Chapter 4

Force System Resultants

Chapter Objectives

- Concept of moment of a force in two and three dimensions.
- Method for finding the moment of a force about a specified axis.
- Define the moment of a couple.
- Determine the resultants of non-concurrent force systems.
- Reduce a simple distributed loading to a resultant force having a specified location

Chapter Outline

1. Moment of a Force - Scalar Formation
2. Cross Product
3. Moment of Force - Vector Formulation
4. Principle of Moments
5. Moment of a Force about a Specified Axis
6. Moment of a Couple
7. Simplification of a Force and Couple System
8. Further Simplification of a Force and Couple System
9. Reduction of a Simple Distributed Loading

4.1 Moment of a Force-Scalar Formation

■ When a force is applied to a body it will produce a tendency for the body to rotate about a point that is not on the line of action of the force.

- This tendency to rotate is called torque.
\square But most often it is called the moment of a force or simply the moment.

The magnitude of the moment is directly proportional to the magnitude of \mathbf{F} and the perpendicular distance or moment arm d.

(a)

(b)

(c)

- The moment \mathbf{M}_{O} about point O, or about an axis passing through O and perpendicular to the plane, is a vector quantity since it has a specified magnitude and direction.

\square Magnitude

- The magnitude of \mathbf{M}_{O} is

$$
M_{\mathrm{O}}=F d
$$

where $d=$ moment arm, or perpendicular distance from the axis at point O to the line of action of the force.

- Units of moment magnitude consist of force times distance, e.g., $\mathrm{N} \cdot \mathrm{m}$ or $\mathrm{lb} \cdot \mathrm{ft}$.

(b)

\square Direction

- The direction of \mathbf{M}_{O} is defined by its moment axis, which is perpendicular to the plane that contains the force \mathbf{F} and its moment arm d.
- The sense of direction of \mathbf{M}_{O} can be established using the right-hand rule.
- Sign convention:
$>$ Counterclockwise moment is positive.
$>$ Clockwise moment is negative

(b)

\square Resultant Moment

- For 2-D problems, where all the forces lie within the $x-y$ plane, the resultant moment $\left(\mathbf{M}_{R}\right)_{O}$ about point O (the z axis) is the algebraic sum of the moments caused by all the forces in the system.

Resultant moment, $\left(\mathbf{M}_{R}\right)_{O}=$ moments of all the forces

$$
\begin{aligned}
& \left(+\quad\left(M_{R}\right)_{O}=\sum F d\right. \\
& \left(M_{R}\right)_{O}=F_{1} d_{1}-F_{2} d_{2}+F_{3} d_{3}
\end{aligned}
$$

Example 4.1

Given :

Find :

For each case, determine the moment of the force about point \mathbf{O}.

Solution

- Line of action is extended as a dashed line to establish moment arm d.
- Tendency to rotate is indicated and the orbit of the force about O is shown as a colored curl.

(a)

$$
\begin{aligned}
M_{O} & =(100 \mathrm{~N})(2 \mathrm{~m}) \\
& =200 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
M_{O} & =(50 \mathrm{~N})(0.75) \mathrm{m}) \\
& =37.5 \mathrm{~N} \cdot \mathrm{~mL}
\end{aligned}
$$

$$
\begin{aligned}
M_{O} & =(40 \mathrm{kN})\left(4 \mathrm{~m}+2 \cos 30^{\circ} \mathrm{m}\right) \\
& =229 \mathrm{kN} \cdot \mathrm{~m} \quad \text {, }
\end{aligned}
$$

$$
\begin{aligned}
M_{O} & =(60 \mathrm{kN})\left(1 \sin 45^{\circ} \mathrm{m}\right) \\
& =42.4 \mathrm{kN} \cdot \mathrm{~m})
\end{aligned}
$$

(d)

$$
\begin{aligned}
M_{O} & =(7 \mathrm{kN})(4 \mathrm{~m}-1 \mathrm{~m}) \\
& =21.0 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

Example 4.3

Given :

- Four forces act on the rod as shown.

Find :

Determine the resultant moment of the four forces about point O.

Solution

$$
\rfloor+M_{R_{o}}=\sum F d
$$

$$
\begin{aligned}
= & -(50 \mathrm{~N})(2 \mathrm{~m}) \\
& +(60 \mathrm{~N})(0 \mathrm{~m}) \\
& +(20 \mathrm{~N})\left(3 \sin 30^{\circ} \mathrm{m}\right) \\
& -(40 \mathrm{~N})\left(4+3 \cos 30^{\circ}\right) \mathrm{m}
\end{aligned}
$$

$$
\begin{aligned}
M_{R_{o}} & =-334 \mathrm{~N} \cdot \mathrm{~m} \\
& =334 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

4.2 Cross Product

\square Cross product of two vectors \mathbf{A} and \mathbf{B} yields the vector \mathbf{C}, which is written as

$$
\mathbf{C}=\mathbf{A} \times \mathbf{B}
$$

and is read "C equals A cross \mathbf{B}."

\square Magnitude

- The magnitude of \mathbf{C} is defined as the product of the magnitudes of \mathbf{A} and \mathbf{B} and the sine of the angle between their tails.

$$
C=A B \sin \theta
$$

where
$0^{\circ} \leq \theta \leq 180^{\circ}$.

D Direction

- Vector \mathbf{C} has a direction that is perpendicular to the plane containing A and B.
- The direction of \mathbf{C} is specified by the right hand rule:

Curling the fingers of the right hand from vector \mathbf{A} to vector \mathbf{B}, the thumb points in the direction of \mathbf{C}.

