3.3 Coplanar Systems

- Consider a particle which is subjected to a system of coplanar forces in the $x-y$ plane as shown in the figure.
- For equilibrium,

$$
\sum \mathbf{F}=0
$$

- Resolve each force into its \mathbf{i} and \mathbf{j} components, we have

$$
\sum F_{x} \mathbf{i}+\sum F_{y} \mathbf{j}=0
$$

- Hence,

$$
\begin{aligned}
& \sum F_{x}=0 \\
& \sum F_{y}=0
\end{aligned}
$$

\square Procedure for Analysis

1. Free-Body Diagram

- Establish the x, y axes
- Label all the unknown and known forces
- The sense of the unknown force can be assumed

2. Equations of Equilibrium

- Apply the equations of equilibrium

$$
\sum F_{x}=0, \quad \sum F_{y}=0
$$

- If more than 2 unknowns exist and the problem involves a spring, apply $F=k \mathrm{~s}$ to relate the spring force to the deformation of the spring.

Example 3.3

Given :

- The $200-\mathrm{kg}$ crate is suspended using the ropes $A B \& A C$.
- Each ropes can withstand a maximum force of 10 kN before it breaks.
- $A B$ always remains horizontal.

Find :

Determine the smallest angle θ to which the crate can be suspended before one of the ropes breaks.

Solution

FBD of ring A

Three forces acting at A :
(1) Force by cable $A C, \mathbf{F}_{C}$
(2) Force by cable $A B, \mathbf{F}_{B}$
(3) Weight of the crate, \mathbf{F}_{D}

$$
F_{D}=(200)(9.81)=1962 \mathrm{~N} .
$$

Equation of Equilibrium

$$
\begin{align*}
& +\sum F_{x}=0: \tag{1}\\
& +\uparrow \sum F_{y}=0: \tag{2}
\end{align*} \quad-F_{C} \cos \theta+F_{B}=0, ~ \sin \theta-1962 \mathrm{~N}=0
$$

From Eq. (1),

$$
\begin{equation*}
F_{C}=\frac{F_{B}}{\cos \theta} \tag{3}
\end{equation*}
$$

- Since $\cos \theta \leq 1$, Eq. (3) implies that

$$
F_{C}>F_{B}
$$

$\Rightarrow F_{C}$ will reach the maximum force of 10 kN before F_{B}.

- Substituting $F_{C}=10 \mathrm{kN}$ into Eq. (2), we obtain

$$
\begin{gathered}
\left(10 \times 10^{3} \mathrm{~N}\right) \sin \theta-1962 \mathrm{~N}=0 \\
\theta=\sin ^{-1}(0.1962) \\
\theta=11.31^{\circ}
\end{gathered}
$$

- Check:

When F_{C} reaches maximum value, the force in rope $A B$ is

$$
\begin{aligned}
F_{B} & =F_{C} \cos \theta \\
& =(10 \mathrm{kN}) \cos (11.31) \mathrm{N}=9.81 \mathrm{kN}
\end{aligned}
$$

Example 3.4

Given :

- The $8-\mathrm{kg}$ lamp is suspended as shown.
- The undeformed length of the spring $A B$ is $l^{\prime}{ }_{A B}=0.4 \mathrm{~m}$, and the spring has a stiffness of $k_{A B}=300 \mathrm{~N} / \mathrm{m}$

Find :

Determine the required length of the cord $A C$ so that the 8 kg lamp can be suspended in the position as shown.

Solution

FBD at Point \boldsymbol{A}

Three forces acting at A :
(1) Force by cable $A C$
(2) Force in spring $A B$
(3) Weight of the lamp,

$$
W=(8)(9.81)=78.5 \mathrm{~N} .
$$

Equation of Equilibrium

$$
\begin{array}{ll}
\xrightarrow{+} \sum F_{x}=0: & T_{A B}-T_{A C} \cos 30^{\circ}=0 \\
+\uparrow \sum F_{y}=0: & T_{A C} \sin 30^{\circ}-78.5 \mathrm{~N}=0
\end{array}
$$

Solving the above 2 equations yields

$$
\begin{aligned}
& T_{A B}=135.9 \mathrm{~N} \\
& T_{A C}=157.0 \mathrm{~N}
\end{aligned}
$$

Spring

- The stretch (change in length) of spring $A B$ is given by

$$
\begin{aligned}
T_{A B} & =k_{A B} s_{A B} \\
135.9 \mathrm{~N} & =(300 \mathrm{~N} / \mathrm{m}) s_{A B} \\
s_{A B} & =0.453 \mathrm{~m}
\end{aligned}
$$

