Unmanned Firefighting Machine

Tan Jiin Kuen

Tay Yie Hang

Muhammad Umar Osman

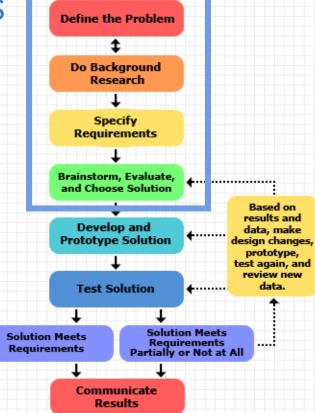
Nurul Illiannie

Noor Akmarizwan

NurulJannah

1.0 Problem Statement

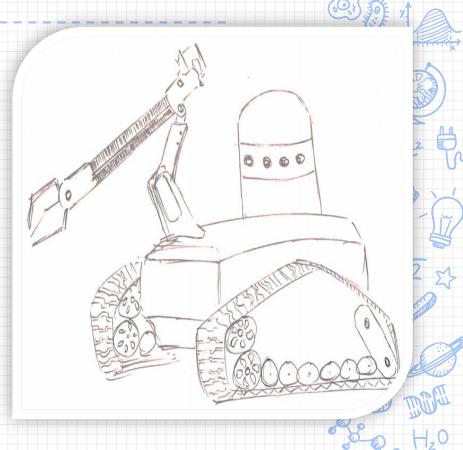
- To extinguish a fire, the fire fighters need to be very close to the fire area.
- very dangerous and caused safety issues for the person itself.
- For example, when a chemical factory is on fire, it may cause an explosion which will end up in sacrificing of fire fighter's life.
- The traditional method in extinguishing fire also not efficient and always take a long time in fighting fire.
- For our integrated design project, we decided to design a simple and low cost of Unmanned Ground Vehicle (UGV)


1.1 OBJECTIVE

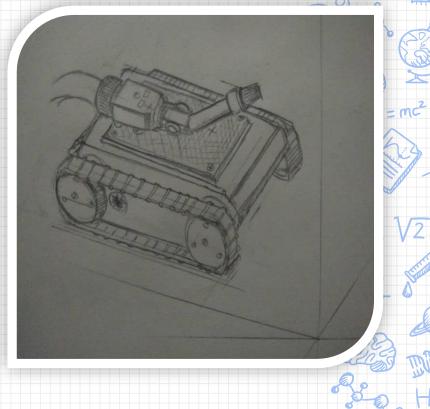
- To design a low cost unmanned fire fighting machine which is able to extinguish fire at a long distance.
- To determine and illustrate how static failure theory can be applied to identify the factor of safety of the machine.
- To obtain the suitable projectile of water spray from the nozzle and the relevant speed of Unmanned Ground Vehicle.
- To improve the understanding on mechanical engineering design, mechanical engineering analysis and CAD drawing.
- Your audience will listen to you or read the content, but won't do both.

2.0 Methodology

2.1 DESIGN PROCESS


2.2 DESIGN IDEA AND SKETCHING IDEA 1 : UNMANNED AERIAL VEHICLE

- An aircraft without a human pilot abroad and a firefighting drone
- Can overcome the limits of traditional firefighting.
- Technologies such as gas sensors and improved cameras are added to commercial drones to aid fire fighters.
- ✤ Hoses attached to the drones can supply water to extinguish the fire in high places.


IDEA 2 : SEARCH AND RESCUE ROBOT

- Controller is used to remote the robot and conveyer belt is used to enable it to travel on uneven terrain.
- Infrared camera is used to detect trapped people. Robotic arm can be used to remove the rubbles
- ✤ 360 degrees carbon dioxide sprayer is used to extinguish fire.

IDEA 3 : UNMANNED GROUND VEHICLE

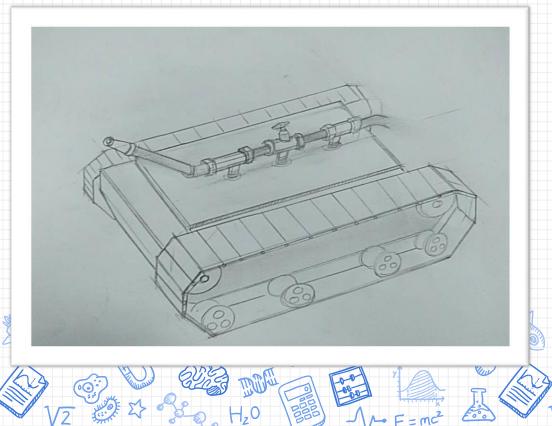
- * Controlled by a man far from burning site.
- A high velocity fan is installed to ventilate the smoke-logged areas quickly and effectively.
- A high output of water mist, the water jet or foam can extinguish the fire in high places.