- Thus, vector \mathbf{C} can be written as

$$
\mathbf{C}=\mathbf{A} \times \mathbf{B}=(A B \sin \theta) \mathbf{u}_{C}
$$

where \mathbf{u}_{C} is the unit vector in the direction of \mathbf{C}.
\square Laws of Operations

1. Commutative law is not valid

$$
\mathbf{A} \times \mathbf{B} \neq \mathbf{B} \times \mathbf{A}
$$

Rather,

$$
\mathbf{A} \times \mathbf{B}=-\mathbf{B} \times \mathbf{A}
$$

2. Multiplication by a Scalar

$$
a(\mathbf{A} \times \mathbf{B})=(a \mathbf{A}) \times \mathbf{B}=\mathbf{A} \times(a \mathbf{B})=(\mathbf{A} \times \mathbf{B}) a
$$

3. Distributive Law

$$
\mathbf{A} \times(\mathbf{B}+\mathbf{D})=(\mathbf{A} \times \mathbf{B})+(\mathbf{A} \times \mathbf{D})
$$

Note : Proper order of the cross products must be maintained since they are not commutative.

\square Cartesian Vector Formulation

- Cross product of Cartesian unit vectors
(a) $|\mathbf{i} \times \mathbf{i}|=(1)(1) \sin 0^{\circ}=0$

$$
\Rightarrow \mathbf{i} \times \mathbf{i}=\mathbf{0}
$$

(b) $|\mathbf{i} \times \mathbf{j}|=(1)(1) \sin 90^{\circ}=1$
$\Rightarrow \mathbf{i} \times \mathbf{j}=(1) \mathbf{k}$
(c) $|\mathbf{j} \times \mathbf{k}|=(1)(1) \sin 90^{\circ}=1$

$$
\Rightarrow \mathbf{j} \times \mathbf{k}=(1) \mathbf{i}
$$

- In summary,

$$
\begin{array}{lll}
\mathbf{i} \times \mathbf{j}=\mathbf{k} & \mathbf{i} \times \mathbf{k}=-\mathbf{j} & \mathbf{i} \times \mathbf{i}=\mathbf{0} \\
\mathbf{j} \times \mathbf{k}=\mathbf{i} & \mathbf{j} \times \mathbf{i}=-\mathbf{k} & \mathbf{j} \times \mathbf{j}=\mathbf{0} \\
\mathbf{k} \times \mathbf{i}=\mathbf{j} & \mathbf{k} \times \mathbf{j}=-\mathbf{i} & \mathbf{k} \times \mathbf{k}=\mathbf{0}
\end{array}
$$

- If $\mathbf{A}=A_{x} \mathbf{i}+A_{y} \mathbf{j}+A_{z} \mathbf{k}$ and $\mathbf{B}=B_{x} \mathbf{i}+B_{y} \mathbf{j}+B_{z} \mathbf{k}$, then
$\mathbf{A} \times \mathbf{B}=\left(A_{x} \mathbf{i}+A_{y} \mathbf{j}+A_{z} \mathbf{k}\right) \times\left(B_{x} \mathbf{i}+B_{y} \mathbf{j}+B_{z} \mathbf{k}\right)$

$$
=A_{x} B_{x}(\mathbf{i} \times \mathbf{i})+A_{x} B_{y}(\mathbf{i} \times \mathbf{j})+A_{x} B_{z}(\mathbf{i} \times \mathbf{k})
$$

$$
+A_{y} B_{x}(\mathbf{j} \times \mathbf{i})+A_{y} B_{y}(\mathbf{j} \times \mathbf{j})+A_{y} B_{z}(\mathbf{j} \times \mathbf{k})
$$

$$
+A_{z} B_{x}(\mathbf{k} \times \mathbf{i})+A_{z} B_{y}(\mathbf{k} \times \mathbf{j})+A_{z} B_{z}(\mathbf{k} \times \mathbf{k})
$$

$$
=A_{x} B_{y} \mathbf{k}-A_{x} B_{z} \mathbf{j}-A_{y} B_{x} \mathbf{k}+A_{y} B_{z} \mathbf{i}+A_{z} B_{x} \mathbf{j}-A_{z} B_{y} \mathbf{i}
$$

$$
=\left(A_{y} B_{z}-A_{z} B_{y}\right) \mathbf{i}-\left(A_{x} B_{z}-A_{z} B_{x}\right) \mathbf{j}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \mathbf{k}
$$

$$
\mathbf{A} \times \mathbf{B}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|
$$

(determinant)

Note :

$$
\begin{aligned}
\mathbf{A} \times \mathbf{B} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right| \\
& =\mathbf{i}\left|\begin{array}{ll}
A_{y} & A_{z} \\
B_{y} & B_{z}
\end{array}\right|-\mathbf{j}\left|\begin{array}{ll}
A_{x} & A_{z} \\
B_{x} & B_{z}
\end{array}\right|+\mathbf{k}\left|\begin{array}{ll}
A_{x} & A_{y} \\
B_{x} & B_{y}
\end{array}\right| \\
& =\mathbf{i}\left(A_{y} B_{z}-A_{z} B_{y}\right)-\mathbf{j}\left(A_{x} B_{z}-A_{z} B_{x}\right)+\mathbf{k}\left(A_{x} B_{y}-A_{y} B_{z}\right)
\end{aligned}
$$

