

TWO DIMENSIONAL (2D) STEPPER MOTOR CONTROLLER USING

JAVA PROGRAMMING

ANITH KHAIRUNNISA BINTI GHAZALI

UNIVERSITI TEKNOLOGI MALAYSIA

UNIVERSITI TEKNOLOGI MALAYSIA

DECLARATION OF THESIS / UNDERGRADUATE PROJECT PAPER AND COPYRIGHT

 Author’s full name : ANITH KHAIRUNNISA BINTI GHAZALI

 Date of birth : 28TH OCTOBER 1992

Title : TWO DIMENSIONAL (2D) STEPPER MOTOR CONTROLLER USING JAVA

 PROGRAMMING

 Academic Session : 2014/2015

I declare that this thesis is classified as :

I acknowledged that Universiti Teknologi Malaysia reserves the right as follows :

1. The thesis is the property of Universiti Teknologi Malaysia.

2. The Library of Universiti Teknologi Malaysia has the right to make copies for the purpose of

research only.

3. The Library has the right to make copies of the thesis for academic exchange.

 Certified by :

 _______________________________ ________________________________

 SIGNATURE SIGNATURE OF SUPERVISOR

921028-14-5268 DR ABD RAHMAN BIN TAMURI
 (NEW IC NO. /PASSPORT NO.) NAME OF SUPERVISOR

 Date : 7TH JUNE 2015 Date : 7TH JUNE 2015

UNIVERSITI TEKNOLOGI MALAYSIA

TWO DIMENSIONAL (2D) STEPPER MOTOR CONTROLLER USING

JAVA PROGRAMMING

ANITH KHAIRUNNISA BINTI GHAZALI

A report submitted in partial fulfilment of the

requirements for the award of the degree of

Bachelor of Science (Industrial Physics)

Faculty of Science

Universiti Teknologi Malaysia

2015

ii

“I here would like to state that I have read this thesis and in my opinion this thesis

fulfils the scope and quality to be awarded a degree of Bachelor of Science

(Industrial Physics).”

Signature : ____________________________

Supervisor : DR ABD RAHMAN BIN TAMURI

Date : 28TH JUNE 2015

iii

 “I declare that this report entitled “Two Dimensional (2D) Stepper Motor controller

using Java Programming” is the result of my own research except as cited in the

references. The report has not been accepted for any degree and is not currently

submitted in candidature of any other degree.”

Signature : ____________________________

Name : ANITH KHAIRUNNISA BINTI GHAZALI

Date : 28TH JUNE 2015

iv

To my mother, father, brothers and friends, thank you for your support.

“I love all of you”

v

ACKNOWLEDGEMENTS

 Alhamdulillah and praise to Allah (S.W.T) who has guided me to complete the

thesis. I would like to express my appreciation to my supervisor, Dr Abd Rahman Bin

Tamuri for his professional advice, endless support and guidance during the process

to develop this project. I would like to thanks all lecturers who have directly or

indirectly help and share their knowledge with me to complete the project. I’m also

very thankful to my friends who shared idea and opinion about this research. Lastly,

special thanks to my beloved parents Encik Ghazali Bin Othman and Puan Che Norlida

Binti Ismail for their prayers and moral support to make this project successful.

vi

ABSTRACT

A 2D stepper motor controller based on Java programming was successful

designed to control two bipolar stepper motors. A Java program was developed to

control a 3A driver board TB3-axis HY-TB3DV-N by using PIC 18F14K50. The

designed Java program can control the forward and reverse movement of stepper motor

for full step mode by setting the individual bits to zero as output and one as input. In

full step mode, two phases are always ‘on’ and ‘off’ alternatingly to produce maximum

rated torque. The controller was set to move the stepper motor in range from (0,0) to

(540,0) for x axis and from (0,0) to (0,400) for y-axis. For positioning, Java will save

the current position and calculate the step for next position using loop method and for

reset action, two micro switch was placed at origin as initial point to keep the

equipment operating safely. When physical contact occurs between stepper motor and

micro switch, the logic 1 (5V) is set which will cause the circuit open and current

position is set to (0,0). From the result, the frequency of stepper motor is 50Hz and the

resolution is 1mm/pulse for the grid size 54 cm x 40 cm. The output square waveform

will be seen on the display of oscilloscope and several information such as period, and

duty cycle were analysed. For positioning, the result in experiment will be compared

to from the actual measurement and the uncertainty was recorded. Minimum

uncertainty for x-axis is -2mm and minimum uncertainty for y-axis is -3mm.

vii

ABSTRAK

Pengawal motor pelangkah 2D telah berjaya direka menggunakan

pengaturcaraan Java adalah reka bentuk untuk mengawal dua buah motor pelangkah

bipolar. Pengaturcaraan Java telah dibangunkan untuk mengawal 3A papan penggerak

TB3 HY-TB3DV-N dengan menggunakan PIC 18F14K50. Program Java yang direka

boleh mengawal pergerakan motor pelangkah ke hadapan dan belakang untuk mod

langkah penuh dengan menetapkan bit individu kepada sifar sebagai output dan satu

sebagai input. Dalam mod langkah penuh, dua fasa buka dan tutup sentiasa berselang

seli untuk menghasilkan tork yang maksimum. Pengawal ini telah direka untuk

menggerakkan motor pelangkah dalam julat dari (0,0) ke (540,0) untuk paksi x dan

dari (0,0) ke (0,400) bagi y paksi. Untuk mengawal kedudukan, Java akan menyimpan

kedudukan semasa dan mengira langkah untuk kedudukan seterusnya menggunakan

kaedah loop. Untuk set semula, kedudukan motor pelangkah dua suis mikro diletakkan

di titik permulaan untuk menmastikan peralatan beroperasi dengan selamat. Apabila

sentuhan fizikal berlaku antara motor pelangkah dan suis mikro, logik 1 (5V) adalah

sebagai penentu untuk memutuskan litar t dan set kedudukan semasa kepada (0,0).

