4.3 Moment of a Force Vector Formulation

\square The moment of a force \mathbf{F} about point O (or actually about the moment axis passing through O) can be expressed using cross product, namely,

$$
\mathbf{M}_{\mathrm{O}}=\mathbf{r} \times \mathbf{F}
$$

where $\quad \mathbf{r}=$ a position vector directed from point O to any point on the line of action \mathbf{F}.

\square Magnitude

- The magnitude of \mathbf{M}_{O} is defined as

$$
M_{O}=r F \sin \theta
$$

where θ is measured between the tails of \mathbf{r} and \mathbf{F} (\mathbf{r} is treated as a sliding vector).

- Since the moment arm $d=r \sin \theta$, we have

$$
M_{O}=r F \sin \theta=F(r \sin \theta)=F d
$$

\square Direction

- The direction \& sense of \mathbf{M}_{O} is determined by the right hand rule:

Sliding \mathbf{r} to the dashed position \& curling the right hand fingers from \mathbf{r} toward \mathbf{F}, the thumb points in the direction of \mathbf{M}_{O}.

Note:

> The "curl" of the fingers indicates the
 sense of rotation caused by the force.
> The order of $=\mathbf{r} \times \mathbf{F}$ must be maintained as the cross product does not obey the commutative law.

\square Principle of Transmissibility

- Using the vector cross product, there is no need to find the moment arm when determining the moment of a force.
- As can be seen from the figure, we can use any position vector r measured from point O to the line of action of the force \mathbf{F}.

$$
\mathbf{M}_{O}=\mathbf{r}_{1} \times \mathbf{F}=\mathbf{r}_{2} \times \mathbf{F}=\mathbf{r}_{3} \times \mathbf{F}
$$

- Thus, \mathbf{F} can be considered as a sliding vector because it can be applied at any point along its line of action and still create the same moment about point O.
- This property is called the principle of transmissibility of a force.

\square Cartesian Vector Formulation

- Using Cartesian coordinate system (x, y, z), the position vector \mathbf{r} and force \mathbf{F} can be expressed as Cartesian vectors.
- Therefore,

$$
\mathbf{M}_{O}=\mathbf{r} \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \tag{1}\\
r_{x} & r_{y} & r_{z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right|
$$

where
r_{x}, r_{y}, r_{z} are the x, y, z components of the position vector from point O to any point on the line of action \mathbf{F}
F_{x}, F_{y}, F_{z} are the x, y, z components of the force vector

Note: $\quad \mathbf{M}_{O}$ is perpendicular to the plane containing \mathbf{r} and \mathbf{F}.

- Expanding the determinant in Eq.(1) yields

$$
\mathbf{M}_{\mathrm{O}}=\left(r_{y} F_{z}-r_{z} F_{y}\right) \mathbf{i}-\left(r_{x} F_{z}-r_{z} F_{x}\right) \mathbf{j}+\left(r_{x} F_{y}-r_{y} F_{x}\right) \mathbf{k}
$$

or

$$
\mathbf{M}_{\mathrm{O}}=\left(M_{\mathrm{O}}\right)_{x} \mathbf{i}+\left(M_{\mathrm{O}}\right)_{y} \mathbf{j}+\left(M_{\mathrm{O}}\right)_{z} \mathbf{k}
$$

where

$$
\begin{aligned}
& \left(M_{\mathrm{O}}\right)_{x}=\left(r_{y} F_{z}-r_{z} F_{y}\right) \\
& \left(M_{\mathrm{O}}\right)_{y}=-\left(r_{x} F_{z}-r_{z} F_{x}\right) \\
& \left(M_{\mathrm{O}}\right)_{z}=\left(r_{x} F_{y}-r_{y} F_{x}\right)
\end{aligned}
$$

\square Resultant Moment of a System of Forces

The resultant moment of a system of forces about point O can be determined by vector addition of the moment of each force.

$$
\mathbf{M}_{R_{O}}=\Sigma(\mathbf{r} \times \mathbf{F})
$$

Example 4.3

Given :

- The force $F=2 \mathrm{kN}$ acts on the tree as shown in the figure.

Find :
Determine the moment produced by the force \mathbf{F} about point O. Express the result as a Cartesian vector.