2.3 DESIGN SELECTION AND EVALUATION

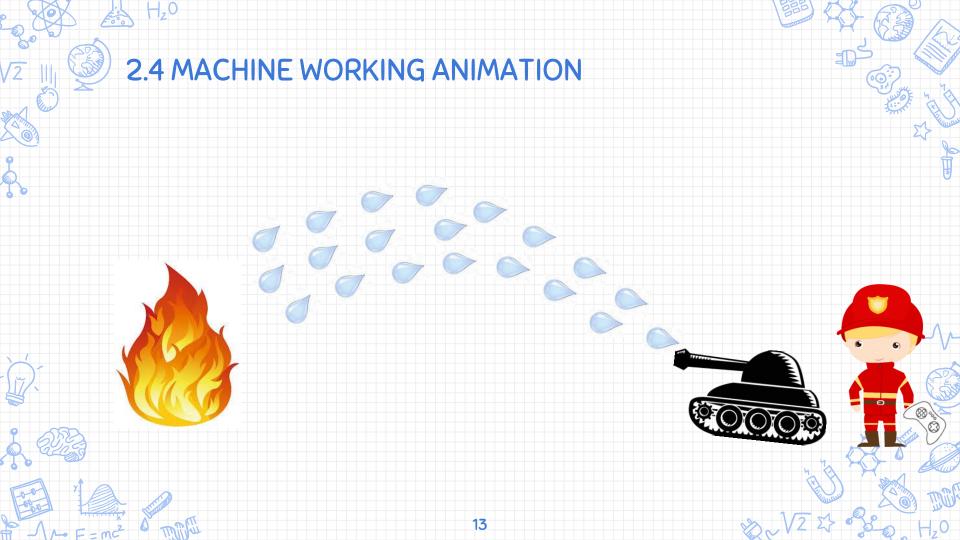
Unmanned Aerial Vehicle

Strength	Weakness
High speed. It takes a very short time	Unable to be in air for long. It is highly
for preparation and can immediately	energy consuming and so cannot be
extinguish fire just after the arrival of	used for a long period.
fire fighter.	
High reach ability. It can reach high	Unable to extinguish a large amount of
place and extinguish fire which is	fire at one time. Only limited amount of
barely possible to be reached by	water can be carried.
ground vehicle.	

Search and Rescue Robot

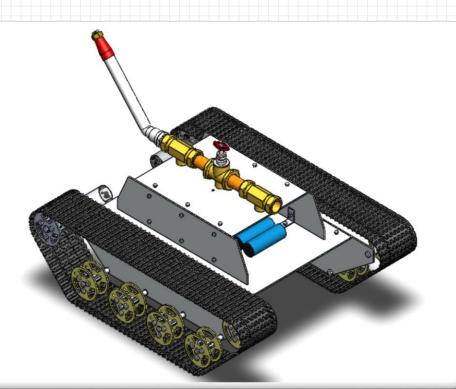

Strength	Weakness
Wider and clearer vision as infrared camera is installed.	Low mobility. Any narrow place will restrict the movement of this machine.
Reduce the safety risk. This machine can	The carbon dioxide sprayer can only
go much deeper into the burning site as	carry a limited amount of carbon
compared to the other two.	dioxide.


Unmanned ground vehicle

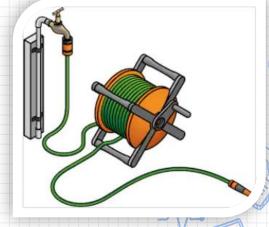

Strength	Weakness	
High flow rate and unlimited source of water. It can tackle large amount of industrial fire.	High cost for material and technology.	
Clearer vision as high velocity fans can be	Duration for fabrication is longer as the	
used to ventilate smoke.	machine is bigger in size and is more	
	complicated.	