- Therefore, the stretched length (i.e., final length) of spring $A B$ is

$$
\begin{aligned}
l_{A B} & =l_{A B}^{\prime}+s_{A B} \\
l_{A B} & =0.4 \mathrm{~m}+0.453 \mathrm{~m}=0.853 \mathrm{~m}
\end{aligned}
$$

Cord length

$$
\begin{aligned}
l_{A C} \cos 30^{\circ}+l_{A B} & =2 \mathrm{~m} \\
l_{A C} \cos 30^{\circ}+0.853 \mathrm{~m} & =2 \mathrm{~m} \\
l_{A C} & =1.32 \mathrm{~m}
\end{aligned}
$$

3.4 Three-Dimensional Force Systems

- For particle equilibrium,

$$
\sum \mathbf{F}=0
$$

- In a three-dimensional force system, the forces can be resolved into their respective $\mathbf{i}, \mathbf{j}, \mathbf{k}$ components, so that

$$
\sum F_{x} \mathbf{i}+\sum F_{y} \mathbf{j}+\sum F_{z} \mathbf{k}=0
$$

- Hence,

$$
\begin{aligned}
& \sum F_{x}=0 \\
& \sum F_{y}=0 \\
& \sum F_{z}=0
\end{aligned}
$$

\square Procedure for Analysis

1. Free-Body Diagram

- Establish the x, y, z axes
- Label all the unknown and known forces
- The sense of the unknown force can be assumed

2. Equations of Equilibrium

- Apply the equations of equilibrium

$$
\sum F_{x}=0, \quad \sum F_{y}=0, \quad \sum F_{z}=0
$$

- For complicated geometry,
(i) express each force as a Cartesian vector
(ii) substitute force vectors into $\sum \mathbf{F}=0$
(iii) set the $\mathbf{i}, \mathbf{j}, \mathbf{k}$ components equal to zero.

Example 3.5

Given :

- A $90-\mathrm{N}$ load is supported by two cables and a spring having a stiffness $k=500 \mathrm{~N} / \mathrm{m}$ as shown.
- Cable $A D$ lies in the $x-y$ plane and cable $A C$ lies in the $x-z$ plane

Find :

Determine the force developed in the cables and the stretch of the spring for equilibrium.

Solution
 FBD at Point \boldsymbol{A}

Four forces acting at A :
(1) 3 unknown forces: $\mathbf{F}_{B}, \mathbf{F}_{C}, \mathbf{F}_{D}$.
(2) 1 known force: $90-\mathrm{N}$ load

Equation of Equilibrium

$$
\begin{array}{cr}
\sum F_{x}=0: & F_{D} \sin 30^{\circ}-F_{C}\left(\frac{4}{5}\right)=0 \\
\sum F_{y}=0: & -F_{D} \cos 30^{\circ}+F_{B}=0 \\
\sum F_{z}=0: & F_{C}\left(\frac{3}{5}\right)-90 \mathrm{~N}=0 \\
& \Rightarrow F_{C}=150 \mathrm{~N}
\end{array}
$$

- Substituting F_{C} into Eq. (1), yields

$$
F_{D}=240 \mathrm{~N}
$$

- Substituting F_{D} into Eq. (2), yields

$$
F_{B}=207.8 \mathrm{~N}
$$

Spring

- The stretch of the spring is given by

$$
\begin{aligned}
F_{B} & =k s_{A B} \\
207.8 \mathrm{~N} & =(500 \mathrm{~N} / \mathrm{m}) s_{A B} \\
s_{A B} & =0.416 \mathrm{~m}
\end{aligned}
$$

Note: Since $F_{C} \& F_{D}$ are positive, the cables are in tension.

Example 3.7

Given :

- A $40-\mathrm{kN}$ crate is supported by four cables as shown.

Find :

Determine the force developed in each cable.

Solution
 FBD at Point \boldsymbol{A}

Four forces acting at A :
(1) 3 unknown forces: $\mathbf{F}_{B}, \mathbf{F}_{C}, \mathbf{F}_{D}$.
(2) 1 known force, i.e., the weight of the crate, $W=40 \mathrm{kN}$.