Solution

Express the force as a Cartesian vector

- Coordinates: $A(0,0,12) \mathrm{m}$

$$
B(4,12,0) \mathrm{m}
$$

- Position vector of B relative to A

$$
\begin{aligned}
\mathbf{r}_{A B} & =\left(x_{B}-x_{A}\right) \mathbf{i}+\left(y_{B}-y_{A}\right) \mathbf{j}+\left(z_{B}-z_{A}\right) \mathbf{k} \\
& =(4-0) \mathbf{i}+(12-0) \mathbf{j}+(0-12) \mathbf{k} \\
& =\{4 \mathbf{i}+12 \mathbf{j}-12 \mathbf{k}\} \mathrm{m} \\
r_{A B} & =\sqrt{(4)^{2}+(12)^{2}+(-12)^{2}}=\sqrt{304} \mathrm{~m} \\
\mathbf{F} & =F \mathbf{u}_{A B}=F_{B}\left(\frac{\mathbf{r}_{A B}}{r_{A B}}\right)=(2 \mathrm{kN})\left(\frac{4 \mathbf{i}+12 \mathbf{j}-12 \mathbf{k}}{\sqrt{304}}\right) \\
& =\{0.4588 \mathbf{i}+1.376 \mathbf{j}-1.376 \mathbf{k}\} \mathrm{kN}
\end{aligned}
$$

Moment

- The moment of a force \mathbf{F} about point O is

$$
\mathbf{M}_{\mathrm{O}}=\mathbf{r} \times \mathbf{F}
$$

where \mathbf{r} is a position vector directed from point O to any point on the line of action of \mathbf{F}.

- Either \mathbf{r}_{A} of \mathbf{r}_{B} can be used.
- Using $\mathbf{r}=\mathbf{r}_{A}$ we have

$$
\begin{aligned}
\mathbf{M}_{O} & =\mathbf{r}_{A} \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
0 & 0 & 12 \\
0.4588 & 1.376 & -1.376
\end{array}\right| \\
& =\mathbf{i}[(0)(-1.376)-(12)(1.376)] \\
& -\mathbf{j}[(0)(-1.376)-(12)(0.4588)] \\
& +\mathbf{k}[(0)(1.376)-(0)(0.4588)] \\
& =\{-16.5 \mathbf{i}+5.51 \mathbf{j}\} \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

- Using $\mathbf{r}=\mathbf{r}_{B}$, we have

$$
\begin{aligned}
\mathbf{M}_{O} & =\mathbf{r}_{B} \times \mathbf{F} \\
& =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
4 & 12 & 0 \\
0.4588 & 1.376 & -1.376
\end{array}\right| \\
& =\mathbf{i}[(12)(-1.376)-(0)(1.376)] \\
& -\mathbf{j}[(4)(-1.376)-(0)(0.4588)] \\
& +\mathbf{k}[(4)(1.376)-(12)(0.4588)] \\
& =\{-16.5 \mathbf{i}+5.51 \mathbf{j}\} \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

Example 4.4

Given :

- Two forces act on the rod as shown.

Find :

Determine the resultant moment they create about the flange at O. Express the result as a Cartesian vector.

Solution

- Position vectors directed from point O to each force are:

$$
\begin{aligned}
& \mathbf{r}_{A}=\{5 \mathbf{j}\} \mathrm{m} \\
& \mathbf{r}_{B}=\{4 \mathbf{i}+5 \mathbf{j}-2 \mathbf{k}\} \mathrm{m}
\end{aligned}
$$

- The resultant moment about O is

$$
\begin{aligned}
\mathbf{M}_{R_{O}} & =\Sigma(\mathbf{r} \times \mathbf{F}) \\
& =\mathbf{r}_{A} \times \mathbf{F}_{1}+\mathbf{r}_{B} \times \mathbf{F}_{2} \\
& =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
0 & 5 & 0 \\
-60 & 40 & 20
\end{array}\right|+\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
4 & 5 & -2 \\
80 & 40 & -30
\end{array}\right| \\
& =\mathbf{i}[5(20)-0(40)]-\mathbf{j}[0-0]+\mathbf{k}[0-(5)(-60)] \\
& +\mathbf{i}[5(-30)-(-2)(40)]-\mathbf{j}[4(-30)-(-2)(80)]+\mathbf{k}[4(40)-(5)(80)] \\
& =\{30 \mathbf{i}-40 \mathbf{j}+60 \mathbf{k}\} \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

Note: The coordinate direction angles of \mathbf{M}_{O} can be determined from the unit vector for \mathbf{M}_{O}.

