

BY

IR. DR. PAUZIAH BINTI MUHAMAD

As technology continues to drive forward, **design** is reaching a new tipping point

Design as a way to solve problems, discover opportunities, and create new objects and experiences, is reaching more people and equipping them with remarkable tools to make a better world.

What's exciting to see is that emerging digital tools are actually making it possible for more people, in more situations, to design well

The questions that swirl around the idea of design

How does design change our lives for the better?

How is our capacity to produce good design evolving?

How will be the next generation of designers work – and on what?

How do we define and better appreciate it, in hopes that we can encourage nurture more of it?

ASSESSMENT - REPORT

Please compile the IDPreport as well

Guideline for report

- Introduction
 - Problem statement
 - Objective
- Design Process, Engineering Analysis and Fabrication Process
 - Product design specification
 - Conceptual design
 - Design selection and evaluation
 - Engineering analysis
 - Final design with engineering drawing
- Fabrication process
 - Machining part from engineering drawing
 - Assembly process
 - Electrical hardware /circuit assembly /diagram
- Testing evaluation and optimization
 - Testing and data gathering
 - Modification and optimization
- Costing detail and project management review (reflect back with the Gantt chart)
- Conclusion

Report IDP

MONOZUKURI

BASIC PROCEDURE OF MACHINE DESIGN 1-RECOGNITIONOFNEED 2-MARKETSLRVEY 3 - DEFINE SPECIFICATION OF PRODUCT 4 - FINDALTERNATIVE MECHANISM FOR PRODUCT 5-SELECTION OF PROPER MECHANISM 6-LAYOUT OF CONFIGURATION 7-METHODOFASSEMBLEINDIMDUALELEMENTS 8-INDIVIDUAL COMPONENT DRAWING 9-DETAILED DRAWING **10-MODIFICATION** 11-TESTINGPROTOTYPE

FLOW CHART OF DESIGN PROCESS

1- RECOGNITION OF NEED

• What Is The Requirement Of Product

2- MARKET SURVEY

Product design is worth

- Can manufacture the product or can buy the different element of product and simply assemble them
- Cost factor and etc.

3- SPECIFICATION OF PRODUCT

- Complete specification of product
- Ex: designing a motorbike Overall dimension, weight, cost, fuel consumption, reliability, appearance, performance etc.

4- MECHANISM OF PRODUCT

 Basically The Internal Working Of Machine, how many and to make it works

5- SELECTION OF MECHANISM

 From all alternative – have to find the best for practice on the basic of manufacturing, cost reliability, availability raw materials, standard parts etc.

6- GENERAL LAYOUT OF CONFIGURATION

 General layout of selected methods consist of details of each and every part and its location

7- SELECTION OF METHOD OF ASSEMBLY

 Must specify the methods of assembly which require to integrate all elements – joints, screws, nut, bolt etc

8- INDIVIDUAL COMPONET DRAWING

• Criteria of individual components such stress, rigidity, natural of working, failure and etc.

9- DETAILED DRAWING

 Drawing of individual and assembly which includes different factors of dimensions, materials, tolerance, manufacturing process, surface finish, grades, machining symbols and other outsources needed etc.

9 - MODIFICATION

 Done as per specification however if at manufacturing occurred problems then modifications needed to manufacture back

10- PROTOTYPE TESTING

- Last process of the design.
- After this process the product will be finalized

Compulsory to provide

• Design Process:

- Conceptual design
- Design selection and evaluation
- Final conceptual design

• Engineering analysis (must have at least one from the list)

- Analysis related to selection of component and material
- Analysis related strength of the part
- Simulation flow, heat, kinematic and dynamic motion

• Engineering Drawing

- Exploded view
- Bill of material
- Drawing for every parts
- Detail specification of component (example : DC motor)
- Budget cost planning

Engineering analysis

Table 5.10 Estimated maximum torque inside the mixing chamber under varied

speed

Rotor speed, Rpm	Maximum torque, Nm
1000	0.036572153
2000	0.064228699
3000	0.10643827
4000	0.165627568
5000	0.343678095

Selection of DC motor

DC MOTOR 40W

Motor Specification

Model	Output		Rated V	No l	oad		Rated	Load	Starting Cur	Starting Torque				
8DCG -40-30 : Pinion Shaft Type		put	naleu v	Current	Speed	Current	Speed	Torque		otaning out.	Starting Torque			
8DCD -40-30 : D-Cut Shaft Type	HP	W	VDC	Α	RPM	A	RPM	gfcm	mN.m	oz-in	A	gfcm	mN.m	oz-in
8DCG(D)12-40-30			12	1.2	3300	4.8					35	12000	1200	170
8DCG(D)24-40-30	1/19	40	24	0.4	3150	2.5	3000	1300	130	18.44	30	20000	2000	284
8DCG(D)90-40-30			90	0.18	3350	0.48					10	23000	2300	326

* 'Pinion Shaft' is for attaching gearhead and 'D-Cut Shaft' is for using motor only.