Dari hasil kajian, frekuensi motor pelangkah adalah 50Hz dan resolusi adalah

1mm/nadi untuk saiz grid 54 cm x 40 cm. Bentuk gelombang output persegi dapat

dilihat pada paparan osiloskop dan beberapa maklumat seperti tempoh, dan kitar tugas

telah dianalisis. Untuk kawalan kedudukan, hasil dalam eksperimen akan

dibandingkan dengan ukuran sebenar dan ketidaktentuan direkodkan. Ketidaktentuan

untuk paksi x ialah -2mm dan untuk paksi y ialah 3mm.

viii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION ii

 ACKNOWLEDGEMENTS v

 ABSTRACT vi

 TABLES OF CONTENTS vii

 LIST OF TABLE x

 LIST OF FIGURES xi

 LIST OF ABBREVIATIONS xii

 LIST OF SYMBOLS xiv

1 INTRODUCTION

1.1 Background of Research

1.2 Problem Statement

1.3 Objective of the Research

1.4 Scope of the Research

1.5 Significantce f the Research

1

2

2

3

3

2 LITERATURE REVIEW

2.1 Introduction

2.2 Stepper Motor

2.3 Purpose of Controller

2.4 Stepper Motor Driver

4

4

5

6

ix

2.5 Types of Driver

2.6 Requirements of Driver

2.7 Full Stepping and Half Stepping

2.8 Micro Stepping

2.9 Unipolar and Bipolar

2.10 Stepper Motor System

2.11 Motor Characteristics

2.12 Advantages of Stepper Motor

7

8

9

9

10

11

12

13

3 RESEARCH METHODOLOGY

3.1 Introduction

3.2 Experimental Setup

3.3 Instruments

3.4 Circuit Design

3.5 Java Programming

14

15

16

20

23

4 RESULTS AND DISCUSSION

4.1 Results

4.2 Discussion

29

33

5 CONCLUSION

5.1 Conclusion

5.2 Recommendation

38

39

 LIST OF REFERENCES 40-41

 APPENDICES 42-48

x

LIST OF TABLES

TABLE NO.

TITLE

PAGE

2.1 Electrical part for one cycle.

8

3.1 The definition of 1-PIN 25 of Parallel Interface 18

3.2 The connection between 1-PIN 25 of Parallel

Interface with PIC18F14K50

20

4.1 Steps and average distance x

30

4.2 Steps and average distance y

31

4.3 Truth table

33

4.4 Comparison between Java Programming and

hardware

36

xi

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 General arrangement of drive system

8

2.2 Unipolar stepper motor

11

2.3 Bipolar stepper motor

11

3.1 Block diagram of experimental setup

15

3.2 Micro switch

16

3.3 Stepper motor driver

17

3.4 Bipolar stepper motor

18

3.5 PIC18F14K50

19

3.6 Oscilloscope

19

3.7 Circuit block diagram

21

3.8 Computer, microcontroller and

parallel interface block diagram

22

3.9 Flow chart of Java Programming

23

3.10 Coding for forward button

24

3.11 Coding for reverse button

25

3.12 Coding for reset button

26

xii

3.13 Coding for check changes

27

3.14 Coding for positive changes

27

3.15 Coding for negative changes

27

4.1 Steps vs average distance x

30

4.2 Steps vs average distance y

31

4.3 Output for 10 ms

33

4.4 Output for 20 ms.

36

xiii

LIST OF ABBREVIATIONS

2D - Two dimensional

AC - Analog

ADC - Analog-to-Digital converter

DC - Direct current

Hz - Hertz

PIC - Programmable Intelligent Computer

Std Dev - Standard Deviation

xiv

LIST OF SYMBOLS

A - Ampere

f - Frequency

mm - Milimeter

ms - Milisecond

T - Time

V - Voltage

1

CHAPTER 1

INTRODUCTION

1.1 Background of Research

 The stepper motor is a brushless motor that converts the digital pulses into

mechanical shaft rotations. The number of rotation will be divided into a group number

of steps. A separate pulse for each step will be sent by stepper motor.

 Besides that, stepper motor is one type of the DC motor that moves in discrete

steps. The motor will rotate one step at a time and at a same length. This will happen by

energizing multiple coil called phase.

2

 By using computer controlled stepping, precise positioning and speed control can

be achieved. If the frequency of the digital pulse increase, a continuous rotation will

convert the stepping movement with the velocity of the rotation directly proportional to

control pulse frequency. The stepper motors are widely used in machines and devices due

to some characteristics such as low cost, accuracy, compact size and high torque at low

speeds.

1.2 Problem Statement

A two dimensional (2D) stepper motors are very important in order to get high

precision reading of measurement. In this research, the Java program was used to develop

a simple stepper motor controller that capable to control and positioning the stepper motor

using microcontroller PIC18F14K50 and stepper motor driver TB3-axis HY-TB3DV.

1.3 Objective of the Research

The objectives of this study are:

a. To control and positioning 2D stepper motor by develop a Java programming

software system that can be used to control and display motion of stepper motor.

b. To characterize the performance of the developed system.

3

1.4 Scope of the Research

The scope of this project will cover the concepts of DC stepper motor operation

and the system to control the stepper motor by comparing with the Java programming.

The Java programming will control the position and movement of stepper motor on the

540mm x 400mm grid. The microcontroller PIC18F14K50 and 3A of TB3-axis HY-

TB3DV stepper motor driver with USB interface circuit are used during the development

of the electronic circuit.

1.5 Significance of the Research

 The small movement of stepper motor can be monitored by the developed

software program. The performance can be characterized by monitoring the movement

using Java program. By designing simple stepper motor driver and circuit, the movement

of stepper motor can be verified.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

 This chapter will discuss in details on the concepts of stepper motor driver and

the system of the operation. In addition, the concepts of steps modes will be also

deliberated.

2.2 Stepper Motor

 According Jeff Keljik (2007), stepper motor create incremented step of motion

rather than a smooth unbroken rotation. Basic concept.of stepper motor explained

using permanent magnet on rotor with two sets of poles. After DC pulses energize

5

the stator, the permanent magnet will be repelled or attracted to line up with the stator

magnetic poles.

 The important feature of the stepper motor is the way it revolve. The motor

will revolve through a fixed angle for each pulse applied to the logic sequencer. When

receive the step command pulse, logic sequence will determine either the phase to be

energized or de-energized. Then, it send signals to stepper motor driver. If the output

channel from logic sequencer is ‘HIGH’ the power works to excite the corresponding

phase of the winding. At the phase of the same number will not excite or tuned off if

the output is ‘LOW’.

2.3 Purpose of Controller

 According to Herman and Alerich (1990), some factor need to be considered

when selecting and installing motor controller for use with machine or system. First

factor when the motor stated by connecting directly across the source voltage. Slow

and steady starting required to protect the machine and ensure the current inrush is not

too large amount.for the power system. Besides that, some driven machines might be

damaged if they are started with rapid turning effort.

 Next factor that need to be consider is during stopping. Usually, controllers

allows stepper motor to glide to a standstill motor when stop. There are some controller

force the braking action when the machine stop immediately. Speedy stopping is

important function of the controller for emergency stops. Controllers help the stopping

action by delaying the motion of stepper motor and lowering operation of pulley.

6

 Another factor for selecting and installing motor controller are reversing and

running occurrence. During reversing, controllers require to change the rotation of

stepper motor automatically or by operator command at a control panel. For reversing,

the main purpose and function of controller to maintain the speed of operation and

their characteristics. Controller will keep the motors, machine and instrument safe

while running.

2.4 Stepper Motor Driver

 The function of the stepper motor driver is to control the movement of the

stepper motor. The stepper motor driver will receive steps and signals of directions

from a control system using computer. According to Giorgos Lazaridis (2010),

electrical power will be converted into mechanical power by using stepper motor. The

difference between stepper motor and other motors are the way they work. Stepper

motor does not rotate continuously and each step is a fraction of a full circle. Every

step of the stepper motor shaft needs a pulse. Usually, a standard 200 steps motor will

need 200 steps to complete one revolution of the stepping motor shaft in full step. The

stepper motor shaft rotation and speed is directly proportional to the frequency of the

pulse.