- The magnitude of \mathbf{M}_{O}

$$
M_{R_{o}}=\sqrt{(30)^{2}+(-40)^{2}+(60)^{2}}=78.10 \mathrm{kN} \cdot \mathrm{~m}
$$

- Unit vector in the direction of \mathbf{M}_{O}

$$
\mathbf{u}_{M_{R_{O}}}=\frac{\mathbf{M}_{R_{o}}}{M_{R_{o}}}=\frac{\{30 \mathbf{i}-40 \mathbf{j}+60 \mathbf{k}\}}{78.1}=0.384 \mathbf{1} \mathbf{i}-0.5122 \mathbf{j}+0.7682 \mathbf{k}
$$

- The coordinate direction angles for \mathbf{M}_{O}

$$
\begin{aligned}
& \alpha=\cos ^{-1}(0.3841)=67.4^{\circ} \\
& \beta=\cos ^{-1}(-0.5122)=121^{\circ} \\
& \gamma=\cos ^{-1}(0.7682)=39.8^{\circ}
\end{aligned}
$$

4.4 Principles of Moments

- It is also known as Varignon's Theorem
- It states that the moment of a force about a point is equal to the sum of the moments of the components of the force about the point.
- Proof
- Consider the force \mathbf{F} shown in the figure.
- Since $\mathbf{F}=\mathbf{F}_{1}+\mathbf{F}_{2}$, we have

$$
\begin{aligned}
\mathbf{M}_{O} & =\mathbf{r} \times \mathbf{F} \\
& =\mathbf{r} \times\left(\mathbf{F}_{1}+\mathbf{F}_{2}\right) \\
& =\mathbf{r} \times \mathbf{F}_{1}+\mathbf{r} \times \mathbf{F}_{2}
\end{aligned}
$$

- Applications
- For 2-D problems, the principle of moments allows us to determine the moment using a scalar analysis by resolving the force into its rectangular components.

$$
+2 \quad M_{O}=F_{x} y-F_{y} x
$$

Example 4.5

Given :

Find :
Determine the moment of the force about point O.

Solution

Method I

From trigonometry,

$$
d=(3 \mathrm{~m}) \sin 75^{\circ}=2.898 \mathrm{~m}
$$

Thus,

$$
\begin{aligned}
M_{O} & =F d \\
& =(5 \mathrm{kN})(2.898 \mathrm{~m}) \\
& =14.5 \mathrm{kN} \cdot \mathrm{~m} \quad 2
\end{aligned}
$$

Since the force tends to rotate or orbit clockwise about point O, the moment is directed into the page.

Method II

Applying the principle of moments, we have

$$
\begin{aligned}
\left(+M_{O}\right. & =-F_{x} d_{y}-F_{y} d_{x} \\
& =\left\{-\left(5 \cos 45^{\circ}\right)\left(3 \sin 30^{\circ}\right)-\left(5 \sin 45^{\circ}\right)\left(3 \cos 30^{\circ}\right)\right\} \mathrm{kN} \cdot \mathrm{~m} \\
& =-14.5 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

$$
=14.5 \mathrm{kN} \cdot \mathrm{~m}
$$

Method III

- Let x and y axes be parallel and perpendicular to the rod's axis.
- \mathbf{F}_{x} produces no moment about O since its line of action passes through O.

$$
\begin{aligned}
\left(+M_{O}\right. & =-F_{y} d_{x} \\
& =-\left(5 \sin 75^{\circ} \mathrm{kN}\right)(3 \mathrm{~m}) \\
& =-14.5 \mathrm{kN} \cdot \mathrm{~m} \\
& =14.5 \mathrm{kN} \cdot \mathrm{~m})
\end{aligned}
$$

Example 4.6

Given :

- Force \mathbf{F} acts at the end of the angle bracket as shownin the figure.

Find :
Determine the moment of the force about point O.