Permissible Torque When using gearhead

Model	speed RPM (r/min)	1,500	1,00	0833	600	500	400	333	300	240	200	167	120	100	83.3	75	60	50	40	33.3	30	25	20	16.7	15	12	10	8
Motor/Gearhead	Gear Rat	io	2	3	3.6	5	6	7.5	9	10	12.5	15	18	25	30	36	40	50	60	75	90	100	120	150	180	200	250	300	360
	/	kgfam	2.6	3.9	4.7	6.5	7.8	9.7	11.7	13.0	16.2	19.5	23.4	32.5	39.0	46.7	51.9	64.9	77.9	80	80	80	80	80	80	80	80	80	80
8DCG□-40-30 /	8GBK BMH	N.m	0.26	0.39	0.47	0.65	0.78	0.97	1.17	1.3	1.6	1.9	2.3	3.2	3.9	4.7	5.2	6.5	7.8	8	8	8	8	8	8	8	8	8	8
/		lb-in	2.3	3.4	4.1	5.7	6.9	8.6	10.3	11	14	17	21	29	34	41	46	57	69	71	71	71	71	71	71	71	71	71	71

Enter the phase & voltage code in the box (
) within the motor model name.

■ Enter the gear ratio in the box (□) within the gearhead model name. A colored background indicates gear shaft rotation in the same direction as the motor shaft ; a white background indicates rotation in the opposite direction.

. The speed is calculated by dividing the motor's synchronous speed (50Hz : 1500 r/min, 60 Hz : 1800 r/min) by the gear ratio.

The actual speed is 2~20% less than the displayed value, depending on the size of the load.

If more slow speed is needed than above value, use decimal gearhead with a gear ratio of 10:1 could be used between general gearhead and motor. Even in this case, just speed will be reduced without increase in permissible torque; the maximum permissible torque is 100kgfcm (10N.m, 88lb-in).

Engineering analysis

Example: Bearing Selection

1.1 Single row deep groove ball bearings d 80 - 100 mm

Princ	Principal dimensions		Basic lo dynami	oad ratings ic static	Fatigue load limit	Speed rati Reference	ngs Limiting	Mass	Designation
d	D	в	с	Co	Pu	speed	speed		
mm			kN		kN	r/min		kg	-
80	100	10	13	15	0.64	12,000	8 000	0.15	61916
00	110	16	25.1	20.4	1.02	12 000	7 500	0.38	61916
	125	14	35,1	31,5	1,32	11000	7 000	0,61	* 16016
	125	22	49,4	40	1,66	11000	7 000	0,87	* 6016
	140	26	72,8	55	2,2	9 500	6 000	1,45	* 6216
	170	39	130	86,5	3,25	8 500	5 300	3,65	* 6316
	200	48	163	125	4,5	7 500	4 800	6,85	6416
85	110	13	19.5	20.8	0.88	12000	7 500	0.27	61817
	120	18	31,9	30	1,25	11000	7 000	0,55	61917
	130	14	35,8	33,5	1,37	11000	6 700	0,64	* 16017
	130	22	52	43	1,76	11000	6 700	0,92	* 6017
	150	28	87,1	64	2,5	9000	5 600	1,8	* 6217
	180	41	140	96,5	3,55	8 0 0 0	5 000	4,25	* 6317
	210	52	174	137	4,75	7000	4 500	8,05	6417
90	115	13	19.5	22	0.915	11,000	7 000	0.28	61818
70	125	18	33.2	31.5	1.29	11 000	6 700	0.59	61918
	140	16	43.6	39	1.56	10 000	6 300	0.85	* 16018
	140	24	60,5	50	1,96	10 000	6 300	1,15	* 6018
	160	30	101	73.5	2.8	8 500	5 300	2.2	* 6218
	190	43	151	108	3,8	7 500	4 800	4,95	* 6318
	225	54	186	150	5	6 700	4 300	9,8	6418
96	120	12	10.0	22.9	0.92	11,000	6 700	0.2	41910
73	130	18	33.8	33.5	1 34	10,000	6 300	0.61	61919
	145	16	44.9	41.5	1.63	9 500	6 000	0.89	* 16019
	145	24	63,7	54	2,08	9 500	6 000	1,1	* 6019
	170	32	114	81,5	3	8000	5 000	2,65	* 6219

Engineering Drawing

Engineering Drawing

Exploded View

Drawing every part

Bill of material

 A bill of materials or product structure (sometimes bill of material, BOM or associated list) is a list of the raw materials, sub-assemblies, intermediate assemblies, subcomponents, parts and the quantities of each needed to manufacture an <u>end product</u>.

Presentation Day with External Examiners

- Theme: Product presentation
- Will be evaluated by industrial panel
- Open to public
- Make sure product is ready to be fabricated

Thank You @pauziah.utmkl