 From the stepper motor driver, current will flow to the winding, so, the speed

and torque of a stepper motor can be determined. The inductance will reduce the time

taken by current during energizing the winding process. Basically, stepper motor

7

driver circuit is designed to supply large amount of voltage rather than the stepper

motor rated voltage. If the stepper motor driver gives higher output voltage, this will

lead to higher level of torque versus speed. The output voltage from stepper motor

driver also known as a bus voltage. Besides that, it should be rated five to ten times

higher than the stepper motor voltage rating. The stepper motor controller current

should be limited to the stepper motor current rating in order to protect the stepper

motor.

2.5 Types of Driver

 According to Austin Hughes (1990), there are three types of driver that are

commonly used in industrial sector such as constant voltage drive, current forced drive

and chopper drive. All types of driver need a transistor which act as switches either

turned fully on or being cut off. Constant voltage driver is the simplest type of driver.

The driver provides a reasonably good approximation to a rectangular current

waveform at low stepping rate. At higher frequency, the ‘on’ period is short compared

to the winding time constant and the current waveform will degenerates. When the pull

out torque speed drop rapidly, it means that the motor is limited to low speed operation.

For the type of current-forced driver, they need a higher supply voltage to increase the

rate of rise of current during switch-on state. An additional resistor has to be added in

series with the winding to prevent the current from exceeding the rated value. Chopper

driver used a high power voltage with two switching transistor attached to it at every

phase. First transistor is turned on for the whole period during which current is

required. Then, the second transistor will turn on when actual current drop below the

threshold.

8

2.6 Requirements of Driver

 Basically, the complete driver functions as a converter to convert command

input signals into appropriate patterns of current in motor windings.

Figure 2.1: General arrangement of drive system

 The converter changes the step command pulses into ‘on’ and ‘off’ signal at

each of three power stage. During this stages, current will supply to the windings.

When converter energised a phase, the current should established immediately. Then

current will maintain constant during the ‘on’ period. When the converter calls to turn

off, it should be reduced to zero immediately (Austin Hughes,1990).

9

2.7 Full Stepping and Half Stepping

Table 2.1: Electrical part for one cycle.

Electric polarity
Winding A

Winding B

+ +

+

+

-

+

- -

-

-

+

-

Electrical cycle part
Full-stepping 1 2 3 4

Half-stepping 1 2 3 4 5 6 7 8

 The Table 2.1 shows that the full stepping mode powers one winding at one

time. Takashi Kenjo (2001) states that this situation has cause four different possible

position during full stepping. If both of the winding were powered, the stepper motor

will be trapped between the positions and this event is known as half stepping. Besides

that, by powering winding simultaneously gives 8 position as shown in ‘Half stepping

row’. This action will also cause the torque 1.4 times higher than powering one

winding but the cause power consumption are twice.

2.8 Micro Stepping

 According to Bob Parente (2011), the function of a driver is to drive the stepper

motor in micro step motion. Each phase will receive different amounts of currents to

force the motor to make a step. One pulse for full stepping is 1.8o of rotation while for

half stepping is 0.9o of rotation. Micro stepping can be calculated by dividing the

natural full step of motors with the smaller increment. The formula is shown as below:

10

Micro steps = Pulse/ seconds

The micro stepping will cause the motor to run as smooth as possible. For a smooth

motor, the driver will send two sine waves at 90 degrees at a phase. The results of

motor rotation will be quite perfect if two step coil can be made to follow these sine

waves. The two waves are functioning to keep the motor in a smooth transition from

pole to pole. If the current decreases in one coil, it will increase in another coil and this

will lead to an advance smooth step and output torque at each position are passed

continuously.

2.9 Unipolar and Bipolar

 A stepper motor that operates in one winding and a centre tap per phase was

called as unipolar type of motor. Every single section of the winding will be switched

on for each direction of the magnetic field. The winding will be switched on for each

direction of the magnetic pole that can reverse the direction of current without

switching it.

Figure 2.2: Unipolar stepper motor

11

 M. Fauzi (2010) states that wired unipolar motor is as shown in Figure 2.2

above with a center tap of two windings. Positive supply wire is connected to the center

tap and the two ends of each winding alternately grounded to reverse the direction of

the field provided by windings.

Figure 2.3: Bipolar stepper motor

 According William Yeadon (2001), bipolar stepper motor is exactly the same

as unipolar stepper except the two windings are wired more simple and there is no

center taps. Usually bipolar motor wired as shown in the schematic diagram. The

driving circuit will be more complex to switch the magnetic pole for converting the

current in the winding. Bipolar motor has two leads per phase and it is quite difficult

to operate compared to unipolar motor because the feature of wire is twice in the same

space.

2.10 Stepper Motor System

 Stepper motor can be controlled by computer, microprocessor or

programmable controllers. The output shaft rotates in a series of discrete angular

intervals or steps. When one step is taken at a time, a command pulse is received. After

12

a definite number of pulse has been supplied, the shaft will turned through a known

angle, and this makes the motor suits ideally for an open loop position control. Each

step can be completed in a few milliseconds. When a large number of steps is set for

the step, command pulse will deliver rapidly, sometimes as fast as several thousand

steps per second. At a high stepping rate, the shaft rotation becomes smooth and works

like an ordinary motor (Austin Hughes, 1990).

2.11 Motor Characteristics

 Herman and Alerich (1990) state that two phase synchronous motor have the

ability to virtually start, stop or reverse direction of rotation instantly. The motor starts

about one and half cycle of the applied voltage and stop within 5 to 25 millisecond.

There are no induced current in rotor and no high inrush of current occurs when motor

is started because the rotor is a permanent magnet. The amount current applied during

starting and running are same. The motor did hold the received torque when it is turned

off due to the permanent magnet structure. If more holding torque is needed, DC

voltage can be used to one or both windings when motor is turned off. If DC applied

only one windings, holding torque will be applied at approximately 20% greater than

rated torque. While, if applied to both windings, holding torque will be one and half

time greater than rated torque.

13

2.12 Advantages of Stepper Motor

 Stepper motor works as a digital electromechanical device where each

electrical pulse input resulted from the movement of the rotor by a discrete angle called

step-angle of motor. Alexandru Morar (2013) states that there are several advantages

of stepper motor. Firstly, the relationship between rotations angles of the motor is

proportional to the input pulse. Secondly, the motor has full torque at standard, even

when the winding are energized. Next, stepper motors have precise positioning and

memorize the position. Lastly, the motor is simple and require less cost to control

because it is compatible with digital technique.

CHAPTER 3

RESEARCH METHODOLOGY

3.1 Introduction

 This chapter is about the clarification of research methodology that ensures this

research will complete and function very well. As stated before, the main purpose of

this research is to design a stepper motor controller by using Java programming. The

proper procedures were applied in order to achieve the objectives of the research and

generate good results. In this chapter the instruments used, programming and the

information of the controller is also elaborated and explained. Data were collected

throughout the whole process of the research by applying procedures given.

