \mathrm{~m}, 3 \mathrm{~m})$
- Unit vector in the direction of $A B$.

$$
\begin{aligned}
\mathbf{u}_{B} & =\frac{\mathbf{r}_{B}}{r_{B}}=\frac{2 \mathbf{i}+6 \mathbf{j}+3 \mathbf{k}}{\sqrt{(2)^{2}+(6)^{2}+(3)^{2}}} \\
& =0.286 \mathbf{i}+0.857 \mathbf{j}+0.429 \mathbf{k}
\end{aligned}
$$

- Component of \mathbf{F} parallel to $A B$

$$
\begin{aligned}
F_{A B} & =\mathbf{F} \cdot \mathbf{u}_{B} \\
& =(300 \mathbf{j}) \cdot(0.286 \mathbf{i}+0.857 \mathbf{j}+0.429 \mathbf{k}) \\
& =(0)(0.286)+(300)(0.857)+(0)(0.429) \\
& =257.1 \mathrm{~N}
\end{aligned}
$$

- Component of \mathbf{F} perpendicular to $A B$

$$
\begin{aligned}
F_{\perp} & =\sqrt{F^{2}-F_{A B}^{2}} \\
& =\sqrt{(300 \mathrm{~N})^{2}-(257.1 \mathrm{~N})^{2}} \\
& =155 \mathrm{~N}
\end{aligned}
$$

Note : A second approach to find the component of \mathbf{F} perpendicular to $A B$

- Express $\mathbf{F}_{A B}$ as a Cartesian vector

$$
\begin{aligned}
\mathbf{F}_{A B} & =F_{A B} \mathbf{u}_{B} \\
& =(257.1 \mathrm{~N})(0.286 \mathbf{i}+0.857 \mathbf{j}+0.429 \mathbf{k}) \\
& =\{73.5 \mathbf{i}+220 \mathbf{j}+110 \mathbf{k}\} \mathrm{N}
\end{aligned}
$$

- Component of \mathbf{F} perpendicular to $A B$

$$
\begin{aligned}
\mathbf{F}_{\perp} & =\mathbf{F}-\mathbf{F}_{A B} \\
& =300 \mathbf{j}-(73.5 \mathbf{i}+220 \mathbf{j}+110 \mathbf{k}) \mathrm{N} \\
& =\{-73.5 \mathbf{i}+80 \mathbf{j}-110 \mathbf{k}\} \mathrm{N}
\end{aligned}
$$

- The magnitude of \mathbf{F}_{\perp}

$$
F_{\perp}=\sqrt{(-73.5)^{2}+(80)^{2}+(-110)^{2}}=155 \mathrm{~N}
$$

Example 2.18

Given :

The pipe is subjected to the force of $F=800 \mathrm{~N}$.

(a)

Find :

- Determine the angle θ between \mathbf{F} and the pipe segment $B A$.
- The projection of \mathbf{F} along the pipe segment $B A$.

Solution

- Find θ
- Coordinates: $\quad A(0,1 \mathrm{~m}, 0)$

$$
\begin{aligned}
& B(2 \mathrm{~m}, 3 \mathrm{~m},-1 \mathrm{~m}) \\
& C(2 \mathrm{~m}, 0,0)
\end{aligned}
$$

(a)

- Position vector of A relative to B

$$
\begin{aligned}
\mathbf{r}_{B A} & =\left(x_{A}-x_{B}\right) \mathbf{i}+\left(y_{A}-y_{B}\right) \mathbf{j}+\left(z_{A}-z_{B}\right) \mathbf{k} \\
& =(0-2) \mathbf{i}+(1-3) \mathbf{j}+(0-[-1]) \mathbf{k} \\
& =\{-2 \mathbf{i}-2 \mathbf{j}+1 \mathbf{k}\} \mathrm{m} \\
r_{B A} & =\sqrt{(-2)^{2}+(-2)^{2}+(1)^{2}}=3 \mathrm{~m}
\end{aligned}
$$

- Position vector of C relative to B

$$
\mathbf{r}_{B C}=\left(x_{C}-x_{B}\right) \mathbf{i}+\left(y_{C}-y_{B}\right) \mathbf{j}+\left(z_{C}-z_{B}\right) \mathbf{k}
$$

$$
=(2-2) \mathbf{i}+(0-3) \mathbf{j}+(0-[-1]) \mathbf{k}
$$

$$
=\{-3 \mathbf{j}+1 \mathbf{k}\} \mathrm{m}
$$

$$
r_{B A}=\sqrt{(-3)^{2}+(1)^{2}}=\sqrt{10} \mathrm{~m}
$$

- Angle between \mathbf{F} (or $B C$) and $B A$

$$
\begin{aligned}
\cos \theta & =\frac{\mathbf{r}_{B A} \cdot \mathbf{r}_{B C}}{r_{B A} r_{B C}}=\frac{(-2)(0)+(-2)(-3)+(1)(1)}{(3) \sqrt{10}}=0.7379 \\
\therefore & \theta=42.5^{\circ}
\end{aligned}
$$

- Find the projection of \mathbf{F} along $B A$

$$
\begin{aligned}
F_{B A} & =F \cos \theta \\
& =(800 \mathrm{~N}) \cos 42.5^{\circ} \\
& =590 \mathrm{~N}
\end{aligned}
$$

Note: A second approach to find the projection of F along BA

- Express force \mathbf{F} as a Cartesian vector

$$
\begin{aligned}
\mathbf{u}_{B C} & =\frac{\mathbf{r}_{B C}}{r_{B C}}=\frac{-3 \mathbf{j}+1 \mathbf{k}}{\sqrt{10}} \\
\mathbf{F} & =F \mathbf{u}_{B C} \\
& =(800 \mathrm{~N})\left(\frac{-3 \mathbf{j}+1 \mathbf{k}}{\sqrt{10}}\right) \\
& =(-758.9 \mathbf{j}+253.0 \mathbf{k}) \mathrm{N}
\end{aligned}
$$

(a)

- Unit vector along $B A$.

$$
\mathbf{u}_{B A}=\frac{\mathbf{r}_{B A}}{r_{B A}}=\frac{-2 \mathbf{i}-2 \mathbf{j}+1 \mathbf{k}}{3}=-\frac{2}{3} \mathbf{i}-\frac{2}{3} \mathbf{j}+\frac{1}{3} \mathbf{k}
$$

- The projection of \mathbf{F} along $B A$ is given by

$$
\begin{aligned}
F_{B A} & =\mathbf{F} \cdot \mathbf{u}_{B A} \\
& =(-758.9 \mathbf{j}+253.0 \mathbf{k}) \cdot\left(-\frac{2}{3} \mathbf{i}-\frac{2}{3} \mathbf{j}+\frac{1}{3} \mathbf{k}\right) \\
& =(0)\left(-\frac{2}{3}\right)+(-758.9)\left(-\frac{2}{3}\right)+(253.0)\left(\frac{1}{3}\right) \\
& =590 \mathrm{~N}
\end{aligned}
$$