Express each force as a Cartesian vector

- Coordinates : $\quad B(-3 \mathrm{~m},-4 \mathrm{~m}, 8 \mathrm{~m})$ $C(-3 \mathrm{~m}, 4 \mathrm{~m}, 8 \mathrm{~m})$

$$
\mathbf{F}_{B}=F_{B} \mathbf{u}_{B}=F_{B}\left(\frac{\mathbf{r}_{A B}}{r_{A B}}\right)
$$

$$
=F_{B}\left(\frac{-3 \mathbf{i}-4 \mathbf{j}+8 \mathbf{k}}{\sqrt{(-3)^{2}+(-4)^{2}+(8)^{2}}}\right)=-0.318 F_{B} \mathbf{i}-0.424 F_{B} \mathbf{j}+0.848 F_{B} \mathbf{k}
$$

$$
\begin{aligned}
\mathbf{F}_{C} & =F_{C} \mathbf{u}_{C}=F_{C}\left(\frac{\mathbf{r}_{A C}}{r_{A C}}\right)=F_{C}\left(\frac{-3 \mathbf{i}+4 \mathbf{j}+8 \mathbf{k}}{\sqrt{(-3)^{2}+(4)^{2}+(8)^{2}}}\right) \\
& =-0.318 F_{C} \mathbf{i}+0.424 F_{C} \mathbf{j}+0.848 F_{C} \mathbf{k}
\end{aligned}
$$

$$
\mathbf{F}_{D}=F_{D} \mathbf{i}
$$

$$
\mathbf{W}=\{-40 \mathbf{k}\} \mathrm{kN}
$$

Equation of Equilibrium

$$
\begin{gathered}
\sum \mathbf{F}=0 \\
\mathbf{F}_{B}+\mathbf{F}_{C}+\mathbf{F}_{D}+\mathbf{W}=\mathbf{0} \\
+\left(-0.318 F_{B} \mathbf{i}-0.424 F_{B} \mathbf{j}+0.848 F_{B} \mathbf{k}\right) \\
+\left(-0.318 F_{C} \mathbf{i}+0.424 F_{C} \mathbf{j}+0.848 F_{C} \mathbf{k}\right)+F_{D} \mathbf{i}-40 \mathbf{k}=\mathbf{0}
\end{gathered}
$$

- Equating the respective $\mathbf{i}, \mathbf{j}, \mathbf{k}$ components, we have

$$
\begin{array}{lr}
\mathbf{i}: & -0.318 F_{B}-0.318 F_{C}+F_{D}=0 \\
\mathbf{j}: & -0.424 F_{B}+0.424 F_{C}=0 \\
\mathbf{k}: & 0.848 F_{B}+0.848 F_{C}-40=0
\end{array}
$$

- From Eq. (2),

$$
\begin{equation*}
F_{C}=F_{B} \tag{4}
\end{equation*}
$$

- Substituting Eq. (4) into Eq. (3) yields,

$$
\begin{aligned}
0.848 F_{B} & +0.848 F_{B}-40=0 \\
& \Rightarrow F_{B}=23.6 \mathrm{kN} \\
& \Rightarrow F_{C}=23.6 \mathrm{kN}
\end{aligned}
$$

- From Eqs.(1),

$$
F_{D}=0.318\left(F_{B}+F_{C}\right)=15.0 \mathrm{kN}
$$

Example 3.8

Given :

- A $100-\mathrm{kg}$ crate is supported by four cords as shown.

Find :

Determine the tension in each cord.

Solution

FBD at Point \boldsymbol{A}

Four forces acting at A :
(1) 3 unknown forces: $\mathbf{F}_{B}, \mathbf{F}_{C}, \mathbf{F}_{D}$.
(2) 1 known force: weight of the crate, $W=(100)(9.81)=981 \mathrm{~N}$.