15

3.2 Experimental Setup

 Before the experiment is carried out, a proper setup is required to minimize the

difficulties and mistakes. The sequence of setup is shown in the figure below.

Figure 3.1: Block diagram of experimental setup

 Figure 3.1 clarifies the sequence of action to be taken into consideration before

the experiment was carried out. The first step is the development of Java programming

that serves as the controller of the stepper motor for forward, reverse, positioning and

reset motion. The second step is the designing of electrical circuit by using computer,

microcontroller (PIC18F14K50), driver (HY-TB3DV) and stepper motor. The third

16

step is the hardware setup. At this stage, the size of grid, maximum and minimum

movement of stepper motor for y–axis and x–axis were checked. The next step in the

experimental setup is the calibration stage. During this stage, the initial position of

stepper motor was set at (0,0) on the grid and also in the software. Besides that, the

scale on the hardware and software are calibrated. The last step to be taken is to test

the performance of the stepper motor by checking the step, direction and distance

moved by the stepper motor.

3.3 Instruments

 Several instruments was used in this experiment such as micro switch, stepper

motor driver, bipolar stepper motor, PIC18F14K50, and oscilloscope. The details

about instrument will discuss in this subtopic.

Figure 3.2: Micro switch

17

 Figure 3.2 shows the limit micro switch that was used in this research. The

micro switch consists of one electromechanical actuator that detect any contact. When

the stepper motor meets the actuator, the micro switch triggers to break electrical

connection. Besides that, micro switch also functioned as an emergency device to

prevent machinery from being malfunctioned.

Figure 3.3: Stepper motor driver

 The 3A driver board TB3-axis HY-TB3DV-N in Figure 3.3 was installed with

Toshiba TB6560 Stepper Motor Driver PIC and this component was used in this

research as part of the stepper motor driver. This device is a PWM chopper-type

stepping motor driver PIC that was designed for controlling the micro step sinusoidal-

input for bipolar stepping motor. TB6560 can be used for 2-phase, 1-2 phase, 2

winding 1-2 phase and 4 windings 1-2 phase excitation modes. Besides that, it is also

capable to produce low vibration, high performance reverse and forward driving of

two phase bipolar stepping motor by using clock signal. During handling TB6560,

environment must be protected against electrostatic discharge because these ICs are

highly sensitive to electrostatic discharge. Other component such as micro switches

were used in this research to detect the presence and absence of stepper motor by

physical contact. These devices are good in applications because they require simple

on and off actions, so, they were used to reset position of the stepper motor.

18

Table 3.1: The definition of 1-PIN 25 of Parallel Interface

PIN 9
PIN

14

PIN

7

PIN

1
PIN 2

PIN

3

PIN

8
PIN 6

PIN

4

PIN

5
PIN 16 PIN 17

Spindle

motor

X

Enable

X

Dir

X

Step

Y

Enable

Y

Dir

Y

Step

Z

Enable

Z

Dir

Z

Step

Expand

output1

Expand

output2

 Table 3.1 shows the definition of 1-PIN 25 Parallel Interface. This Parallel

Interface was attached to the 3A driver board TB3-axis HY-TB3DV-N stepper motor

driver.

Figure 3.4: Bipolar stepper motor

Two bipolar stepper motor in Figure 3.4 with 1.8º of rotation were used for x-

axis and y-axis in this research. During operation, the current flow for x-axis motor is

0.65A and the current flow for y axis is 1A. The stepper motor will rotate continuously

when 12V DC voltage is applied and the input pulse is converted into shaft increment.

Every single pulse will rotate the shaft at specific angle. Besides that, PIC 18F14K50

will energize the electromagnet to make the shaft turn.

19

Figure 3.5: PIC18F14K50

The ‘Peripheral Interface Controller’ (PIC) in Figure 3.5 can be programmed

to carry out a wide range of task in electrical field. Usually, the PIC is found in various

electronic devices such as alarm system and phones. A compact microcomputer was

designed to direct the operation in machines. Basically, a microcontroller consists of

processor, memory and peripheral. PIC18F14K50 has three digital PORT A, B and C.

RB 4 – RB 7 from PORT B is set for y-axis and RC0-RC7 from PORT C is set for x-

axis. The microcontroller will connect to 25-PIN Parallel Interface on the drive for

Enable, Direction and Step signals. The direction of stepper motor is determined when

the signal at logic ‘HIGH’ (5V). The rotation clockwise or counter-clockwise will

depend on how the motor phase are wired.

20

Figure 3.6: Oscilloscope

 The oscilloscope in Figure 3.6 was used to obtain the output results. Most

oscilloscope produce a two dimensional graph. Time parameter will represent on x-

axis. While, voltage parameters represent on the y-axis. In addition, oscilloscope can

detect the malfunction of circuit by determining the frequency and amplitude.

Furthermore, oscilloscope also can identify the noise and the shape of waveform. In

this project, oscilloscope was used to observe output signal produce when the stepper

motors running.

3.4 Circuit Design

The connection between computer, microcontroller and stepper motor driver

was determine before design the circuit.

21

Table 3.2: The connection between 1-PIN 25 of Parallel Interface with

PIC18F14K50

x-axis

Signals Parallel Interface PIC18F14K50

Enable PIN 14 PC 0

Direction PIN 7 PC 1

Steps PIN 1 PC 2

y axis

Enable PIN 2 PB 4

Direction PIN 3 PB 5

Steps PIN 8 PB 6

 Table 3.2 shows the Pin involved between PIC18F14K50 and Parallel

Interface. The PIC18F14K50 that attached to the driver board TB3-axis HY-TB3DV

was programmed with Java programming to make it work.

Figure 3.7: Circuit block diagram

22

Figure 3.7 shows how the stepper motor controller circuit was connected. From

the Java Program, the signal will be sent to the PIC18F14K50 microcontroller. The

selected pin for PIC18F14K50 was set for stepper motor of x-axis and y-axis Then,

the PIC18F14K50 will be connected to the driver board TB3-axis HY-TB3DV by

Parallel Interface. Two stepper motor for y-axis and x-axis were connected directly to

the driver and two micro switch were connected to the PIC18F14K50.

Figure 3.8: Computer, microcontroller and parallel interface block diagram

 The connection between computer, microcontroller and parallel interface was

shown in Figure 3.8. Java programming will give command through PORT C for x-

axis and PORT B for y-axis. For x-axis stepper motor, PC0 was set to Enable signal,

PC1 was set to Direction signal and PC2 was set to Step signal. While, for y-axis, PB4

was set to Enable, PB5 to Direction signal and PB6 was set to Step signal. Next, the

PIC18F14K50 will connect to Parallel Interface according to their pin in the definition

of 1-PIN 25 Parallel Interface.