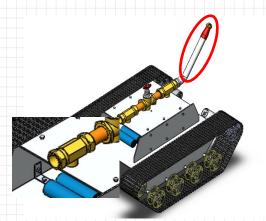
- ... After debating on the pros and cons, the unmanned ground vehicle is chosen as the final design.
- Due to the ability of the machine to cope with severe fire and the convenience in reaching the source of water,

The sketching of final design



3.0 Final Design With Drawing


FINAL DESIGN:



3.1 WORKING PRINCIPLE

★ With our design. the water hose will be connected to the main water source from outdoor taps

×

This hose is then connected to the body of the unmanned ground vehicle via valves. This valve then connects it to the water nozzle which in turn will shoot water out, extinguishing the fire.

3.2 MATERIAL SELECTION

BODY:	Material	Advantage	Disadvantage
	Aluminium	 lighter metal in terms of density more cheaper 	 it's more prone to breaking out right It also doesn't absorb vibrations well
	Steel	 known for being tough and hard heat resistance 	 Quite expensive heavy
	Copper	 Conductivity and heat resistant Cheap 	 High ductility and malleability Cant withstand high force

VERDICT: Steel is chosen due to its ability to withstand:

- HIGH PRESSURE
- HIGH HEAT

NOZZLE AND CONNECTING PARTS

Component	Material	Advantage	Disadvantage
T-shaped tube	PVC	Low cost	 Can't stand
Automated close		Rust	with high
valve		resistance	temperature
Normal tube		 Due to less 	 Due to their
2 different size tube		friction it	non-
left and right		saves the	decomposing
		energy in the	property
		conveyance of	
		water.	

GR

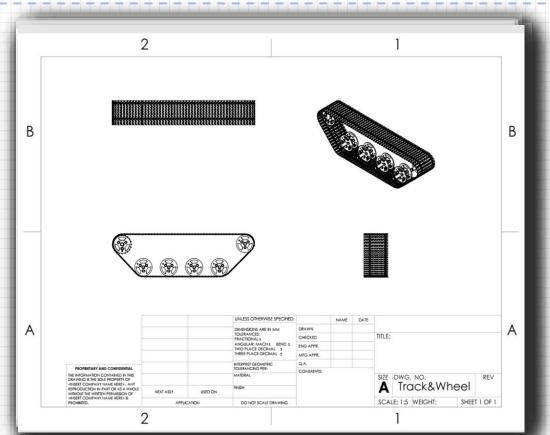
VERDICT: PVC IS CHOSEN BECAUSE:

- ABLE TO WITHSTAND HIGH PRESSURE FROM WATER
- LOW COST

TRACK AND WHEEL

Material	Material	Advantage	Disadvantage	
Bearing wheel Driving wheel	aluminium	High strengthEconomical	 Quite expensive Energy intensive to produce 	· · · · · · · · · · · · · · · · · · ·
Track	Plastic	 Low cost Rust resistance Smooth moving on land 	 Can't stand high temperature Due to their non- decomposing property 	

METAL FASTENERS:


- I. BOLTS
- II. RIVETS
- iii. NUTS
- IV. SCREWS
- V. BRACKETS

Advantage	Disadvantage
Temperature resistance	Slightly more expensive
Resistance of corrosion	Need to be properly fastened
Durability & longevity	Steel cannot be mold in any direction
Low maintenance & high value	Steel is heavy

Î

VERDICT: SUITABLE MATERIAL CHOSEN IS STEEL.

ORTHOGRAPHIC DRAWINGS OF PARTS

4.0 Engineering Analysis

Based on the model we designed, several calculations are made as such:

1. FLOW RATE

2. PROJECTILE

3. WHEEL VELOCITY

4. BOLT & FREE BODY DIAGRAM

FLOW RATE CALCULATION

h = 0.18m from ground to the entrance of pump

By using Bernoulli Equation,

 $\frac{P_1}{\rho} + \frac{{v_1}^2}{2} + gh = \frac{P_2}{\rho} + \frac{{v_2}^2}{2} + gh$

 $\frac{126 - 101 kPa}{997} + \frac{1^2}{2} = \frac{v_2^2}{2} + (9.81) (0.18)$ $v_2 = 6.90 \text{ m/s}$