Express each force as a Cartesian vector

- Coordinates: $\quad D(-1 \mathrm{~m}, 2 \mathrm{~m}, 2 \mathrm{~m})$

$$
\begin{aligned}
\mathbf{F}_{D} & =F_{D} \mathbf{u}_{D}=F_{D}\left(\frac{\mathbf{r}_{A D}}{r_{A D}}\right) \\
& =F_{D}\left(\frac{-1 \mathbf{i}+2 \mathbf{j}+2 \mathbf{k}}{\sqrt{(-1)^{2}+(2)^{2}+(2)^{2}}}\right)=-0.333 F_{D} \mathbf{i}+0.667 F_{D} \mathbf{j}+0.667 F_{D} \mathbf{k}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{F}_{C} & =\left(F_{C}\right)_{x} \mathbf{i}+\left(F_{C}\right)_{y} \mathbf{j}+\left(F_{C}\right)_{Z} \mathbf{k} \\
& =F_{C} \cos \alpha \mathbf{i}+F_{C} \cos \beta \mathbf{j}+F_{C} \cos \gamma \mathbf{k} \\
& =F_{C} \cos 120^{\circ} \mathbf{i}+F_{C} \cos 135^{\circ} \mathbf{j}+F_{C} \cos 60^{\circ} \mathbf{k} \\
& =-0.5 F_{C} \mathbf{i}-0.707 F_{C} \mathbf{j}+0.5 F_{C} \mathbf{k}
\end{aligned}
$$

$$
\mathbf{F}_{B}=F_{B} \mathbf{i}
$$

$$
\mathbf{W}=\{-981 \mathbf{k}\} \mathbf{N}
$$

Equation of Equilibrium

$$
\sum \mathbf{F}=0: \quad \mathbf{F}_{B}+\mathbf{F}_{C}+\mathbf{F}_{D}+\mathbf{W}=\mathbf{0}
$$

$$
F_{B} \mathbf{i}+\left(-0.5 F_{C} \mathbf{i}-0.707 F_{C} \mathbf{j}+0.5 F_{C} \mathbf{k}\right)
$$

$$
+\left(-0.333 F_{D} \mathbf{i}+0.667 F_{D} \mathbf{j}+0.667 F_{D} \mathbf{k}\right)+(-981 \mathbf{k})=\mathbf{0}
$$

- Equating the respective $\mathbf{i}, \mathbf{j}, \mathbf{k}$ components, we have

$$
\begin{array}{lr}
\mathbf{i}: & F_{B}-0.5 F_{C}-0.333 F_{D}=0 \\
\mathbf{j}: & -0.707 F_{C}+0.667 F_{D}=0 \\
\mathbf{k}: & 0.5 F_{C}+0.667 F_{D}-981=0 \tag{3}
\end{array}
$$

- From Eq. (2), $\quad F_{D}=1.06 F_{C}$
- Substituting Eq. (4) into Eq. (3) yields,

$$
\begin{gathered}
0.5 F_{C}+0.667\left(1.06 F_{C}\right)-981=0 \\
\Rightarrow F_{C}=813 \mathrm{~N}
\end{gathered}
$$

- Using Eq.(4), $\quad F_{D}=1.06(813)=862 \mathrm{~N}$
- From Eq. (1),

$$
F_{B}=0.5 F_{C}+0.333 F_{D}=0.5(813)+0.333(862)=694 \mathrm{~N}
$$

Example 3.6

Given :

- The $10-\mathrm{kg}$ lamp is suspended from the three equal-length cords.
- The force developed in any cord is not allowed to exceed 50 N .

Find :

Determine the smallest vertical s from the ceiling.

Solution

FBD at P

- Four forces acting at P :
(1) Tension in each of the 3 cords.
(2) Weight of the lamp:

$$
W=(10)(9.81)=98.1 \mathrm{~N} .
$$

- Due to symmetry,

$\Rightarrow D A=D B=D C=600 \mathrm{~mm}$
> The angle between each cord and the z axis is γ.
> The tension in each cord is the same.

Equation of Equilibrium

$$
\begin{array}{ll}
+\uparrow \sum \mathbf{F}_{z}=0: & 3 T \cos \gamma-98.1=0 \\
& \gamma=\cos ^{-1}\left(\frac{98.1}{3 T}\right) \tag{1}
\end{array}
$$

Vertical distance s

- The vertical distance s is given by

$$
\begin{aligned}
& \tan \gamma=\frac{600}{s} \\
& \Rightarrow s=\frac{600}{\tan \gamma}
\end{aligned}
$$

- Therefore, s is the smallest if γ is maximum.
- From Eq. (1), for γ to be maximum, T must reach its maximum allowable value, i.e.,

$$
T=T_{\max }=50 \mathrm{~N}
$$

- Therefore,

$$
\gamma_{\max }=\cos ^{-1}\left(\frac{98.1}{3 T_{\max }}\right)=\cos ^{-1}\left(\frac{98.1}{3(50)}\right)=49.16^{\circ}
$$

- Hence, the smallest vertical distance s from the ceiling is

$$
s_{\min }=\frac{600}{\tan \gamma_{\max }}=\frac{600}{\tan 49.16^{\circ}}=519 \mathrm{~mm}
$$