Solution

Method I (Scalar Analysis)

- Resolve the force into its x and y components.

- The moment is then given by

$$
\begin{aligned}
\left(+M_{O}\right. & =\left(400 \sin 30^{\circ} \mathrm{N}\right)(0.2 \mathrm{~m}) \\
& -\left(400 \cos 30^{\circ} \mathrm{N}\right)(0.4 \mathrm{~m}) \\
& =-98.6 \mathrm{~N} \cdot \mathrm{~m} \\
& =98.6 \mathrm{~N} \cdot \mathrm{~m} \quad)
\end{aligned}
$$

or

$$
\mathbf{M}_{O}=\{-98.6 \mathbf{k}\} \mathrm{N} \cdot \mathrm{~m}
$$

Method II (Vector Analysis)

- Find the position vector

$$
\mathbf{r}=\{0.4 \mathbf{i}-0.2 \mathbf{j}\} \mathrm{m}
$$

- Express the force as a Cartesian vector.

$$
\begin{aligned}
\mathbf{F} & =\left\{400 \sin 30^{\circ} \mathbf{i}-400 \cos 30^{\circ} \mathbf{j}\right\} \mathrm{N} \\
& =\{200.0 \mathbf{i}-346.4 \mathbf{j}\} \mathrm{N}
\end{aligned}
$$

- The moment is

$$
\begin{aligned}
\mathbf{M}_{O} & =\mathbf{r} \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
0.4 & -0.2 & 0 \\
200.0 & -346.4 & 0
\end{array}\right| \\
& =\mathbf{i}(0)-\mathbf{j}(0)+\mathbf{k}[(0.4)(-346.4)-(-0.2)(200.0)] \\
& =\{-98.6 \mathbf{k}\} \mathrm{N} \cdot \mathrm{~m}
\end{aligned}
$$

4.5 Moment of a Force about a Specified Axis

- In the figure, the moment produced by the force \mathbf{F} creates a tendency for the nut to rotate about the moment axis passing through O.
- However, the nut can only rotate about the y axis.

- Therefore, to determine the turning effect, only the y component of the moment is needed, and the total moment is not important.
- To find the component of the moment about a specified axis (in this case, the y axis) that passes through O, a scalar or vector analysis can be used.
\square Scalar Analysis
- In the figure, the moment of \mathbf{F} about the y axis is

$$
\begin{aligned}
M_{y} & =F d_{y} \\
& =F(d \cos \theta)
\end{aligned}
$$

- According to the right-hand rule, M_{y} is directed along the positive y axis.
- In general, the moment of a force \mathbf{F} about a specified axis a is

$$
M_{a}=F d_{a}
$$

where d is the perpendicular distance from the line of action of the force to the axis a.

\square Vector Analysis

- In the figure, the moment of \mathbf{F} about O is

$$
\mathbf{M}_{O}=\mathbf{r} \times \mathbf{F}
$$

- The component M_{y} along the y axis
 is the projection of \mathbf{M}_{O} onto the y axis.

$$
M_{y}=\mathbf{j} \cdot \mathbf{M}_{O}=\mathbf{j} \cdot(\mathbf{r} \times \mathbf{F})
$$

where \mathbf{j} is the unit vector for the y axis.

- In general, if \mathbf{u}_{a} is the unit vector that specifies the direction of the a axis shown in the adjacent figure, then the moment of \mathbf{F} about the a axis is

$$
\begin{equation*}
M_{a}=\underbrace{\mathbf{u}_{a} \cdot(\mathbf{r} \times \mathbf{F})} \tag{1}
\end{equation*}
$$

Scalar triple product

- In Cartesian form, Eq.(1) becomes

$$
\begin{align*}
M_{a} & =\left(u_{a_{x}} \mathbf{i}+u_{a y} \mathbf{j}+u_{a_{z}} \mathbf{k}\right) \cdot\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
r_{x} & r_{y} & r_{z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right| \\
& =\left(u_{a_{x}} \mathbf{i}+u_{a y} \mathbf{j}+u_{a_{z}} \mathbf{k}\right) \cdot\left[\left(r_{y} F_{z}-r_{z} F_{y}\right) \mathbf{i}-\left(r_{x} F_{z}-r_{z} F_{x}\right) \mathbf{j}+\left(r_{x} F_{y}-r_{y} F_{x}\right) \mathbf{k}\right] \\
& =u_{a_{x}}\left(r_{y} F_{z}-r_{z} F_{y}\right)-u_{a y}\left(r_{x} F_{z}-r_{z} F_{x}\right)+u_{a_{z}}\left(r_{x} F_{y}-r_{y} F_{x}\right) \tag{2}
\end{align*}
$$