23

3.5 Java Programming

Java programming is used to construct the command to control the stepper

motor for forward and backward direction. This program is also able to reset and

position the stepper motor to the selected point. The sample command will be shown

below and the complete command can be referred in APPENDIX A. Java

programming will display the position of stepper on the interface. The sequence to

control the stepper motor was planned before developed the coding.

Figure 3.9: Flow chart of Java Programming

24

 Figure 3.9 shows the flow of sequence for Java Programming. Before the

stepper motor operate it reset to initial point. Then operator may choose either to run

positioning mode or not. The direction of stepper motor during this mode will be

determine by the input given of next position. If operator choose the positioning, the

axis of stepper motor is selected and the operator need to put the next position. If the

operator does not choose the positioning mode, they may choose the stepper motor of

axis x or y and the direction of stepper motor.

Figure 3.10: Coding for forward button

 The forward program as shown in Figure 3.10 above will perform the

command if the current position is less or equal to 540. PORT C is used for x-axis and

3 pins were used for Enable, Step and Direction signals. The PC0 is set to Enable pin

and is always set to ‘HIGH’ signal, while PC1 is for Direction pin and is set to ‘LOW’

signal. Step pin was set at PC2 and will be always ‘on’ and ‘off’ alternatingly for every

10 ms. For y-axis, the program will perform if current position less or equal to 400 and

25

the Enable pin is connected to PB 4 and is always set to ‘HIGH’ signal. Direction pin

will be connected to PB5 and gives ‘LOW’ signal. The Step pin for y-axis is connected

to PB6 and the ‘on’ and ‘off’ signal will be also set alternatingly. Both axis will add

up the current position to get the next position.

Figure 3.11: Coding for reverse button

Figure 3.11 above shows the coding for reverse action that will be executed if

the current position is more or equal to 10 for both axis. The difference between

forward and reverse is the direction signal which is PC1 for x-axis PB5 for y-axis. In

reverse command, PC1 and PB5 is set to ‘HIGH’ and this will rotates the motor counter

clockwise. To get to the next position, pulse will be divided by ten and will be

subtracted with the current position.

26

Figure 3.12: Coding for reset button

 The reset command was designed as in Figure 3.12 above in order to set the

current position of stepper motor to the initial point (0,0). Two micro switches will

detect the presence of stepper motor for x-axis and y-axis. The switch was connected

to PIC18F14K50 microcontroller at RD6 for x-axis and RD7 for y-axis. The program

will read the analog signal input and convert into digital signal when stepper motor

triggered the micro switch.

27

Figure 3.13: Coding for check changes

Figure 3.13 shows the command to check the different position to determine

either forward or reverse movement. The positive differences will give forward

movement and the negative differences will give reverse motion.

Figure 3.14: Coding for positive changes

After calculating the differences, Java programming will solve the forward

command as shown in Figure 3.14 when the changes is positive. It will checked the

current position and do the command. The differences will be multiplied by ten to

convert into pulse.

28

Figure 3.15: Coding for negative changes

 Coding in Figure 3.15 will be accomplished if the differences were negative

and the current position has exceed or equal to ten, so the reverse command will be

functional. As in forward position, the differences will be also multiplied with negative

10 to convert into pulse and this will change the pulse to a positive value.

CHAPTER 4

RESULT AND DISCUSSION

4.1 Results

In this experiment, the full step mode was set and the results will be discussed

in this chapter. One pulse will rotate 1.8º for full stepping of rotation. To find step per

revolution, calculation is formulated as follows:

 1 pulse = 1.8º

 1 rev = 360º

𝑃𝑢𝑙𝑠𝑒

𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛
=

360°

1.8°
= 200 𝑝𝑢𝑙𝑠𝑒/𝑟𝑒𝑣

30

In this research, nine readings of stepper motor position were taken and each

reading was repeated for three times to find the average reading. The table below

shows the steps given and the distance moved by the stepper motor. The results were

recorded and the standard deviation were determined. From the research, 100 pulse

will move stepper motor 100 mm forward or reverse direction and single pulse will

move 1 mm. The maximum pulse needed to move the stepper motor is 5400 pulse for

x-axis and 4000 pulse for y-axis. For the first reading five images were taken as a proof

and the error was recorded.

Table 4.1: Steps and average distance x

Steps
Distance_x1

(± 0.1) mm

Distance_x2

(± 0.1) mm

Distance_x3

(± 0.1) mm

Average

(± 0.1) mm
Std. Dev

500 51.0 52.0 53.0 52.0 0.8

750 74.0 74.0 74.0 74.0 0.2

1000 102.0 102.0 103.0 102.0 0.4

2000 200.0 201.0 201.0 201.0 0.6

2250 227.0 227.0 228.0 228.0 0.6

2500 255.0 255.0 256.0 255.0 0.5

3000 304.0 305.0 305.0 305.0 0.6

4000 396.0 397.0 398.0 397.0 0.8

5400 544.0 545.0 545.0 545.0 0.7

31

Table 4.2: Steps and average distance y

Steps
Distance_y1

(± 0.1) mm

Distance_y2

(± 0.1) mm

Distance_y3

(± 0.1) mm

Average

(± 0.1) mm
Std. Dev

0 1.0 2.0 0.0 1.0 0.8

500 48.0 48.0 49.0 48.0 0.6

1000 100.0 101.0 101.0 101.0 0.7

1500 148.0 148.0 148.0 148.0 0.2

1850 187.0 188.0 188.0 188.0 0.6

2000 199.0 200.0 201.0 200.0 0.8

2000 201.0 201.0 202.0 201.0 0.4

3000 298.0 298.0 298.0 298.0 0.2

3500 346.0 346.0 347.0 346.0 0.4

4000 404.0 405.0 405.0 405.0 0.5

Table 4.2 and Table 4.1 above show nine data that was obtained for y–axis and

y-axis after the experiment was carried out. The average distances and the standard

deviation are determined and the graph to show the relationships between distance and

pulses are plotted in Figure 4.1 for x-axis and 4.2 for y-axis. The error for x-axis is in

the range of -3mm to 5mm while the error for y-axis is between -2mm to 5mm.

32

Figure 4.1: Steps vs average distance x

Figure 4.2: Steps vs average distance y

33

 Both Figure 4.1 and Figure 4.2 above show the relationships between distance

and pulses for x-axis and y-axis. Coefficient of determination (R2) indicates the percent

of data closest to the best fit line. It is calculated by dividing the explained of variation

with the total variation. Value of R2 represents the variance explained in percent. From

both graph we can see that the value of R2 is 1 which is equals to 100%. These values

indicate the variability of data around its means.

𝑅2 =
𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛

 The Y error bars was set with red colour for Figure 4.1 and Figure 4.2. Both

graphs show a respectively small error of the data.

4.2 Discussion

 During doing this experiment, the truth table form TB6560 data sheet was

studied to understand the operation of the ICs.