Find flow rate, Q, $A_1 = 0.015 \text{ m}$ $A_2 = 0.010 \text{ m}$

 $v_2 = V_1 = 6.90 \text{ m/s}$

... Q = AV $A_1V_1 = A_2V_2$ $0.015 (6.90) = 0.010 V_2$ $V_2 = 10.35 \text{ m/s}$

PROJECTILE CALCULATION

Maximum horizontal distance: $= \frac{y^2 \sin(2\theta)}{g}$ $= \frac{(10.35)^2 \sin(2 \cdot 45)}{9.81}$ = 10.92m

Vertical distance: $= \frac{y^2 \sin^2(\theta)}{2g}$ $= \frac{(10.35)^2 \sin^2(45^\circ)}{2(9.81)}$ = 2.73m

23

... Maximum vertical distance:

= 2.73 + 0.29 (m) = 3.02m

WHEEL VELOCTY CALCULATION

Gear ratio, n

Diameter motor gear = 3cm

Diameter wheel gear = 5cm

n = 5/3

Wheel gear angular velocity, ωw :

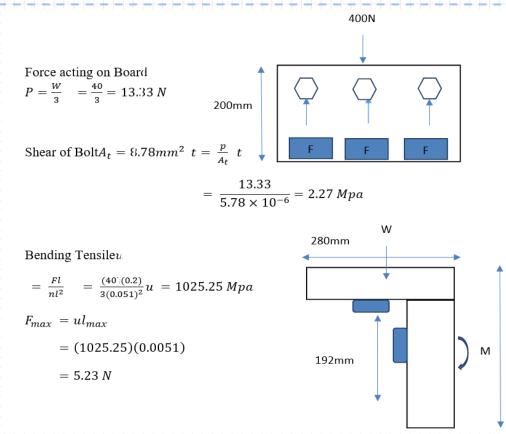
 $\omega w = 13.08 \text{ rad/s} \times \frac{3}{5}$

= 7.848 rad/s

Motor gear angular velocity, ωm:

 $\omega m = \frac{125 \text{ rpm}}{60 \text{ s}} \times 2\pi$

= 13.08 rad/s


Linear velocity of wheel, vw : vw = 0.025 x 7.848 rad/s

vw = rww

= 0.1982 m/s

BOLT CALCULATION & FREE-BODY DIAGRAM

200mm

CONTINUATION,

$$\sigma = \frac{F_{max}}{A_t}$$

$$= \frac{5.23 N}{(8.78 \times 10^{-6})} = 6.00 Mpa$$

$$\sigma_{1,2} = \frac{\sigma}{2} \pm \sqrt{(\frac{\sigma}{2})^2 + t^2}$$

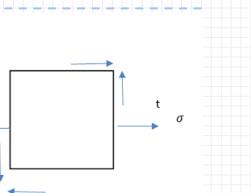
$$= \frac{6.00}{2} \pm \sqrt{(\frac{6.00}{2})^2 + (2.27)^2}$$