- Eq.(2) can be written in the form of a determinant as

$$
M_{a}=\mathbf{u}_{a} \cdot(\mathbf{r} \times \mathbf{F})=\left|\begin{array}{ccc}
u_{a x} & u_{a y} & u_{a z} \\
r_{x} & r_{y} & r_{z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right|
$$

where

$$
\begin{aligned}
& u_{a_{x}}, u_{a_{y}}, u_{a_{z}} \begin{array}{l}
\text { are the } x, y, z \text { components of the unit vector } \\
\text { defining the direction of the } a \text { axis }
\end{array} \\
& r_{x}, r_{y}, r_{z} \quad \begin{array}{l}
\text { are the } x, y, z \text { components of the position vector } \\
\text { extended from any point } O \text { on the } a \text { axis to any } \\
\text { point } A \text { on the line of action of the force }
\end{array} \\
& F_{x}, F_{y}, F_{z} \quad \begin{array}{l}
\text { are the } x, y, z \text { components of the force vector }
\end{array} .
\end{aligned}
$$

- The moment of \mathbf{F} about the a axis in Cartesian vector form is

$$
\mathbf{M}_{a}=M_{a} \mathbf{u}_{a}
$$

Example 4.7

Given :

- Three forces are acting in the direction as shown in the figure.

Find :

Determine the resultant moment of the forces about the x axis, the y axis, and the z axis.

Solution

- A force will not produce a moment about an axis if its line of action is parallel to or passes through that axis.

$$
\begin{aligned}
\left(+M_{x}\right. & =F_{1}(0.2 \mathrm{~m})+F_{2}(0.2 \mathrm{~m}) \\
& =(600 \mathrm{~N})(0.2 \mathrm{~m})+(500 \mathrm{~N})(0.2 \mathrm{~m}) \\
& =220 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
\left(+M_{y}\right. & =-F_{2}(0.3 \mathrm{~m})-F_{3}(0.2 \mathrm{~m}) \\
& =-(500 \mathrm{~N})(0.3 \mathrm{~m})-(400 \mathrm{~N})(0.2 \mathrm{~m}) \\
& =-230 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
\left(+M_{z}\right. & =-F_{3}(0.2 \mathrm{~m}) \\
& =-(400 \mathrm{~N})(0.2 \mathrm{~m}) \\
& =-80 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

Example 4.8

Given :

- The force $F=300 \mathrm{~N}$ acts on the rod as shown.

Find :

Determine the moment $\mathbf{M}_{A B}$ produced by the force \mathbf{F} which tends to rotate the rod about the $A B$ axis.

Solution

- The moment $M_{A B}$ is given by

$$
M_{A B}=\mathbf{u}_{B} \bullet(\mathbf{r} \times \mathbf{F})
$$

- The unit vector which defines the direction of the $A B$ axis is

$$
\begin{aligned}
u_{B} & =\frac{\mathbf{r}_{B}}{r_{B}} \\
& =\frac{0.4 \mathbf{i}+0.2 \mathbf{j}}{\sqrt{0.4^{2}+0.2^{2}}} \\
& =0.8944 \mathbf{i}+0.4472 \mathbf{j}
\end{aligned}
$$

- Since \mathbf{r} is a position vector extending from any point on the $\boldsymbol{A B}$ axis to any point on the line of action of \mathbf{F}, either $\mathbf{r}_{C}, \mathbf{r}_{D}, \mathbf{r}_{B C}$ or $\mathbf{r}_{B D}$ can be used.