Table 4.3: Truth table

INPUT OUTPUT

MODE CLK/STEP DIRECTION RESET ENABLE

LOW HIGH HIGH CW

HIGH HIGH HIGH CCW

34

Table 4.3 above shows how the direction of stepper motor was determined. For

x-axis, PORT C was used for the connection between the driver and the computer. Pin

PC0 was set for Enable pin, PC1 was set for Direction pin and PC2 was set for Step

pin. While y-axis used PORT B to drive the motor. PB4 was set for Enable pin, PB5

was set for Direction pin and PB6 was set for Step pin.

Figure 4.3: Output for 10 ms

The oscilloscope was set to Channel 1 and used for observing the output of the

stepper motor. From the truth table shown, the directions of the stepper motor move

clockwise (forward) or counter clockwise (reverse) were determined by the input given

either ‘LOW’ or ‘HIGH’ for Direction input and Enable pin must always set to ‘HIGH’

signal. If the Direction signal is set to ‘LOW’ signal, it rotates to clockwise direction

and if it is to ‘HIGH’ signal, it rotates to counter clockwise. The reset pin is

automatically controlled by the driver at ‘HIGH’ signal.

35

From the oscilloscope shown in Figure 4.3, the frequency for x forward is 75.76

per 100 pulse at 13.20 ms. 10 ms was programmed but the oscilloscope shows 13.20

ms due to some delay time taken by motor to convert from mechanical signal to

electrical signal. The calculation to obtain the frequency is shown below.

 f = 1/T

= 1/13.20 ms

 = 75.76 Hz

Figure 4.4: Output for 20 ms.

The delay time was changed to 20 ms per 100 pulse in Java programming.

From the output result as shown in Figure 4.4, the frequency is 45.45 Hz per 100 pulse.

This frequency is acquired from the calculation below.

f = 1/T

= 1/22.00 ms

 = 74.46 Hz

36

Table 4.4: Comparison between Java Programming and hardware

 Java Programming Hardware

A

Origin position (0,0)

B

Position (0,400)

C

Position (540,0)

D

Position (540,400)

Position (250,200)

37

From the Table 4.4, the images shown that some point does not accurately hit

the selected point. Point A, B, C, D and E was positioned at (0,0), (0,400), (540,0),

(540,400) and (250,200). Basically, there are no physical quantity can be measured

with perfect certainty. There are always error in measurements. Two factors that cause

uncertainties are random errors and systematic errors. For systematic error, the initial

point of stepper motor does not exactly start at (0,0) point. Random errors are caused

from electronic noise in the circuit, electrical instrument and mechanical torque. For

example, the mechanical movement of stepper motor need enough delay period given

by the software to convert into electrical signal. When a stepper motor moves from

one point to another, rotor does not immediately stop, it actually passes to the next

point. The rotor is drawn back to the position in opposite direction. It occurs when

every single step the motor take, the momentum cause the rotor passes its stop position

and bounces forward and backward until it rests.

Another factor causes the error is the motor linearity. From motor technical

specification, it should move 1.8º every single steps and 0.18º for every 10 micro steps.

All stepper motor exhibit some non-linearity which means the micro steps bunch

together in the full step mode. Two effects due this problem is the motor position is

not at optimum position and dynamic speed of resonance low.

38

CHAPTER 5

CONCLUSION

5.1 Conclusion

 As the conclusion, the project has been successfully developed a two

dimensional (2D) stepper motor controller. The relationship between the stepper motor

distance movement and the given pulse were studied. From the experiment that was

conducted, the controller is capable to move the stepper motor to their specific distance

and position at certain pulse. In addition, 360° shaft rotation need 200 pulse will move

the stepper motor to 200mm. The error for x-axis is in the range of -3mm to 5mm while

the error for y-axis is between -2mm to 5mm. Some safety factor need to be considered

in order to protect the stepper motors and other instruments from damage.

39

5.2 Recommendation

 It is recommended that identical research should be carried out by using different

software program, types of driver and types of stepper motor to compare the performance of

the stepper motor. In addition, the speed control for stepper motor can be design to govern the

stepper motor motion and frequency can be varied.

40

REFERENCES

1. Douglas W. J (1998). Control of Stepping Motors. University of IOWA, United States.

2. Herman, S., & Alerich, W. (1990). Industrial motor control (2nd ed.). Albany, N.Y.:

Delmar.

3. Hughes, A. (2006). Electric motors and drives fundamentals, types, and applications (3rd

ed.). Amsterdam: Elsevier/Newnes.

4. Keljik, J. (2007). Electric Motors and Motor Controls (2nd ed.). United States of

America: Delmar.

5. Lazaridis, G. (2010). How Stepper Motors Work,.Electronic Workbench PCB heaven.

6. M. M Fauzi (2010). Stepper Motor Controller. Undergraduates Project Papers, Faculty

of Electrical and Electronic Engineering, Universiti Malaysia Pahang, Malaysia.

7. Morar, A. (2013). A Study of Development of a Dedicated Control IC for a Five Phase

Stepper Motor Driver. Procedia Technology, 83-89.

8. Parente, B. (2011). Stepper motor basics: Half and Micro stepping. Retrieved June 5,

2015, from http://motion.schneider-electric.com/technology-blog/stepper-motor-

basics-half-and-micro-stepping/

http://motion.schneider-electric.com/technology-blog/stepper-motor-basics-half-and-micro-stepping/
http://motion.schneider-electric.com/technology-blog/stepper-motor-basics-half-and-micro-stepping/

41

9. Takashi, K (1984). Stepping motors and their microprocessor controls. Kanagawa:

Clarendon Press ;.

10. Yeadon, W. (2001). Handbook of small electric motors. New York: McGraw-Hill.

42

APPENDIX A

Java Coding For Stepper Motor Controller

/*
 *This program are about stepper motor controller for x-axis and y axis. This program for start, reset, forward,
reverse
 *and positioning the stepper motor.

 *@author Anith Khairunnisa Binti Ghazali
 * 4 SSCF 2014/15
 * 2D Stepper Motor Controller
 */

import ComInt.*;
import javax.swing.*;
import java.awt.event.*;

import ComInt.Com;
import ComInt.Parameters;
import java.awt.BasicStroke;
import java.awt.Color;

import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.MouseInfo;
import java.awt.Point;

import java.awt.PointerInfo;
import java.awt.RenderingHints;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import javax.swing.Timer;

public class mouseUI extends javax.swing.JFrame implements ActionListener {

***VARIABLES DECLARATION**
Graphics2D g1,g2,g2d,g3;
Timer timer;
static Parameters param;

static Com com;
int msec;//milisec
int data,RB,RC, RC7,RC6,stpInpX,stpInpY,position,X;
String strRC;

int ONOFF;
 private Point previousPoint = new Point();
 private Point nextPoint = new Point();

 private boolean drawing;
 double x ;
 double y ;
 int currentpostX=0;

 int currentpostY=0;
 /**
 * Creates new form mouseUI
 */

 public mouseUI() {

 initComponents();

 msec= 500;
 timer= new Timer(msec, this);
 timer.start();

 try
 {param=new Parameters();
 param.setPort("COM2");
 com=new Com(param);

 com.sendString("RESET\r",1);
 com.sendString("CPB0\rCPC11111000",0);
 }catch (Exception e){System.out.append("Device not Found");}
 }