$$= 3.00 \pm 3.76\sigma_1$$

$$= 6.76Mpa\sigma_2 = -0.76 Mpa$$

<u>Tresca</u>

26

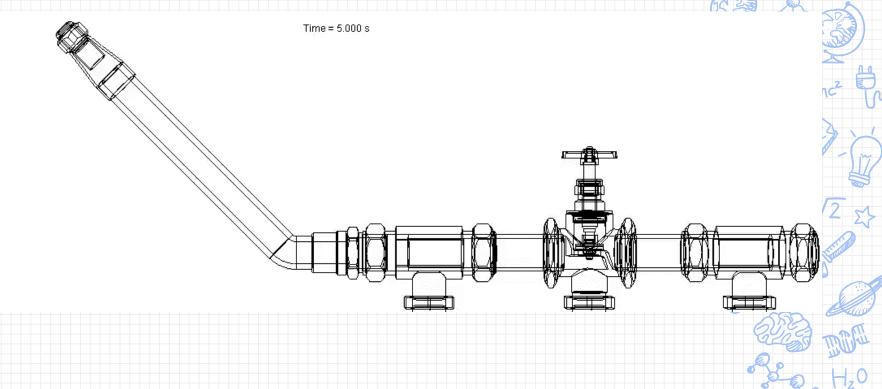

$$\sigma_1 - \sigma_2 = \sigma_{allow}\sigma_{allow} = 7.52 Mpa$$

<u>Von Misses</u>

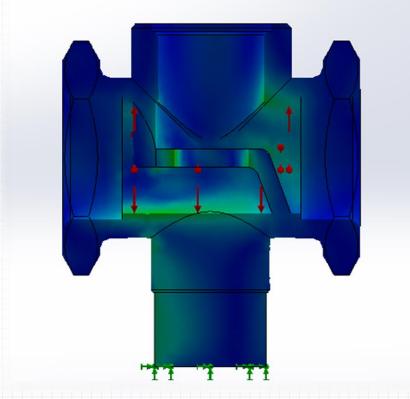
 $\sigma_{1^2} - \sigma_1 \sigma_2 + \sigma_{2^2} = \sigma_{allow^2} \sigma_{allow}$

$$= \sqrt{(6.76)^2 - (6.76)(-0.76) + (-0.76)^2}$$

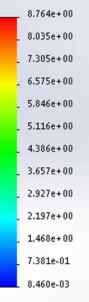
= 7.17 Mpa


FACTOR OF SAFETY

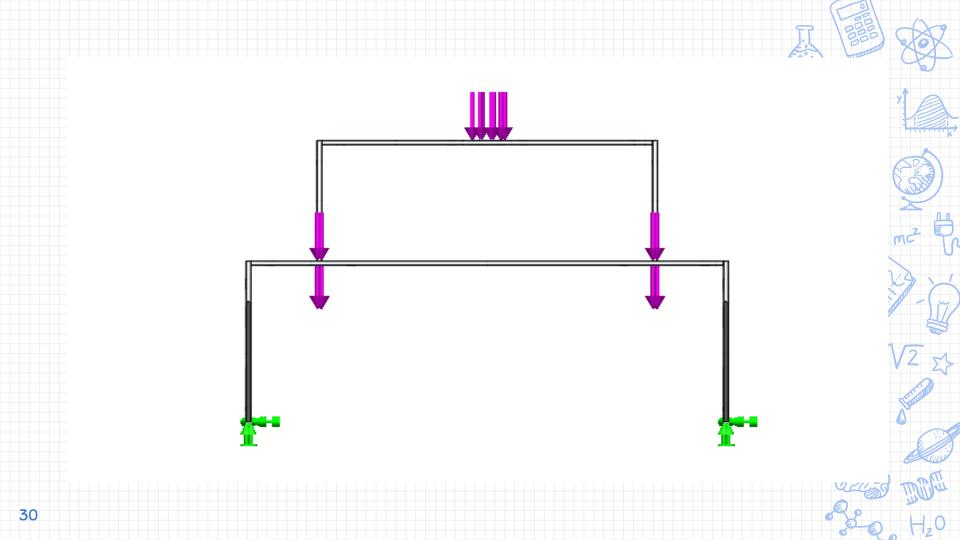
	Failure Mode and Theory	Factor of Safety
	Shear Stress	$n = \frac{S_p}{t} = \frac{650}{2.27} = 286.34$
	Bending Tensile	$n = \frac{S_p}{\sigma} = \frac{650}{6.00} = 108.3$
	Tresca Theory	$n = \frac{S_p}{\sigma_{allow}} = \frac{650}{7.52} = 86.43$
	Von Misses Theory	$n = \frac{S_p}{\sigma_{allow}} = \frac{650}{7.17} = 90.65$
27		


00

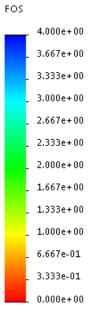
5.0 Visual Aids


5.1 NOZZLE WATER SIMULATION

5.2 SIMULATION




von Mises (N/m^2)



F=mc

→ Yield strength: 2.397e+08

6.0 Cost

32

	Material	Quantity	Price(RM)	
1	Stainless steel plate(2*150*150)mm			
		2	55.00	$E = mc^2 \int_{0}^{\infty}$
2	Motor DC 12V 125 rpm	1	42.00	
3	Automatic valve			A Allende
		1	12.20	

(0) 30

8	PU Tube	5metre	7.00
9	Track wheel	A pair	57.00
10	Arduino Set	1 set	46.00
	TOTAL		308.25
34			

CONCLUSION