For simplicity, take $\mathbf{r}=\mathbf{r}_{D}$ where

$$
\mathbf{r}_{D}=\{0.6 \mathbf{i}\} \mathrm{m}
$$

- The force is $\mathbf{F}=\{-300 \mathbf{k}\} \mathrm{N}$
- Therefore,

$$
\begin{aligned}
M_{A B} & =\mathbf{u}_{B} \cdot\left(\mathbf{r}_{D} \times \mathbf{F}\right)=\left|\begin{array}{ccc}
0.8944 & 0.4472 & 0 \\
0.6 & 0 & 0 \\
0 & 0 & -300
\end{array}\right| \\
& =0.8944[0-0]-0.4472[(0.6)(-300)-0]-0 \\
& =80.50 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

- Hence, the moment $\mathbf{M}_{A B}$ produced by the force \mathbf{F} which tends to rotate the rod about the $A B$ axis.

$$
\begin{aligned}
\mathbf{M}_{A B} & =M_{A B} \mathbf{u}_{B} \\
& =(80.50 \mathrm{~N} \cdot \mathrm{~m})(0.8944 \mathbf{i}+0.4472 \mathbf{j}) \\
& =\{72.0 \mathbf{i}+36.0 \mathbf{j}\} \mathrm{N} \cdot \mathrm{~m}
\end{aligned}
$$

Example 4.9

Given :

The force $F=300 \mathrm{~N}$ acts on the pipe assembly as shown.

Find :

Determine the magnitude of the moment of force \mathbf{F} about segment $O A$.

Solution

- The moment of \mathbf{F} about the $O A$ axis, is given by

$$
M_{O A}=\mathbf{u}_{O A} \bullet(\mathbf{r} \times \mathbf{F})
$$

- The unit vector which defines the direction of the $O A$ axis is

$$
\begin{aligned}
\mathbf{u}_{O A} & =\frac{\mathbf{r}_{O A}}{r_{O A}} \\
& =\frac{0.3 \mathbf{i}+0.4 \mathbf{j}}{\sqrt{(0.3)^{2}+(0.4)^{2}}} \\
& =0.6 \mathbf{i}+0.8 \mathbf{j}
\end{aligned}
$$

- Since \mathbf{r} is a position vector extending from any point on the $\boldsymbol{O A}$ axis to any point on the line of action of \mathbf{F}, either $\mathbf{r}_{O C}, \mathbf{r}_{O D}, \mathbf{r}_{A C}$ or $\mathbf{r}_{A D}$ can be used.

For simplicity, take $\mathbf{r}=\mathbf{r}_{O D}$ where

$$
\mathbf{r}_{O D}=\{0.5 \mathbf{i}+0.5 \mathbf{k}\} \mathrm{m}
$$

- The force \mathbf{F} in Cartesian vector form is

$$
\begin{aligned}
\mathbf{F} & =F \mathbf{u}_{C D}=F\left(\frac{\mathbf{r}_{C D}}{r_{C D}}\right) \\
& =F\left(\frac{\left(x_{D}-x_{C}\right) \mathbf{i}+\left(y_{D}-y_{C}\right) \mathbf{j}+\left(z_{D}-z_{C}\right) \mathbf{k}}{\sqrt{\left(x_{D}-x_{C}\right)^{2}+\left(y_{D}-y_{C}\right)^{2}+\left(z_{D}-z_{C}\right)^{2}}}\right) \\
& =(300)\left(\frac{(0.5-0.1) \mathbf{i}+(0-0.4) \mathbf{j}+(0.5-0.3) \mathbf{k}}{\sqrt{(0.5-0.1)^{2}+(0-0.4)^{2}+(0.5-0.3)^{2}}}\right)=(300)\left(\frac{0.4 \mathbf{i}-0.4 \mathbf{j}+0.2 \mathbf{k}}{0.6}\right) \\
& =\{200 \mathbf{i}-200 \mathbf{j}+100 \mathbf{k}\} \mathrm{N}
\end{aligned}
$$

- Therefore,

$$
\begin{aligned}
M_{O A} & =\mathbf{u}_{O A} \cdot\left(\mathbf{r}_{O D} \times \mathbf{F}\right)=\left|\begin{array}{ccc}
0.6 & 0.8 & 0 \\
0.5 & 0 & 0.5 \\
200 & -200 & 100
\end{array}\right| \\
& =0.6[0-(0.5)(-200)]-0.8[(0.5)(100)-(0.5)(200)]+0 \\
& =100 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