43

 @SuppressWarnings("unchecked")
 public void actionPerformed(ActionEvent ee){
 try {
 stpInpX = Integer.parseInt(X_steps.getText());

 stpInpY = Integer.parseInt(Y_steps.getText());
 }
 catch(Exception e){System.out.println("Do not left empty");}

 }
 ***BUTTON**

 STOP.setText("STOP");

 STOP.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(java.awt.event.ActionEvent evt) {
 STOPActionPerformed(evt);
 }

 });

 RESET1.setText("RESET");
 RESET1.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {
 RESET1ActionPerformed(evt);
 }
 });

 start.setText("START POSITIONING");
 start.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(java.awt.event.ActionEvent evt) {

 startActionPerformed(evt);
 }

 private void RevYActionPerformed(java.awt.event.ActionEvent evt) {
 REVERSE Y
 if (currentpostY >=10){ //Minimum Y position
 try{

 int i;
 com.sendString ("setpb4\r",0);//High Enable
 com.sendString ("setpb5\r",0);//High Direction

 for (i =0; i<100 ;i++){//100 pulse (10 cm)
 com.sendString ("setpb6\r",0);//High Steps
 Thread.sleep(10);
 com.sendString ("respb6\r",0);//Low Steps

 Thread.sleep(10);
 }
 currentpostY=currentpostY -i/10;//Minus with current position

 Y_location.setText(""+currentpostY);
 repaint();
 }
 catch (Exception e){System.out.println("Device not found");}}

 }
***FORWARD Y**
 private void fwdYActionPerformed(java.awt.event.ActionEvent evt) {
 // TODO add your handling code here:

 if (currentpostY <=400){ //Maximum Y position
 try{
 int i;

 com.sendString ("setpb4\r",0);//High Enable
 com.sendString ("respb5\r",0);// Low Direction

 for (i =0; i<100; i++){//100 pulse (10 cm)
 com.sendString ("setpb6\r",0);//High Steps
 Thread.sleep(10);
 com.sendString ("respb6\r",0);//Low Steps

 Thread.sleep(10);
 }
 currentpostY=currentpostY +i/10;//Add up with surrent position
 Y_location.setText(""+currentpostY);

 repaint();

44

 }catch (Exception e){System.out.println("Device not found");}
 }

 }
 REVERSE X

 private void revXActionPerformed(java.awt.event.ActionEvent evt) {

 // TODO add your handling code here:

 if (currentpostX >=10){//Minimum X position
 try{

 repaint();
 int i;
 com.sendString ("setpc0\r",0);//High Enable
 com.sendString ("setpc1\r",0);// High Direction

 for (i =0; i<100 ;i++){//100 pulse (10 cm)
 com.sendString ("setpc2\r",0);
 Thread.sleep(10);

 com.sendString ("respc2\r",0);//Low Steps
 Thread.sleep(10);
 }
 currentpostX=currentpostX -i/10;//Minus with current position

 X_location.setText(""+currentpostX);
 repaint();
 }
 catch (Exception e){System.out.println("Device not found");}

 }

 }

 private void FwdXActionPerformed(java.awt.event.ActionEvent evt) {
 Forward X
 if (currentpostX <=540){ //Maximum X position

 try{
 int i;
 com.sendString ("setpc0\r",0);//High Enable

 com.sendString ("respc1\r",0);// Low Direction

 for (i =0; i<100; i++){//100 pulse (10 cm)
 com.sendString ("setpc2\r",0);

 Thread.sleep(10);
 com.sendString ("respc2\r",0);//Low Steps
 Thread.sleep(10);
 }

 currentpostX=currentpostX +i/10; //Add up with current position
 X_location.setText(""+currentpostX);
 repaint();

 }catch (Exception e){System.out.println("Device not found");}

 }
 }

**************************************STOP**

 private void STOPActionPerformed(java.awt.event.ActionEvent evt) {
 // TODO add your handling code here:

 fwdY.setEnabled(true);
 RevY.setEnabled(true);
 FwdX.setEnabled(true);
 revX.setEnabled(true);

 STOP.setEnabled(false);
 position=0;
 }

 private void RESET1ActionPerformed(java.awt.event.ActionEvent evt) {
 ***RESET**

 //-------------------------------X RESET------------------------------------

 try{

 com.sendString ("setpc0\r",0);//High Enable
 com.sendString ("setpc1\r",0);//High Direction

 repaint();

45

 int data ;

 do {
 com.sendString ("setpc2\r",0);//High Step
 Thread.sleep(10);
 repaint();

 com.sendString ("respc2\r",0);//Low Step
 Thread.sleep(10);
 com.sendString("RD8\r",0);//X switch connection
 data = Integer.parseInt(com.receiveToString('\n', 0));//ADC

 data++;
 repaint();
 } while (data < 1000);//5V

 repaint();
 { com.sendString ("respc0\r",0);} ;//Low Enable
 currentpostX = 0;
 repaint();

 X_location.setText(""+ currentpostX);
 repaint();
 }catch (Exception e){System.out.println("Device not found");}

 //------------------------------Y RESET---
 try{

 Thread.sleep(500); //safety delay

 com.sendString ("setpb4\r",0);//High Enable
 com.sendString ("setpb5\r",0);//High Direction
 repaint();
 int data ;

 repaint();
 do {
 com.sendString ("setpb6\r",0);//High Step
 Thread.sleep(10);

 repaint();
 com.sendString ("respb6\r",0);//Low Step
 Thread.sleep(10);
 com.sendString("RD9\r",0);//Y switch connection

 data = Integer.parseInt(com.receiveToString('\n', 0));//ADC
 data++;
 repaint();
 } while (data < 1000);//5V

 repaint();
 { com.sendString ("respb4\r",0);} ; //Low Enable
 currentpostY = 0;

 Y_location.setText(""+ currentpostY);
 repaint();
 }catch (Exception e){System.out.println("Device not found");}

 }
 SELECTION BUTTON*
 private void X_stepsActionPerformed(java.awt.event.ActionEvent evt) {

 // TODO add your handling code here:

 X_steps.setEnabled(false);
 position=1;

 }

 private void postActionPerformed(java.awt.event.ActionEvent evt) {

 // TODO add your handling code here:
 X_steps.setEnabled(true);
 Y_steps.setEnabled(true);
 position=1;

 }

 private void startActionPerformed(java.awt.event.ActionEvent evt) {

 **************************************POSITIONING***

 if ((position==1)){//Calculate different
 int postX= stpInpX -currentpostX;

 int postY= stpInpY -currentpostY;

46

 repaint();

 //-----------------------------------Positive X---
 if ((postX> 0) &(currentpostX <=540)){//Check different and position

 repaint();

 try{
 int i;
 com.sendString ("setpc0\r",0);//High Enable

 com.sendString ("respc1\r",0);//Low Direction
 repaint();
 for (i =0; i<10*postX; i++){//TIme with Step
 com.sendString ("setpc2\r",0);// High Step

 Thread.sleep(10);
 repaint();
 com.sendString ("respc2\r",0);//Low Step
 Thread.sleep(10);

 repaint();
 }
 currentpostX=currentpostX +i/10; //Add up with current position
 X_location.setText(""+currentpostX);

 repaint();
 }catch (Exception e){System.out.println("Device not found");}
 }

 //------------------------Negative X---
 repaint();
 if ((postX< 0)&(currentpostX >=10)){ //Check different and position
 repaint();

 try{

 int i;
 com.sendString ("setpc0\r",0);//High Enable

 com.sendString ("setpc1\r",0);//High Direction
 repaint();
 for (i =0; i<(-10)*postX ;i++){//TIme with Step (negative steps)
 com.sendString ("setpc2\r",0);// High Step

 Thread.sleep(10);
 com.sendString ("respc2\r",0);// Low Step
 Thread.sleep(10);
 repaint();

 }
 currentpostX=currentpostX -i/10; //Minus with current position
 X_location.setText(""+currentpostX);
 repaint();

 }
 catch (Exception e){System.out.println("Device not found");}
 }

 repaint();

 //----------------------------------Positive Y---
 if ((postY> 0) &(currentpostY <=400)){ //Check different and position

 try{
 int i;
 repaint();

 com.sendString ("setpb4\r",0);//High Enable
 com.sendString ("respb5\r",0);//Low Direction

 repaint();
 for (i =0; i<10*postY; i++){//TIme with Step
 com.sendString ("setpb6\r",0);// High Step
 Thread.sleep(10);

 repaint();
 com.sendString ("respb6\r",0);// Low Step
 repaint();
 }

 currentpostY=currentpostY +i/10; //Add up with current position
 Y_location.setText(""+currentpostY);
 Thread.sleep(10);
 repaint();

 }catch (Exception e){System.out.println("Device not found");}

47

 }

 //-----------------------------------Negative Y---
 repaint();
 if ((postX< 0)&(currentpostY >=10)){
 try{ repaint();

 int i;
 com.sendString ("setpb4\r",0);//High Enable
 com.sendString ("setpb5\r",0);//High Direction
 repaint();

 for (i =0; i<(-10)*postX ;i++){//TIme with Step (negative steps)
 com.sendString ("setpb6\r",0);// High Step
 Thread.sleep(10);
 repaint();

 com.sendString ("respb6\r",0);// Low Step
 Thread.sleep(10);
 repaint();

 }
 currentpostY=currentpostY -i/10; //Minus with current position
 Y_location.setText(""+currentpostY);
 repaint();

 }
 catch (Exception e){System.out.println("Device not found");}}

 }
 }

 private void Y_stepsActionPerformed(java.awt.event.ActionEvent evt) {

 // TODO add your handling code here:
 Y_steps.setEnabled(false);
 position=1;

 }
 @Override
*******************************GRID COMMAND***

 public void paint(Graphics g) {

 g2 =(Graphics2D)g;

 g1 =(Graphics2D)g;
 g2d =(Graphics2D)g;
 g3 =(Graphics2D)g;
 super.paint(g2);

 super.paint(g1);
 super.paint(g3);
 g1=(Graphics2D) mouseUI.getGraphics();

 g2=(Graphics2D) mouseUI.getGraphics();
 g1.setColor(Color.blue);
 g2.setColor(Color.BLUE);

 //--------------------------------------X Grid--
 g2.drawLine(0, 20, 540, 20);
 g2.drawLine(0, 40, 540, 40);
 g2.drawLine(0, 60, 540, 60);

 g2.drawLine(0, 80, 540, 80);
 g2.drawLine(0, 100, 542, 100);
 g2.drawLine(0, 120, 542, 120);
 g2.drawLine(0, 140, 542, 140);

 g2.drawLine(0, 160, 542, 160);
 g2.drawLine(0, 180, 542, 180);
 g2.drawLine(0, 200, 542, 200);
 g2.drawLine(0, 220, 542, 220);

 g2.drawLine(0, 240, 542, 240);
 g2.drawLine(0, 260, 542, 260);
 g2.drawLine(0, 280, 542, 280);
 g2.drawLine(0, 300, 542, 300);

 g2.drawLine(0, 320, 542, 320);
 g2.drawLine(0, 340, 542, 340);
 g2.drawLine(0, 360, 542, 360);
 g2.drawLine(0, 380, 542, 380);

 g2.drawLine(0, 400, 542, 400);

48

 g2.drawLine(0, 420, 542, 420);
 g2.drawLine(0, 440, 542, 440);

 g2.drawLine(0, 460, 542, 460);
 g2.drawLine(0, 480, 542, 480);
 g2.drawLine(0, 500, 542, 500);
 g2.drawLine(0, 520, 542, 520);

 g2.drawLine(0, 540, 542, 540);
 g2.drawLine(0, 542, 542, 542);

 //---------------------------------Y Grid--

 g1.drawLine(20, 0, 20, 400);
 g1.drawLine(40, 0, 40, 400);
 g1.drawLine(60, 0, 60, 400);

 g1.drawLine(80, 0, 80, 400);
 g1.drawLine(100, 0, 100, 400);
 g1.drawLine(120, 0, 120, 400);
 g1.drawLine(140, 0, 140, 400);

 g1.drawLine(160, 0, 160, 400);
 g1.drawLine(180, 0, 180, 400);
 g1.drawLine(200, 0, 200, 400);
 g1.drawLine(220, 0, 220, 400);

 g1.drawLine(240, 0, 240, 400);
 g1.drawLine(260, 0, 260, 400);
 g1.drawLine(280, 0, 280, 400);
 g1.drawLine(300, 0, 300, 400);

 g1.drawLine(320, 0, 320, 400);
 g1.drawLine(340, 0, 340, 400);
 g1.drawLine(360, 0, 360, 400);
 g1.drawLine(380, 0, 380, 400);

 g1.drawLine(400, 0, 400, 400);
 g1.drawLine(420, 0, 420, 400);
 g1.drawLine(440, 0, 440, 400);
 g1.drawLine(460, 0, 460, 400);

 g1.drawLine(480, 0, 480, 400);
 g1.drawLine(500, 0, 500, 400);
 g1.drawLine(520, 0, 520, 400);

 g2d.setColor(Color.blue);
 g2d.setRenderingHint(
 RenderingHints.KEY_ANTIALIASING,

 RenderingHints.VALUE_ANTIALIAS_ON);
 g2d.setStroke(new BasicStroke(8,BasicStroke.CAP_ROUND, BasicStroke.JOIN_BEVEL));
 g3.drawLine(previousPoint.x, previousPoint.y, nextPoint.x, nextPoint.y);
 g2d.fillOval((currentpostX+64), (currentpostY+88), 10, 10);

 }

